Converter Circuits

download Converter Circuits

of 58

Transcript of Converter Circuits

  • 7/25/2019 Converter Circuits

    1/58

    Power Electronics Chapter 6: Convertercircuits1

    here do the boost,uck-boost, and other

    onverters originate?

    How can we obtain aconverter having givendesired properties?

    6.1. Circuit manipulations

    converters6.2. A short list of

    6.3. Switch realization How SPDTs and SPSTs

    can be implemented with real

    semiconductor devices

    Chapter6ConverterCircuits

    (Chapter 6Erickson)

  • 7/25/2019 Converter Circuits

    2/58

    Power Electronics Chapter 6: Convertercircuits2

    6.1. CircuitManipulations

    L1

    +

    +

    Vg Vo

    Begin with buck converter: previously derived from first principles

    Switch changes dc component, low-pass filter removesswitching harmonics

    Conversion ratio is M = D

    2C R

  • 7/25/2019 Converter Circuits

    3/58

    Power Electronics Chapter 6: Convertercircuits3

    6.1.1.Inversionofsource and load

    Interchange power input and output ports of a converter

    Buck converter exampleV =DV2 1

    Port1 Port2

    L1

    +

    V1

    +

    V2

    +

    Power low

    2

  • 7/25/2019 Converter Circuits

    4/58

    Power Electronics Chapter 6: Convertercircuits4

    Interchange power source and load:

    Port1

    1

    Port2L

    +

    V1

    +

    V2

    Power flow

    1D

    V1= V2V2=DV1

    2

  • 7/25/2019 Converter Circuits

    5/58

    Power Electronics Chapter 6: Convertercircuits5

    Realization ofswitches

    Port1 Port2 Reversal of powerflow requires newrealization ofswitches

    Transistor conductswhen switch is inposition 2

    L

    +

    V1

    +

    V2

    Power flow Interchange ofand D

    D

    1D'

    V1= V2 Inversion of buck converter yields boost converter

    +_

  • 7/25/2019 Converter Circuits

    6/58

    Power Electronics Chapter 6: Convertercircuits6

    6.1.2. Cascade connection ofconverters

    +

    Vg

    V1=M1(D)Vg

    VoVg =M(D) =M (D)M (D)1 2

    Vo=M2(D)V1

    D

    Converter 1

    V1 =M(D)Vg

    1

    Converter 2

    Vo =M2 (D)V1

    +

    V1

    +

    Vo

  • 7/25/2019 Converter Circuits

    7/58

    Power Electronics Chapter 6: Convertercircuits7

    Example: buck cascaded byboost

    L1 L2 21

    + +

    +

    Vg

    Vo

    Buck converter Boost converter

    V1

    Vg

    Vo

    =D

    VoVg

    D1D

    =1

    1D=

    V1

    { {

    2C1

    1

    V1

    C2 R

  • 7/25/2019 Converter Circuits

    8/58

    Power Electronics Chapter 6: Convertercircuits8

    Buckcascaded byboost:

    simplification ofinternalfilter

    Remove capacitorC1

    1 L1 L2 2

    +

    +

    VoVg

    Combine inductorsL1 and

    L

    L2

    iL 21

    +

    Noninvertingbuck-boost

    converter

    +

    Vg Vo

    2 1

    2 1C2 R

  • 7/25/2019 Converter Circuits

    9/58

    Power Electronics Chapter 6: Convertercircuits9

    Noninverting buck-boost converter

    L iL 21

    +

    +

    Vg Vo

    subinterval 1 subinterval 2

    + +L

    +

    +

    Vg Vo Vg Vo

    iL

    i

    2 1

  • 7/25/2019 Converter Circuits

    10/58

    Power Electronics Chapter 6: Convertercircuits10

    subinterval 1 subinterval 2

    + +L

    +

    +Vg VoVg Vononinverting

    buck-boost

    + +iL

    L

    inverting

    buck-boost

    +

    +

    Vg

    Vo Vg Vo

    i

    iL

    i

  • 7/25/2019 Converter Circuits

    11/58

    Power Electronics Chapter 6: Convertercircuits11

    Reduction ofnumberofswitches:inverting buck-boost

    Subinterval1 Subinterval2

    + +iL

    L

    +

    +

    Vg

    Vo Vg Vo

    One side of inductor always connected to ground hence, only one SPDT switch needed:

    +1

    V0 =

    DiL Vg+ 1DVg Vo

    2

    i

  • 7/25/2019 Converter Circuits

    12/58

    Power Electronics Chapter 6: Convertercircuits12

    Discussion:cascadeconnections

    Properties of buck-boost converter follow from its derivationas buck cascaded by boost

    Equivalent circuit model: buck 1:D transformer cascaded by boostD:1 transformer

    Pulsating input current of buck converter

    Pulsating output current of boost converter

    Other cascad e connections are possible

    uk converter: boost cascaded by buck

  • 7/25/2019 Converter Circuits

    13/58

    Power Electronics Chapter 6: Convertercircuits13

    6.1.3.Rotationofthree-terminalcell

    Treat inductor andSPDT switch as three-terminal cell:

    A a b B1

    +

    2+

    Vg vo

    c

    a-A b-B c-C

    a-C b-A c-B

    a-A b-C c-B

    buck converter

    boost converter

    buck-boost converter

    C

    Three-terminal cell can be connected between source and load in six ways out of whichthree are nontrivial and distinct:

  • 7/25/2019 Converter Circuits

    14/58

    Power Electronics Chapter 6: Convertercircuits14

    Rotation of a dual three-terminalnetwork

    A capacitor and SPDTswitch as a three-terminal cell:

    1

    +A a b B

    2+

    Vg vo

    C

    Three-terminal cell can be connected between source and load in threenontrivial distinct ways:

    a-A b-B c-C

    a-C b-A c-B

    a-A b-C c-B

    buck converter with L-C input filter

    boost converter with L-C output filter

    uk converter

    c

  • 7/25/2019 Converter Circuits

    15/58

    Power Electronics Chapter 6: Convertercircuits15

    6.1.4. Differentialconnection ofload

    to obtain bipolar output voltage

    dc source load

    +

    Differential loadvoltage is+

    Vo

    Vo=V

    V1 2+

    Vg The outputsV1 andV2

    may both be positive,but the differentialoutput voltageVo can bepositive or negative.

    2

    D'

    Converter 1

    V1= M(D)Vg

    V1

    D

    Converter 2

    V2= M(D')Vg

    +

    V

  • 7/25/2019 Converter Circuits

    16/58

    Power Electronics Chapter 6: Convertercircuits16

    Differential connectionusing twobuck converters

    Buck converter1

    1

    Converter #1 transistordriven with duty cycleD

    Converter #2 transistor

    driven with duty cyclecomplement D

    Differential load voltageis

    Vo=DVgD'Vg

    +

    V1+

    Vo

    +

    Vg

    +

    V2

    1

    Simplify:Vo= (2D1)Vg

    Buck converter2

    }

    {

    2

    2

  • 7/25/2019 Converter Circuits

    17/58

    Power Electronics Chapter 6: Convertercircuits17

    Conversion ratioM(D),differentially-connected buckconverters

    Vo= (2D1)Vg

    M(D)1

    00.5 1 D

    1

  • 7/25/2019 Converter Circuits

    18/58

    Power Electronics Chapter 6: Convertercircuits18

    Simplification offilter circuit,

    differentially-connected buckconverters

    g g

    }

    {

    Bypass load directly with capacitor

    1

    +

    Vo

    V +

    1

    2

    2

    Original circuit

    Buck converter1

    1

    +

    V1+

    Vo

    V +

    2

    1 +

    V2

    Buck converter2

    2

  • 7/25/2019 Converter Circuits

    19/58

    Power Electronics Chapter 6: Convertercircuits19

    Re-draw for clarity

    + Vo

    Commonly used in single-phase inverterapplications and in servo amplifier applications

    Simplification offilter circuit,

    differentially-connected buckconverters

    +Vg

    iL 1

    +Vg

    1

    Combine series-connectedinductors

    1

    +

    Vo

    2

    2

    2

    2

    _

    L

    C

    R

    Single phase H-bridge, or bridge inverter

  • 7/25/2019 Converter Circuits

    20/58

    Power Electronics Chapter 6: Convertercircuits20

    Differentialconnection to obtain 3inverter

    With balanced 3 load,neutral voltage is

    Vn= V1+V2+V3

    dc source 3ac load

    +

    V1

    13

    Phase voltages are

    VRn= V1

    VnVSn= V2 VnVTn=V3Vn

    Control converters such thattheir output voltages containthe same dc biases. This dc

    bias will appear at the neutralpoint Vn. It then cancels out,

    so phase voltages contain nodc bias.

    1 1 g

    1+

    Vg

    Vn++ vSn

    22 2 g

    +

    33 3 g

    D3

    Converter 2

    V =M(D)V

    D2

    Converter 3

    V =M(D)V

    Converter 1

    V =M(D)V

    D

  • 7/25/2019 Converter Circuits

    21/58

    Power Electronics Chapter 6: Convertercircuits21

    3differential connection ofthreebuck converters

    3ac load

    dcsource +

    V1

    +

    Vg

    Vn+

    V2

    +vSn

    +

    V3

  • 7/25/2019 Converter Circuits

    22/58

    Power Electronics Chapter 6: Convertercircuits22

    3differential connection ofthreebuck converters

    Re-draw for clarity:

    dc source 3ac load

    +

    VnVg

    + vSn

    Voltage-source inverter or buck-derived three-phase inverter

  • 7/25/2019 Converter Circuits

    23/58

    Power Electronics Chapter 6: Convertercircuits23

    The 3 current-source inverter

    dc source 3ac load

    +

    VnVg+ v

    Exhibits a boost-type conversion characteristic

    Sn

  • 7/25/2019 Converter Circuits

    24/58

    Power Electronics Chapter 6: Convertercircuits24

    6.2.A short listofconverters

    An infinite number of converters are possible, which contain switchesembedded in a network of inductors and capacitors

    Two simple classes of converters are listed here:

    switching period is divided into two subintervals. This class containseightconverters.

    switching period is divided into two subintervals. Several of the moreinteresting members of this class are listed.

    Single-input single-output converters containing a single inductor. The

    Single-input single-output converters containing two inductors. The

  • 7/25/2019 Converter Circuits

    25/58

    Power Electronics Chapter 6: Convertercircuits25

    Single-inputsingle-outputconverters

    containing one inductor

    Use switches to connect inductor between source and load, in onemanner during first subinterval and in another during second subinterval

    There are a limited number of ways to do this, so all possiblecombinations can be found

    After elimination of degenerate and redundant cases,eightconverters

    are found:dc-dc converters

    buck boost buck-boost noninverting buck-boost

    dc-ac converters

    bridge

    ac-dc converters

    current-fed bridge

    Watkins-Johnson

    inverse of Watkins-Johnson

  • 7/25/2019 Converter Circuits

    26/58

    Power Electronics Chapter 6: Convertercircuits26

    Converters producinga unipolaroutput voltage

    M(D) =D1. BuckM(D)

    11

    +

    +

    0.5Vg

    Vo

    0

    D0 0.5 1

    M(D) = 1 M(D)

    4

    2. Boost 1D

    2

    + 3

    1 2+Vg Vo 1

    0 0 0.5 1 D

    2

  • 7/25/2019 Converter Circuits

    27/58

    Power Electronics Chapter 6: Convertercircuits27

    Converters producinga unipolaroutput voltage

    D0.5M(D) = D

    0 13. Buck-boost 0

    1D

    1+1

    2

    +

    Vg

    Vo 3

    4

    M(D)

    M(D) = D4. Noninverting buck-boost M(D)

    4

    1D

    21

    + 3

    2+

    Vg

    1

    0

    D0 0.5 1

    2Vo

    2

  • 7/25/2019 Converter Circuits

    28/58

    Power Electronics Chapter 6: Convertercircuits28

    Converters producinga bipolar outputvoltage

    suitable asdc-acinverters

    M(D) =2D15. BridgeM(D)

    1

    2

    +

    Vg + Vo0

    1

    1

    M(D) =2D1 M(D)

    1

    6. Watkins-JohnsonD

    1

    + +or 0

    1+

    +

    VgVo Vg

    Vo2 2

    3

    2

    0.5 1 D

    12

    1

    2 0.5 1 D

    1

  • 7/25/2019 Converter Circuits

    29/58

    Power Electronics Chapter 6: Convertercircuits29

    Converters producinga bipolar outputvoltage

    suitable asac-dcrectifiers

    M(D)

    21

    D1M(D) =

    27. Current-fed bridge

    1

    D0.5 10

    1 2

    1+

    Vg + Vo 21

    DD1

    1

    M(D) =2

    or

    8. Inverse of Watkins-JohnsonM(D)

    21

    ++ 1

    D0.5 1+

    Vg 0Vo +

    VgVo

    2 1

    2 2

    0.5 1

    2

    1

    2

    0.5 1

  • 7/25/2019 Converter Circuits

    30/58

    Power Electronics Chapter 6: Convertercircuits30

    Severalmembersoftheclassoftwo-inductorconverters

    M(D) = D D0.5

    1. Cuk 0 1

    1D 0

    1

    +2

    2 3+

    VoVg

    4

    M(D)

    M(D) = D2. SEPIC 1D M(D)

    4

    +23

    +

    2VoV 1g1

    0

    D0 0.5 1

    1

  • 7/25/2019 Converter Circuits

    31/58

    Power Electronics Chapter 6: Convertercircuits31

    Severalmembersoftheclassoftwo-inductorconverters

    M(D) = D M(D)

    4

    3. Inverse of SEPIC (ZETA)

    11D

    + 3

    2+

    2Vg

    Vo1

    0 D0 0.5 1

    M(D) =D24. Buck2 M(D)1

    1+

    2+

    VoV 0.5g

    1

    0

    D0 0.5 1

    2

  • 7/25/2019 Converter Circuits

    32/58

    Switch applications

    Summary of key points

    32PowerElectronics Chapter6:Switchrealization

    6.3. SwitchRealization

    6.3.1. Single - quadrant switches

    6.3.2. Two - quadrant switches.

    6.3.3. Four-quadrant switches.

    6.3.4. Synchronous rectifiers

    6.3.5.

  • 7/25/2019 Converter Circuits

    33/58

    Buck converter

    withSPDTswitch:

    SPSTswitch,with

    voltageandcurrentpolaritiesdefined

    1

    i

    L1 iL(t)

    +

    +

    Vg

    Vo+

    v

    with two SPSTswitches:

    0 Li i(t)A L

    ++ vA

    vB

    +devicesfunctionasSPST

    B+

    V C R V og

    iB

    2C R

    33PowerElectronics Chapter6:Switchrealization

    SPST(single-polesingle-throw)switches

    switchesbetween their power.terminals

    Allpowersemiconductor

  • 7/25/2019 Converter Circuits

    34/58

    RealizationofSPDTswitchusingtwoSPSTswitches

    SPDT switch

    It is possible for both SPST switches to be simultaneously ON or OFF

    Behavior of converter is then significantly modified

    Conducting state of SPST switch may depend on applied voltage or

    6PowerElectronics Chapter :Switchrealization34

    A nontrivial step: two SPST switches are notexactly equivalent to one

    discontinuous conduction modes

    current for example: diode

  • 7/25/2019 Converter Circuits

    35/58

    ua rantso sw tc operat on

    1

    i Switch A single-quadrant

    switch example:

    ON-state:i > 0

    +

    v

    OFF-state: v > 00

    Switch

    off

    6PowerElectronics Chapter :Switchrealization35

    onstatecurrent

    off statevoltage

  • 7/25/2019 Converter Circuits

    36/58

    Somebasicswitchapplications

    on-state

    switch ff-state

    on-state

    quadrantwitchff-state

    sw c

    Four-

    switcholtage

    current

    so

    sw c

    on-state

    Voltage-

    bidirectionaltwo-quadrant witch

    ff-state

    switch oltage

    current

    so

    switch

    Current- current

    bidirectional

    two-quadrantwitch

    oltage

    so

    switchon-state

    Single- currentquadrant

    switchitch

    off-statevoltagesw

    of

    36PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    37/58

    1

    i Active switch: Switch state is controlled exclusivelyby a third terminal (control terminal).

    Passive

    switch:

    Switch state is controlled by the

    applied current and/or voltage at terminals 1 and 0.

    SCR:

    A special case turn-on transition is active,while turn-off transition is passive.

    +

    v

    0

    Single-quadrant switch: on-state i(t) and off-state v( )

    37PowerElectronics Chapter6:Switchrealization

    6.3.1. Single-quadrantswitches

    are unipolar(not necessarily positive).

  • 7/25/2019 Converter Circuits

    38/58

    e o e

    A passive switch

    Single-quadrantswitch:

    canconductpositiveon-statecurrent

    canblocknegativeoff-

    statevoltage

    providedthattheintendedon-stateandoff-stateoperatingpointslieonthe

    diodei-v characteristic,thenswitchcanberealizedusingadiode

    i

    1

    i

    on

    +

    v

    off v

    0

    Symbol instantaneous i-vcharacteristic

    38PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    39/58

    TheBipolar

    Insulated

    JunctionTransistor(BJT)andthe

    GateBipolarTransistor(IGBT)

    An active switch, controlledbyterminalC

    Single-quadrantswitch:

    canconductpositiveon-statecurrent

    canblockpositiveoff-statevoltage

    providedthattheintendedon-stateandoff-state

    operatingpointslieonthetransistori-v characteristic,

    thenswitchcanberealizedusingaBJTorIGBT

    1

    i

    BJT i+

    v

    C

    on

    off v0

    1

    i

    IGBT

    +

    v

    C

    0 instantaneous i-vcharacteristic

    39PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    40/58

    TheMetal-OxideSemiconductorFieldEffect

    Transistor(MOSFET)

    An active switch, controlled byterminalC

    Normallyoperatedassingle-quadrantswitch:

    canconductpositiveon-state

    current(canalsoconduct

    negativecurrentinsomecircumstances)

    canblockpositiveoff-statevoltage

    providedthattheintendedon-stateandoff-stateoperatingpointslieontheMOSFETi-vcharacteristic,thenswitchcanberealizedusingaMOSFET

    i

    1

    i

    on

    +

    v

    off v C

    (reverseconduction)0

    Symbol instantaneous i-vcharacteristic

    on(reverse

    40PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    41/58

    Realizationofswitchusing

    transistorsanddiodes

    Buckconverterexample

    LiA iL(t)

    ++ vA

    vB

    +

    +

    V C R Vg

    Switch A: transistor

    SwitchB:diodeiB

    iA

    SPSTswitchoperatingpoints

    Vg

    vA

    vB

    Switch B

    SwitchB

    on

    SwitchB

    off

    iL

    Vg

    SwitchA

    on iL

    SwitchA

    off

    SwitchA

    Vg

    iB

    41PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    42/58

    Realizationofbuck converter

    using single-quadrantswitches

    vAiA L iL(t)+

    vL(t)+

    Vg

    iA

    iB

    Vg

    vA

    vB

    SwitchB

    on

    SwitchB

    off

    iL

    Vg

    SwitchA

    on iL

    SwitchA

    off

    Vg

    vB

    +

    B

    +

    42PowerElectronics Chapter6:Switchrealization

    6 3 2 T d t it h

  • 7/25/2019 Converter Circuits

    43/58

    Usually an active switch,controlledbyterminalC

    Normallyoperatedastwo-quadrantswitch:

    negativeon-statecurrent

    canblockpositiveoff-statevoltage

    providedthattheintendedon-

    stateandoff-stateoperating

    pointslieonthecompositei-vcharacteristic,thenswitchcan

    berealizedasshown

    i1

    )

    +

    v

    C voff

    0

    BJT/anti-paralleldioderealization

    instantaneous i-v

    characteristic

    on(transistorconducts

    off

    on(diodeconducts)

    i

    43PowerElectronics Chapter6:Switchrealization

    Current-bidirectionaltwo-quadrant switches

    6.3.2 Twoquadrant switches

    canconductpositiveor

  • 7/25/2019 Converter Circuits

    44/58

    switchon-statecurrent

    i

    1

    i

    )

    +

    v

    voffswitchoff-statevoltage

    0(diode conducts)

    on(transistorconducts

    off

    on

    44PowerElectronics Chapter6:Switchrealization

    Twoquadrantswitches

  • 7/25/2019 Converter Circuits

    45/58

    o y o e

    i 1

    (transistor conducts)

    +

    v

    Cvoff

    (diode conducts)

    0

    PowerMOSFETcharacteristics

    Power MOSFET,anditsintegral

    bodydiode

    Use of external diodes

    topreventconduction

    ofbodydiode

    on

    off

    on

    i

    45PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    46/58

    Asimpleinverter

    iA

    +

    Q1+

    vA v0(t) = (2 1)VgVg D1

    iL

    ++

    +

    Vg D2 v0C RvB

    iB

    2

    46PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    47/58

    Inverter:sinusoidal modulationofD

    v0(t)=(2 1)Vg

    Sinusoidal modulation to

    produce ac output:v0

    Vg D(t) = 0.5 +Dm sin (t)

    D The resulting inductor

    current variation is also

    sinusoidal:

    i(t)=v0(t)=(2D1)

    00.5 1

    Vg Vg

    RL

    R

    Hence, current-bidirectional

    two-quadrant switches are

    required.

    47PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    48/58

    Thedc-3acvoltage sourceinverter(VSI)

    iR

    +

    Vg iS

    iT

    Switches must block dc input voltage, and conduct ac load current.

    48PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    49/58

    Bidirectionalbatterycharger/discharger

    D1

    +

    vbus

    spacecraft

    mainpowerbus

    +

    Q1vbatt

    Q2

    vbus>vbatt

    A dc-dc converter with bidirectional power flow.

    L

    D2

    49PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    50/58

    Usually an active switch,

    controlledbyterminalC

    Normallyoperatedastwo-quadrantswitch:

    canconductpositiveon-statecurrent

    canblockpositiveornegativeoff-statevoltage

    providedthattheintendedon-stateandoff-stateoperating

    pointslieonthecompositei-vcharacteristic,thenswitchcan

    berealizedasshown

    TheSCRissuchadevice,withoutcontrolledturn-off

    i 1i +

    vv

    C

    0

    BJT/seriesdioderealization

    instantaneous i-v

    characteristic

    on

    off(diode

    blocksvoltage)

    off(transistor

    blocksvoltage)

    50PowerElectronics Chapter6:Switchrealization

    Voltage-bidirectionaltwo-quadrantswitches

  • 7/25/2019 Converter Circuits

    51/58

    wo-qua rantsw tc es

    1

    i switchon-state+

    v

    i

    0v

    witchff-stateoltage

    1

    i +

    vC

    0

    on

    off(diodeblocksvoltage)

    off(transistorblocksvoltage)

    current

    sov

    51PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    52/58

    c- ac uc - oost nverter

    R+

    vab(t)

    S

    +Vg bc

    T

    Requires voltage-bidirectional two-quadrant switches.

    Another example: boost-type inverter, or current-source inverter (CSI).

    +v (t)

    iL

    52PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    53/58

    switchon-state

    Usually an active switch,controlledbyterminalC

    canconductpositiveornegativeon-statecurrent

    canblockpositiveornegativeoff-statevoltage

    witchoff-statevoltage

    current

    s

    53PowerElectronics Chapter6:Switchrealization

    6.3.3. Four-quadrantswitches

  • 7/25/2019 Converter Circuits

    54/58

    T ree ways to rea ize a our-qua rant switc

    1 1 1

    i+ + +1

    i+

    v

    v v v

    0

    0 0 0

    ii

    54PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    55/58

    ac- acmatr xconverter

    3acinput 3ac output

    vRn(t)vSn(t)

    vTn(t)

    All voltages and currents are ac; hence, four-quadrant switches are required.

    Requires nine four-quadrant switches

    +

    iT

    iS

    iR

    55PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    56/58

    Replacement of diode with a backwards-connected MOSFET,

    to obtain reduced conduction loss

    i

    1

    i

    1

    i

    1

    i (reverseconduction)+

    v

    +

    v

    +

    v

    C v

    000

    idealswitch conventional

    dioderectifier

    MOSFET as

    synchronousrectifier

    instantaneous i-v

    characteristic

    off

    on(reverse

    on

    56PowerElectronics Chapter6:Switchrealization

    6.3.4Synchronousrectifier

  • 7/25/2019 Converter Circuits

    57/58

    uc converterw t sync ronousrect er

    MOSFET Q2 is

    controlled to turn onwhen diode would

    normally conduct

    Semiconductor

    conduction loss can

    be made arbitrarily

    small, by reduction

    of MOSFET on-

    resistances

    Useful in low-voltagehigh-current

    applications

    vAiA L iL(t)+

    +Vg

    vB

    Q1

    C

    C +

    iBQ2

    57PowerElectronics Chapter6:Switchrealization

  • 7/25/2019 Converter Circuits

    58/58

    1. How an SPST ideal switch can be realized using semiconductor devices

    depends on the polarity of the voltage which the devices must block in the

    off-state, and on the polarity of the current which the devices must conduct

    in the on-state.

    Single-quadrant SPST switches can be realized using a single transistor or

    a single diode, depending on the relative polarities of the off-state voltage

    and on-state current.Two-quadrant SPST switches can be realized using a transistor and diode,

    connected in series (bidirectional-voltage) or in anti-parallel (bidirectional-

    current). Several four-quadrant schemes are also listed here.

    A synchronous rectifier is a MOSFET connected to conduct reverse

    current, with gate drive control as necessary. This device can be usedwhere a diode would otherwise be required. If a MOSFET with sufficiently

    lowRon is used, reduced conduction loss is obtained.

    2.

    3.

    4.

    58PowerElectronics Chapter6:Switchrealization

    6.5. Summaryofkey points