Control Volume Entropy Balance Illustrating an Impossible Process

11
ME 200 L28: Control Mass Entropy Balance and Directionality of Processes https://engineering.purdue.edu/ME200/ Spring 2014 MWF 0930-1020 AM Professor Wassgren Lecture by Robert Kapaku; slides adapted from Prof. Gore TAs: Robert Kapaku [email protected] Dong Han [email protected]

description

ME 200 L28: Control Mass Entropy Balance and Directionality of Processes https://engineering.purdue.edu/ME200/ Spring 2014 MWF 0930-1020 AM Professor Wassgren Lecture by Robert Kapaku ; slides adapted from Prof. Gore TAs: Robert Kapaku [email protected] Dong Han [email protected]. - PowerPoint PPT Presentation

Transcript of Control Volume Entropy Balance Illustrating an Impossible Process

Page 1: Control Volume Entropy Balance Illustrating an Impossible Process

ME 200 L28: Control Mass Entropy Balance andDirectionality of Processes

https://engineering.purdue.edu/ME200/

Spring 2014 MWF 0930-1020 AMProfessor Wassgren

Lecture by Robert Kapaku; slides adapted from Prof. Gore

TAs: Robert Kapaku [email protected] Dong Han [email protected]

Page 2: Control Volume Entropy Balance Illustrating an Impossible Process

Control Volume Entropy Balance Illustrating an Impossible Process

2

Given: Steam at 100oC, 1 bar is pressurized through a diffuser to 1.5 bars, 120oC and negligible velocity.

Find: Find the change in entropy of steam in kJ/kg-K and comment on whether the diffuser can be adiabatic and the resulting impact.Assumptions: Change in PE neglected, No heat transfer, No work done

other than flow work, Steady state, Steady flow, Mass is conserved.

Equations: Starting with basic conservation equations from the equation sheet, we arrive at:

2

22000 2711 4 2676 2 265 33

100 1 7 3549 2

120 1 5 7 2693 47 2693 7 3549 0 0856 0

ii e e i CV e i

i

oi g

oe

CV

Vm m m;h h ; m( s s );

V ( . . ) . m / s

s s( C, bar ) s . kJ / kg K (Table A )

s s( C, . bar ) s . kJ / kg K (Table A )( / m ) . . . Impossible

process!Adiabatic diffuser with given pressure gain leads to decrease in entropy.In reality, this diffuser design will not function! The pressure gain will be less than what is assumed here.

Page 3: Control Volume Entropy Balance Illustrating an Impossible Process

3

State 1: 1bar, 100 C

State 2: 1.5 bar, 120 C

Saturated State: 1.5b bar, 111 C

T-s Diagram and Diffuser Action (This diffuser will not work!)

State 2: 1.5 bar, h2>h1, s2<S1

State 1: 1bar, 100 C

Page 4: Control Volume Entropy Balance Illustrating an Impossible Process

State 2: 1.5 bar, 120 C

State 1: 1bar, 100 C

On the T-s diagram drawn to scale State 1 and State 2 are close to eachother as illustrated below.

Page 5: Control Volume Entropy Balance Illustrating an Impossible Process

Entropy Balance Equation

►Control Mass equations result from recognizing that there can be no inflows and outflows of mass

►Analogous to and must apply simultaneously with the Conservation of Energy

2 1

2 1 1

CMi i e e j CM irr

i e j irr

final

CM j CM irrinitial j irr

j CMj

CM

dS m s m s Q Tdt

dS (Q T ) dt ( ) dt

m( s s ) (Q T )

s s ( / m )(Q / T ) / m

2 1 1 2 1 2

CVi i e e j g

i e j g

dE m h m h Q Wdt

e e q w

Page 6: Control Volume Entropy Balance Illustrating an Impossible Process

Control Mass Entropy Generation: Example 1

6

Given: Saturated liquid water at 10 bar is heated in a piston-cylinder device while maintaining pressure until the volume increases by a factor of 10.Assume the boundary temperature is equal to the water temperature.Find: (a) Work done in a reversible process, (b) Heat transfer in areversible process, and (c) entropy production in kJ/kg-K,if the work done is (90% of theoretical value).Assumptions: Change in KE, PE neglected, Control mass.Equations:

2 1 1 2 CMs s ( q / T ) / m

2 1 1 2 1 2 1 2 2 1 1 2 2 1 Rev Rev

u u q w ; w p( v v ); q T( s s )

St P bar T, C v, m3/kg vf, m3/kg vg, m3/kg x

1 10 179.9 1.1273(10-3) 1.1273(10-3) 0.1944 0

2 10 179.9 1.1273(10-2) 1.1273(10-3) 0.1944 0.0525

2 32

2 3

1 1273 10 1 1273 10 0 0101 0 05250 1944 1 1273 10 0 1932

f

g f

v v . ( ) . ( ) .x .v v . . ( ) .

Important: Know why these equations are simplified this way!

Page 7: Control Volume Entropy Balance Illustrating an Impossible Process

Control Mass Entropy Generation: Example 1

7

St P bar T, C u, kJ/kg uf, kJ/kg ug, kJ/kg x

1 10 179.9 761.68 761.68 2583.6 0

2 10 179.9 857.331 761.68 2583.6 0.0525

22 20 0525 0 0525 2583 6 761 68 761 68

95 6508 761 68 857 3308

f

g f

u ux . ;u . ( . . ) .

u u

. . . kJ / kg

St P bar T, C h, kJ/kg hf, kJ/kg hg, kJ/kg x

1 10 179.9 762.81 762.81 2778.1 0

2 10 179.9 868.613 762.81 2778.1 0.0525

22 20 0525 0 0525 2778 1 761 68 762 81

105 803 762 81 868 613

f

g f

h hx . ;h . ( . . ) .

h h

. . . kJ / kg

Page 8: Control Volume Entropy Balance Illustrating an Impossible Process

Control Mass Entropy Generation: Example 1

8

St P bar T, C s, kJ/kgK sf, kJ/kgK sg, kJ/kgK x

1 10 179.9 2.1387 2.1387 6.5863 0

2 10 179.9 2.3722 2.1387 6.5863 0.0525

22 20 0525 0 0525 6 5863 2 1387 2 1387 2 3722f

g f

s sx . ; s . ( . . ) . . kJ / kgK

s s

2 1 1 2 CMs s ( q / T ) / m

1 2 2 1

2 31 2 2 1

273 179 9 2 3722 2 1387 105 75

1000 1 1273 10 1 1273 10 10 15

Rev

Rev

q T( s s ) ( . )( . . ) . kJ / kg

w p( v v ) ( . ( ) . ( )) . kJ / kg

1 2

1 2 2 1 1 2

0 9 10 15 9 13595 6508 9 135 104 7858

w . ( . ) . kJ / kgq u u w . . . kJ / kg

2 1 1 2 2 3722 2 1387 104 790 2335 0 2313 0 0022

CM / m ( s s ) ( q / T ) ( . . ) ( . /. . . kJ / kg K

179.9+273¿

Page 9: Control Volume Entropy Balance Illustrating an Impossible Process

On the T-s diagram drawn to scale State 1 and State 2b

21

Page 10: Control Volume Entropy Balance Illustrating an Impossible Process

10

1 2

On the p-v diagram drawn to scale State 1 and State 2

Page 11: Control Volume Entropy Balance Illustrating an Impossible Process

September 17th, 2010 ME 200 11

In-Class Example