Cost Flexibility Tunability - cinam.univ-mrs.fr · Leriche et al. Org. Biomol. Chem. (2008), 6,...

50
Cost Flexibility Tunability

Transcript of Cost Flexibility Tunability - cinam.univ-mrs.fr · Leriche et al. Org. Biomol. Chem. (2008), 6,...

CostFlexibilityTunability

TTF 1973 Poly(acetylene) 1977

(opto)electronic devices:FETs, LEDs, Solar cells

Sensors, electrodes

energy storage

antistaticsÉlectromagnétism

protection

RéversibilitySemi-conductor

conductor

Marseille 2009

Marseille 2009

Marseille 2009 Source: OCDE

Source: UN

SUN3,900,000 EJ theory

50,000 EJ technically possible

Biomasse2,900 EJ theory

300 EJ technically possible

Hydroelectricity40,000 EJ theory

10,000 EJ technically possible

Geothermic140,000,000 EJ theory

5,000 EJ technically possible

Wind5,800 EJ theory

300 EJ technically possible

Oceans7,400 EJ theory

…In 1h, 440EJ on Earth1 year of energy consumption…

ITO

Metal

Pedot-pss

Active layer

Injection layer

SEMI-CONDUCTOR

S

N

S

S

CN

CN

NCCN

CN

NC

CONJUGATED POLYMERS

Marseille 2009

électrode

Absorption +–

Dissociation

Transport

+

+

–––

++

Collection

électrode

Diffusion

+–

Marseille 2009

électrode

+–

Dissociation

+

+

–––

++électrode

+–

E

D A+. -.

Photoinduced electron transfer : electricity …

8Marseille 2009

électrode

électrode

+–

+–

+–

+–

électrode

+– +

+

–––

++électrode

+–

Bilayer (BL SC) Bulk heterojunction (BHJ SC)

Marseille 2009

Current density

Open circuit voltage

Fill factor

PV yield

Solar light

harvesting

Stability

Mobility

Morphology

Interface between

the domains

HOMO-LUMO gap

HOMO level

Geometry of

compounds

Nature of compounds

(molecules or

polymers )

Organisation

Depositionmethod

StructureTreatmentadditives

ITO

Verre

PEDOT-PSS

Acceptor

Metal

– +–

Donor

ITO

Glass

PEDOT-PSS

Metal

– +–

BL SC

BHJ SC

Marseille 2009

Bulk heterojunction solar

cells

Low band gap or regioregular

isotropic polymersITO

Verre

PEDOT-PSS

Acceptor

Metal

– +–

Donor

ITO

Glass

PEDOT-PSS

Metal

– +–

BL SC

BHJ SC

Hou et al, Nature Materials, 3, 2009, 649Marseille 2009

Hou et al, Nature Materials, 3, 2009, 649Marseille 2009

Longueur d'onde (nm)

400 600 800 1000 1200 1400

Irra

dian

ce s

pect

rale

(W

.m-2

.nm

-1)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Abs

orba

nce

Si (1,1 eV)

P3HT 1,9 eV

P3HT

HOMO

Accepteur

HOMO

LUMO

∆E ∝ VOC

vide0

Energy (eV)

-4.70

-5.27

LUMO

Air unstability

-3.00

D-A polymer

Moove the homo level in

the air stability zone

Increase VOC

Improve light harvesting

(P3HT/C60 : η0.15%)

Solid states

Polymer

Jsc (mA.cm -

2)2.06

Voc (V) 0.75

FF (%) 25

ηηηη (%) 0.38

S n

P3HT

Bricaud et al. Synth. Metals (2009), in press

651nm

Marseille 2009

Marseille 2009

Bulk heterojunction solar

cells

Low band gap or regioregular

isotropic polymers

ITO

Verre

PEDOT-PSS

Acceptor

Metal

– +–

Donor

ITO

Glass

PEDOT-PSS

Metal

– +–

BL SC

BHJ SC

Reproductibility (regioregularity,

polydispersity)

Pollution (organometallic

catalysts)

Cost (catalysts, purification)

Marseille 2009

3D MOLECULAR derivatives may lead to

Good reproducibilityEasy purification

Isotropic materialsGood processabilityHigh solubility

Si

SiO2

Semiconducting material

Au Au

drain source

gate

W

L

ITO

Verre

PEDOT-PSS

Acceptor

Metal

– +–

Donor

Marseille 2009

Leriche et al. Org. Biomol. Chem. (2008), 6, 3202

Cravino et al. Chem. Mater (2006), 2584

Roquet et al. J. Mater. Chem. (2006), 3040

Karpe et al. Adv. Funct. Mater.. (2007), 17, 7, 1163

Sherf and Co. Bauerle and Co.

For recent reviews on Three-Dimensional Organic Se miconductors see Roncali et al. Adv. Mater. (2007), 2045Roncali, J. ” Molecular Bulk Heterojunctions: An Emerging Approac h to Organic Solar Cells” . Acc. Chem. Res (2009) in press

SiS

S SS

S

S

SS

S

S

S

S

C6H13

C6H13

C6H13

C6H13

N

S

S

S

S

S

S

S

S

S

C6H13

C6H13

C6H13

PS

S SC6H13

S

S

S

C6H13

S

S

S

C6H13

O

S

S S

S S

S

S

S

S

S

S

S

SBu

BuS

BuSSBu

Marseille 2009

-1.0 -0.5 0.0 0.5 1.0-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Den

sité

de

cour

ant (

mA

/cm

²)

Tension (V)

Jsc=1.13mA/cm2

Voc=0.85V

η=0.30%

FF=0.24

λmax=390nm

ITO

Glass

PEDOT-PSS

Metal

– +–

Donor

Acceptor

Better than linear analogues

Fragile C-Si bond

moderate solar light

harvestingRoquet et al. J. Mater. Chem. (2006),

3040

SiS

S SS

S

S

SS

S

S

S

S

C6H13

C6H13

C6H13

C6H13

Marseille 2009

Are these systems incorporable in solar cells ? YES

What about solar light harvesting, hole mobility an d stability ?

TO BE IMPROVED

!!!For Reviews on TPA derivatives see: Shirota, Y. J. Mater. Chem. 2000, 10, 1. Shirota, Y. J. Mater. C hem.

2005, 15, 75

S

SR

R S

RR

S

S

S

R R

R

RN

S

S

S

Marseille 2009

SBr

S Br

S

S

Br

Br

SBu3Sn

Pd(PPh3)4

S

Br

Br

S

S

S

S

S

NBS

CHCl3/AcOH

Zn

Reflux

Marseille 2009

SBr

S Br

S

S

Br

Br

S

S

S

S

1 tridimensionnal molecule

1 cruciform quaterthiophene

4 independant systems

S

S

R

R

S

S

R

R

Karpe et al. Adv. Funct. Mater. (2007), 17, 7, 1163

Marseille 2009

S

S

N

SS

S

S

S

S

N

S

S

N S

S

N

CN

CN

CNNC

NC

NC

NCCN

S

S

N

SS

S

S

S

S

N

S

S

N S

S

N

S

S

N

SS

S

S

S

S

N

S

S

N S

S

N

O

O

O

O

H

H

H

H

DMF

41 % 55 %

MalonotrileN(Et)3

POCl3

dichloroEthane

S S

N

SnMe3

SS

S

S

Br

Br

Br

Br

+

5% Pd(PPh3)

toluene

35 %

Marseille 2009

410nm 526nm

≈0.75V≈ 1V

εεεε= 111000 L.cm -1.mol -1

εεεε= 72900 L.cm -1.mol -1

Marseille 2009

ITO

Glass

PEDOT-PSS

Metal

– +–

Yield (%) = 0.66

Voc (V) = 0.736Jsc (mA/cm²) = -3.04Fill Factor = 29.7 %

Yield (%) = 0.2

Voc (V) = 0.887Jsc (mA/cm²) = -1.19Fill Factor = 19 %

Marseille 2009

Are these systems incorporable in solar cells ? YES

What about solar light harvesting, hole mobility an d stability ?

TO BE IMPROVED

!!!For Reviews on TPA derivatives see: Shirota, Y. J. Mater. Chem. 2000, 10, 1. Shirota, Y. J. Mater. C hem.

2005, 15, 75

S

SR

R S

RR

S

S

S

R R

R

RN

S

S

S

Marseille 2009

µµµµ=2.10-2 cm2.V-1.s-1

µµµµ=9.10-5 cm2.V-1.s-1

Cravino et al. Chem. Mater., (2006), 18, 2584

Cremer et al., Chem. Mater., (2007), 19, 4155Li et al. Synth. Metals, (2008), 158, 150

Si

SiO2

Semiconducting material

Au Au

drain source

gate

W

L

N

S

S

S

S

S

S

S

S

S

C6H13

C6H13

C6H13

N

S

S

S

S

S

S

Marseille 2009

N

S

S

S

S

SR

R

SS

S

S

R

R

R

R

N

S

S

S

S

SR

R

S

S

R

R

N

S

S

S

S

SR

R

N

S

SR

R

N

S

SR

R

N

S

SR

R

S

S

R

R

SS

RR

SS

RR

Leriche et al. New. J. Chem., (2009), 33, 801Marseille 2009

µµµµ (cm2.v-1.s-1) Ion/off

1.2 10-2 50

5.0 10-2 15

4.0 10-2 350

8.0 10-2 50000

S

SS

S

Mobilities all higher than 10 -2

cm2.v-1.s-1

Non homogeneous I on/off ratio !!!

(V/SCE)0.45

0.32

0.72

1.00O. Alévêque et al. J. Mater. Chem. 2009

SiSiO2

Au Au

drain source

gate

W

L

Marseille 2009

Higher I on/off ratio

Higher stability in ambiant

conditions

Better mobility

Vg=0 to -50V

Marseille 2009 O. Alévêque et al. J. Mater. Chem. 2009

T. Breton (CIMA), R. Filmon, R. Mallet (service commun de microscopie de l’Université d’Angers)

Similar morphologies

Larger grain size for the meta isomer

SS

SS

Marseille 2009

Alévêque et al. Solar En. Mat. and Solar cells, (2008) , 92, 1170

Solid state

In CH2Cl2

µµµµ=3.2.10-4 cm2.V-1.s-1

Marseille 2009

ITO

Verre

PEDOT-PSS

C60

Metal

– +–

TPATTF

Max EQE 6%Voc = 0.4 VJsc = 0.87 mA cm -2

FF = 0.32η η η η = = = = 0.11%

N. Martin et al. Acc. Chem. Res., (2007), 40, 1015: 0.04% on a single layered dual material cellP. J. Skabara et al., J. Phys. Chem. B., (2006), 11 0, 3140: 0.14% wirh a BHJ incorporating a TTF containing polymer

Alévêque et al. Solar En. Mat. and Solar cells, (2008) , 92, 1170Marseille 2009

Polarity

Polarisability

DissymetrizationN

S

CN

NC

S

S

S

R

Marseille 2009

Nature and number of electron accepting moieties

Marseille 2009

Nature of electron accepting moieties

DMF, POCl3BrN

3 Pd(PPh3)4

S SnBu3

3SN

S

N

SOHC

S

CHO

CHO

S

N

S

S

S

N

S

S

S

N

S

S

CN

CN

NCCN

CN

NC

NN

N

N

N

N

O

O

O

O

O

O

O

O

S

O

O

S

O

O

S90% 1% 85%

90%85%

NEt3

CN

CN

O

ON

N

O

O

Sou

Marseille 2009

S

N

S

S

S

N

S

S

CN

CN

NCCN

CN

NC

50%NC

NC CN

CN

NC

NC

CN

S

N

S

S

CN

CN

CN

NC

NC

CN

S

N

S

S

CN

CN

NC

29%

Traces

number of electron accepting moieties

Marseille 2009

85%

S

N

S

S

CN

CN

NCCN

CN

NC

1) NaCN

2) H+, Pb(OAc)4

number of electron accepting moieties

S

N

S

S

S

N

S

S

CN

CN

NCCN

CN

NC

50%NC

NC CN

CN

NC

NC

CN

S

N

S

S

CN

CN

CN

NC

NC

CN

S

N

S

S

CN

CN

NC

29%

Traces

Marseille 2009

ICT band

High oxidation

potential

redox ampholyte

N

S

S

S

CN

CNNC

Marseille 2009

CH2Cl2, TBAPF6 0.1M

0.88V

1.00V

1.19V

P. Leriche et al. , J . Org. Chem., (2007), 72, 83 32

-0.56V

-0.63V

-0.64V

N

S

S

S

CN

CNNC

ICT band

High oxidation

potential

redox ampholyte

Band gap controlMarseille 2009

CN

CN

O

O

N

N

O

O

S

528nm 613nm

P. Leriche et al. , J . Org. Chem., (2007), 72, 83 32Marseille 2009

ITO~-4.5

Baytron

C60 -6.3

C60 -4.1Al ~-4.2

Eox ferrocene = 4.15eV

-6.0-6.1

-5.8

-6.0

-3.7 -3.8

-4.0

-4.3

eV

CN

CN

O

O

N

N

O

O

S

Marseille 2009

NC

S

NCN

S

SNC

NC

NC

CN

S

N

S

S

S

CN

NC

NCCN

S

S

N

S

S

S

NCCN

Marseille 2009

S

S

N

S

S

S

NCCN

NC

S

NCN

S

SNC

NC

NC

CN

S

N

S

S

S

CN

NC

NCCN

1.09V

0.90V

0.73V

0.65V

Marseille 2009

S

S

N

S

S

S

NCCN

NC

S

NCN

S

SNC

NC

NC

CN

S

N

S

S

S

CN

NC

NCCN

Max EQE 28%Voc = 1.15 VJsc = 4.6 mA cm -2

FF = 0.28ηηηη = 1.85%

Max EQE 28%VOC=0,89VJ=3,65 mA.cm -2

FF=0,36η η η η =1,17%

Max EQE 33%VOC=0,72VJ=1,97 mA.cm -2

FF=0,34ηηηη=0,49%

Max EQE 20%%VOC=0,6VJ=2,43 mA.cm -2

FF=0,28R=0,41%

C60

ITO

TPA derivativeC60

AlLiF

Roquet et al., J. Am. Chem. Soc., (2006), 128, 3459Cravino et al., Adv. Mater., (2006), 18, 3033

S

S

N

S

S

S

NCCN

NC

S

NCN

S

SNC

NC

NC

CN

S

N

S

S

S

CN

NC

NCCN

Solar light harvesting

Oxidation potential / V OC link : high

VOC

High stability of films in ambiant Marseille 2009

Max EQE 32%Voc = 0.66 VJsc = 4.1 mA cm -2

FF = 0.30η η η η = = = = 0.81%

λmax=419nm

λICT=536nm

ITO

Glass

PEDOT-PSS

Metal

– +–

Donor

Acceptor

Roquet et al., J. Am. Chem. Soc., (2006), 128, 3459Marseille 2009

Polarizability

Assymetrizatio

nE. Ripaud, in progress

N

S

S

S

NC

NC

CN

NC

NC

CN

Marseille 2009

Commercialyavailable

Marseille 2009

NC

S

NCN

S

SNC

NC

NC

CN