Correcting for peculiar velocities of Type Ia Supernovae ... · Doppler shift Doppler shift Doppler...

16
1/16 Introduction Data Results Conclusions Correcting for peculiar velocities of Type Ia Supernovae in galaxy clusters P.-F. L´ eget, M. V. Pruzhinskaya, A. Ciulli, E. Gangler, Ph. Gris, L.-P. Says + SNFACTORY collaboration postdoctoral researcher at the Laboratoire de Physique de Clermont, Universit´ e Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France October 11, 2017 Colloque ´ Energie Noire Orsay, France 11-13 Octobre

Transcript of Correcting for peculiar velocities of Type Ia Supernovae ... · Doppler shift Doppler shift Doppler...

  • 1/16

    Introduction Data Results Conclusions

    Correcting for peculiar velocities ofType Ia Supernovae in galaxy clusters

    P.-F. Léget, M. V. Pruzhinskaya, A. Ciulli, E. Gangler, Ph. Gris,L.-P. Says + SNFACTORY collaboration

    postdoctoral researcher at the Laboratoire de Physique de Clermont, Université ClermontAuvergne, CNRS/IN2P3, Clermont-Ferrand, France

    October 11, 2017

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • 2/16

    Introduction Data Results Conclusions

    Introduction

    DataNearby Supernova Factory dataHost clusters dataRedshift measurement

    ResultsImpact on the Hubble diagramPhysical properties of SNe Ia and their hosts in galaxy clusters

    Conclusions

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • 3/16

    Introduction Data Results Conclusions

    Cosmology with SN IaSN Ia are standardizable candles

    I “luminosity distance-redshift” relationI standardization of SN Ia (Rust 1974, 1975; Pskovskii 1977, 1984;

    Phillips 1993; Phillips et al. 1999; Riess et al. 1996; Perlmutter et al.1997, 1999; Wang et al. 2003; Guy et al. 2005, 2007; Jha et al. 2007)

    M = MB − αX1 + βC

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • 4/16

    Introduction Data Results Conclusions

    Cosmology with SN IaPeculiar velocities

    (from A. Ciulli)

    I Is the uncertainty in the redshift negligible?(1 + zobs) = (1 + zc)(1 + zd)

    I For low and intermediate redshifts (z < 0.2):I to remove all SNe with z < 0.015 from the Hubble diagram & to

    add a 300–400 km/s peculiar velocity dispersion as z uncertainty(Astier et al. 2006; Wood-Vasey et al. 2007; Amanullahet al. 2010; Union 2.1)

    I velocity maps of the nearby Universe (150 km/s, Hudson et al.2004; Conley et al. 2011; Betoule et al. 2014; JLA)

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • 5/16

    Introduction Data Results Conclusions

    Coma cluster

    Colloque Énergie Noire Orsay, France 11-13 Octobre

    σV = 1038 km/s(Colless & Dunn 1996)σm =

    5σVcz ln 10

    Standard methods totake into accountpeculiar velocities cannot be applied forgalaxy clusters!

  • 6/16

    Introduction Data Results Conclusions

    SN Ia in clusters

    Colloque Énergie Noire Orsay, France 11-13 Octobre

    Doppler shift

    Doppler shift

    Doppler shift

    Virgo, Fornax:Blakeslee et al. 1999;Radburn-Smith et al. 2004For SNe:Feindt et al. 2013; Dhawan et al.2017

    How to estimate better theimpact of peculiar velocities onthe redshift measurements?

    I to match the host galaxies of SNe Ia with known clusters of galaxiesI to use the host cluster redshift instead of the host galaxy redshift

  • 7/16

    Introduction Data Results Conclusions

    Nearby Supernova Factory data

    I 145 SN Ia (CABALLOv2, 2004 – 2009; Aldering et al. 2002)I The sample contains the objects with good final references and

    properly measured light-curve parameters, including quality cutssuggested by Guy et al. (2010).

    I m∗B, X1, and C are estimated with the SALT2.4 lightcurve fitter(Guy et al. 2007, Betoule et al. 2014).

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4Redshift

    0

    10

    20

    30

    40

    50

    60

    70

    Num

    bero

    fSN

    e JLA

    NearbySDSSSNLSHSTSNF

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • 8/16

    Introduction Data Results Conclusions

    Galaxy clusters

    Methods for identifying the clusters:I over-density regions on the imagesI red sequence methodI diffuse X-ray emissionI Sunyaev-Zel’dovich effect

    SIMBAD databaseI only clusters of galaxies

    (exclude groups of galaxies)I d < 2.5 MpcI ∆z < 0.015

    Colloque Énergie Noire Orsay, France 11-13 Octobre

    A1689

  • 9/16

    Introduction Data Results Conclusions

    Redshift calculation

    Simbad query

    Galaxy cluster list

    R200 query

    SDSS DR13 query

    SNF host

    Literature query

    yes

    no

    zcl, zcl,err

    request

    output

    computation

    for all

    per cluster

    R lit200tttttttttttt

    R�v200tttttttttttt

    Galaxy list in cluster area

    Estimation of R200

    R200 =

    Ngal>10

    NgalNpaper

    else

    Biweight

    Keep literature value

    Remove duplicates

    R200 =

    final result

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • Host clusters data

    Final matching:I d < R200I |zhost − zcl| < 3σVc

    0 1 2 3 4 5

    r/R200

    4

    3

    2

    1

    0

    1

    2

    3

    4

    v/σV

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    1.2

    g−r

    10/16

    } + X-ray→ 11 SNe

  • Red sequence

    11/16

    0

    1

    2

    g−

    r

    SN2009hi PTF09foz SNF20060609-002

    12 14 16 18 20

    0

    1

    2 SNF20080612-003

    12 14 16 18 20r

    SNF20061020-000

    12 14 16 18 20

    SN2007nq

  • 12/16

    Introduction Data Results Conclusions

    X-ray emission (ROSAT)

    Colloque Énergie Noire Orsay, France 11-13 Octobre

    SNF20080731-000 SN2007nq

    ZwCl 1742+3306 A0119

  • 13/16

    Introduction Data Results Conclusions

    Hubble diagramwRMS = 0.137m (without correction); wRMS = 0.130m (with correction); p-value = 5.9× 10−4

    Colloque Énergie Noire Orsay, France 11-13 Octobre

    zc =

    {z clc

    z hostc, σz =

    5√

    z cl 2errz cl ln(10) if inside a galaxy cluster

    5√

    z host 2err +0.0012

    z host ln(10) otherwise

    0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09zc

    −0.4

    −0.3

    −0.2

    −0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    ∆µ

    SNe Ia inside clusters, before correctionSNe Ia inside clusters, after correctionSNe Ia outside clusters

    0.002 0.004 0.006 0.008

    zc

    −2.0

    −1.6

    −1.2

    −0.8

    ∆µ

    SN2006X

    wRMS=0.151±0.010 magwRMS=0.137±0.036 magwRMS=0.130±0.038 mag

    }?

  • 14/16

    Introduction Data Results Conclusions

    The environment of SN Ia

    The influence of the environmental effects on the SN Ia intrinsicluminosity was proved in many works:

    I host galaxy morphology and stellar population age (Hamuy et al.1995,1996,2000; Riess et al. 1999; Sullivan 2003; Hicken et al. 2009;Pruzhinskaya et al. 2011; Hill et al. 2016; Henne et al. 2017)

    I galocentric distance (Sullivan et al. 2003; Hill et al. 2016)I star-formation rate (Sullivan et al. 2006; Neill et al. 2009; Lampeitl

    et al. 2010; Sullivan et al. 2010; Smith et al. 2012; Johansson 2013)I local star-formation rate (1-3 kpc; Rigault et al. 2013; Roman et al.,

    arXiv:1706.07697)I stellar mass of host galaxy (Kelly et al. 2010; Sullivan et al. 2010;

    Johansson 2013)I host metallicity (Gallagher et al. 2005,2008; Howell et al. 2009)

    Colloque Énergie Noire Orsay, France 11-13 Octobre

  • 15/16

    Introduction Data Results Conclusions

    Physical properties of SNe Ia in clusters

    Colloque Énergie Noire Orsay, France 11-13 Octobre

    Host morphology:I E/S0 (4), Spirals (7)

    Highest correction:

    I X1 ' 0I blue galaxiesI high local sSFRI smaller MstellarI r/R200 ' 0.7

    −3 −2 −1 0 1X1

    0.0

    0.4

    0.8

    1.2

    1.6

    −0.1 0.0 0.1 0.2C

    0.0

    0.4

    0.8

    1.2

    1.6

    −15−14−13−12−11−10 −9log(LsSFR)

    0.0

    0.4

    0.8

    1.2

    1.6

    9 10 11 12log(Mstellar)

    0.0

    0.4

    0.8

    1.2

    1.6

    E S0 Sab Sb Sbc ScMorphology

    0.0

    0.4

    0.8

    1.2

    1.6

    c|∆z|

    [100

    0km

    s−1 ]

    −0.4 −0.3 −0.2 −0.1 0.0RS residuals

    0.0

    0.4

    0.8

    1.2

    1.6

    0.0 0.4 0.8 1.2r/R200

    0.0

    0.4

    0.8

    1.2

    1.6

    14.0 14.5 15.0log(M200)

    0.0

    0.4

    0.8

    1.2

    1.6

    -13

    -12

    -11

    -10

    log(

    LsS

    FR)

  • Conclusions

    16/16

    I We studied how the peculiar velocities of SNe Ia in galaxy clustersaffect the redshift measurements by matching 145 SNFACTORYsupernovae with known clusters of galaxies.

    I The applied technique allowed to decrease the spread on the Hubblediagram. For the SNe in clusters wRMS is improved from 0.137m to0.130m with p-value = 5.9× 10−4.

    I The described effect influences the distance measurements in thenearby Universe (z < 0.1) and has to be taken into account in futurecosmological surveys.

    I The difference in SN light curve parameters inside and outside theclusters could be fruitful avenue of investigation for futurecosmological analysis.

    Thanks for the attention!

    IntroductionDataNearby Supernova Factory dataHost clusters dataRedshift measurement

    ResultsImpact on the Hubble diagramPhysical properties of SNe Ia and their hosts in galaxy clusters

    Conclusions