Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes...

61
MIT OpenCourseWare ____________ http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: ________________ http://ocw.mit.edu/terms.

Transcript of Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes...

Page 1: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

MIT OpenCourseWare ____________http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)Spring 2008

For information about citing these materials or our Terms of Use, visit: ________________http://ocw.mit.edu/terms.

Page 2: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Control of Manufacturing Control of Manufacturing ProcessesProcesses

Subject 2.830Subject 2.830Spring 2007Spring 2007Lecture #20Lecture #20

““Cycle To Cycle Control: Cycle To Cycle Control: The Case for using Feedback and SPCThe Case for using Feedback and SPC””

May 1, 2008May 1, 2008

Page 3: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.2

Manufacturing

5/1/08

The General Process Control The General Process Control ProblemProblem

EQUIPMENTEQUIPMENT MATERIALMATERIALCONTROLLERCONTROLLER

Desired Product Product

Equipment loop

Control of Equipment:

Forces,

Velocities

Temperatures,

, ..

Material loop

Control of Material

Strains

Stresses

Temperatures,

Pressures, ..

Process output loop

Control of Product:

Geometry

and

Properties

Page 4: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.3

Manufacturing

5/1/08

Output Feedback Control

ΔY = ∂Y∂α

Δα +∂Y∂u

Δu

Manipulate Actively Such that

∂Y∂u

Δu = −∂Y∂α

Δα

Compensate for Disturbances

Page 5: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.4

Manufacturing

5/1/08

Process Control HierarchyProcess Control Hierarchy

•• Reduce DisturbancesReduce Disturbances–– Good HousekeepingGood Housekeeping–– Standard Operations (SOPStandard Operations (SOP’’s)s)–– Statistical Analysis and Identification of Sources (SPC)Statistical Analysis and Identification of Sources (SPC)–– Feedback Control of MachinesFeedback Control of Machines

•• Reduce Sensitivity (Reduce Sensitivity (increase increase ““RobustnessRobustness””))–– Measure Sensitivities via Designed ExperimentsMeasure Sensitivities via Designed Experiments–– Adjust Adjust ““freefree”” parameters to minimizeparameters to minimize

•• Measure output and manipulate inputsMeasure output and manipulate inputs–– Feedback control of Output(s)Feedback control of Output(s)

Page 6: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.5

Manufacturing

5/1/08

The Generic Feedback The Generic Feedback ““RegulatorRegulator””ProblemProblem

Y(s)

D2(s)

Gp(s)Gp(s)Gc(s)Gc(s)

H(s)H(s)

D1(s)

R(s)-

••Minimize the Effect of the Minimize the Effect of the ““DD’’ss””

••Minimize Effect of Changes in GMinimize Effect of Changes in Gpp

••Follow R exactlyFollow R exactly

Page 7: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.6

Manufacturing

5/1/08

Effect of Feedback on Effect of Feedback on Random DisturbancesRandom Disturbances

•• Feedback Minimizes Mean Shift (SteadyFeedback Minimizes Mean Shift (Steady--State Component)State Component)

•• Feedback Can Reduce Dynamic Feedback Can Reduce Dynamic DisturbancesDisturbances

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4

?

Page 8: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.7

Manufacturing

5/1/08

Typical DisturbancesTypical Disturbances

•• Equipment ControlEquipment Control–– External Forces Resisting MotionExternal Forces Resisting Motion–– Environment Changes (e.g Temperature)Environment Changes (e.g Temperature)–– Power Supply ChangesPower Supply Changes

•• Material ControlMaterial Control–– Constitutive Property ChangesConstitutive Property Changes

•• HardnessHardness•• ThicknessThickness•• CompositionComposition•• ......

Page 9: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.8

Manufacturing

5/1/08

The Dynamics of The Dynamics of DisturbancesDisturbances

•• Slowly Varying QuantitiesSlowly Varying Quantities•• CyclicCyclic•• Infrequent StepwiseInfrequent Stepwise•• RandomRandom

Page 10: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.9

Manufacturing

5/1/08

Example: Material Property Example: Material Property ChangesChanges

•• A constitutive property change from A constitutive property change from workpiece to workpieceworkpiece to workpiece–– InIn--Process Effect?Process Effect?

•• A new A new constantconstant parameterparameter•• Different outcome each cycleDifferent outcome each cycle

–– Cycle to Cycle EffectCycle to Cycle Effect•• Discrete random outputs over timeDiscrete random outputs over time

Page 11: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.10

Manufacturing

5/1/08

What is Cycle to Cycle?What is Cycle to Cycle?

•• Ideal Feedback is the Actual Product Ideal Feedback is the Actual Product OutputOutput

•• This Measurement Can Always be This Measurement Can Always be made After the Cyclemade After the Cycle

•• Equipment Inputs can Always be Equipment Inputs can Always be Adjusted Between CyclesAdjusted Between Cycles

•• Within the Cycle Inputs Are Fixed Within the Cycle Inputs Are Fixed

Page 12: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.11

Manufacturing

5/1/08

What is Cycle to Cycle?What is Cycle to Cycle?

•• Measure and Adjust Once per CycleMeasure and Adjust Once per Cycle

y

d

ProcessProcessControllerControllerr

-

Execute the Loop Once Per Cycle

Discrete Intervals rather then Continuous

Page 13: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.12

Manufacturing

5/1/08

Run by Run ControlRun by Run Control

•• Developed from an SPC PerspectiveDeveloped from an SPC Perspective•• Primarily used in Semiconductor Primarily used in Semiconductor

ProcessingProcessing•• Similar Results, Different DerivationsSimilar Results, Different Derivations•• More Limited in Analysis and More Limited in Analysis and

Extension to Larger problemsExtension to Larger problems

Box, G., Luceno, A., “Discrete Proportional-Integral Adjustment and Statistical Process Control,” Journal of Quality Technology, vol. 29, no. 3, July 1997. pp. 248-260.Sachs, E., Hu, A., Ingolfsson, A., “Run by Run Process Control: Combining SPC and Feedback Control.” IEEE Transactions on Semiconductor Manufacturing, 1995, vol. 8, no. 1, pp. 26-43.

Page 14: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.13

Manufacturing

5/1/08

Cycle to Cycle Feedback Cycle to Cycle Feedback ObjectivesObjectives

•• How to Reduce E(L(x)) & Increase CHow to Reduce E(L(x)) & Increase Cpkpk with with Feedback?Feedback?

•• Bring Output Closer to TargetBring Output Closer to Target–– Minimize Mean or Steady Minimize Mean or Steady -- State ErrorState Error

•• Decrease Variance of OutputDecrease Variance of Output–– Reject Time Varying DisturbancesReject Time Varying Disturbances

Page 15: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.14

Manufacturing

5/1/08

A Model for Cycle to Cycle A Model for Cycle to Cycle Feedback ControlFeedback Control

•• SimplestSimplest InIn--Process Dynamics:Process Dynamics:

u(t)) y(t)

d(t)

Cycle Time Tc > 4τp

d(t) = disturbances seen at the output (e.g. a Gaussian noise)

τp = Equivalent Process Time Constant

4τp

Page 16: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.15

Manufacturing

5/1/08

Discrete Product Output Discrete Product Output MeasurementMeasurement

yi

Continuous variable y(t) to sequential variable yi

?u(t)) y(t)

d(t)

i = time interval or cycle number

Page 17: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.16

Manufacturing

5/1/08

The SamplerThe Sampler

u(t) y(t)

d(t)

yi

TS

y(t) yi

iTS

Page 18: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.17

Manufacturing

5/1/08

A Cycle to Cycle Process ModelA Cycle to Cycle Process Model

y(t)

With a Long Sample Time, The Process has no Apparent Dynamics, i.e. a Very Small Time Constant

1 2 3 4 i

y1

y2

y3

y4yi

Page 19: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.18

Manufacturing

5/1/08

A Cycle to Cycle Process ModelA Cycle to Cycle Process Model

Kpui yi

- or -

Equipment Materialui yi

αe αm

a discrete output sequenceat time intervals Tc

a discrete inputsequence atinterval Tc

Page 20: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.19

Manufacturing

5/1/08

Cycle to Cycle Output ControlCycle to Cycle Output Control

PartController Process

Output Sampling

DesiredPart

Process Uncertainty

-

Page 21: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.20

Manufacturing

5/1/08

DelaysDelays

•• Measurement DelaysMeasurement Delays–– Time to acquire and gageTime to acquire and gage–– Time to reach equilibriumTime to reach equilibrium

•• Controller DelaysController Delays–– Time to Time to ““decidedecide””–– Time to computeTime to compute

•• Process DelayProcess Delay–– Waiting for next available machine cycleWaiting for next available machine cycle

Page 22: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.21

Manufacturing

5/1/08

DelaysDelays

zn = n - step time advance operatore.g.z1 * yi = yi+1

z2 * yi = yi+2

andz−1 * yi = yi−1

yi-2

yi-1 yi

yi+1yi+2

i

Page 23: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.22

Manufacturing

5/1/08

A Pure Delay Process ModelA Pure Delay Process Model

Kpui-1 yi

yi = Kpui −1

z-1 Kp

u y

Page 24: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.23

Manufacturing

5/1/08

Modeling RandomnessModeling Randomness

•• Recall the Output of a Recall the Output of a ““Real ProcessReal Process””

•• Random even with inputs held constantRandom even with inputs held constant

u(t) y(t)

d(t)

yi

TS

Width 2 In)

1

1.005

1.01

1.015

1.02

1.025

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88

Page 25: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.24

Manufacturing

5/1/08

Output Disturbance ModelOutput Disturbance Model

u(t) y(t)

d(t)

yi

TS

Model: d(t) is a continuous random variable that we sample every cycle (Tc)

Page 26: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.25

Manufacturing

5/1/08

Or In Cycle to Cycle Control TermsOr In Cycle to Cycle Control Terms

d

Gp(z)-r y

Gc(z)

Where:

d(t) is a sequence of random numbers governed by

a stationary normal distribution function

Page 27: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.26

Manufacturing

5/1/08

Gaussian White NoiseGaussian White Noise

•• A continuous random variable that at A continuous random variable that at any instant is governed by a normal any instant is governed by a normal distributiondistribution

•• From instant to instant there is no From instant to instant there is no correlation correlation

•• Therefore if we sample this process we Therefore if we sample this process we get:get:

•• A NIDI random numberA NIDI random number

Normal Identically Distributed Independent

Page 28: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.27

Manufacturing

5/1/08

The Gaussian The Gaussian ““ProcessProcess””

i

i+1

i+2

...

Page 29: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.28

Manufacturing

5/1/08

Constant (Mean Value) Disturbance Constant (Mean Value) Disturbance RejectionRejection-- P controlP control

Kp/z-r yi

Kc yi = di + K pui−1

if di = μ (a constant), we can look at steady - state behavior:

ui−1 = Kc (r − yi−1)

ui

yi = di + K pKc (r − yi−1)

yi ⇒ yi−1 ⇒ y∞ =di

1 + K pKc

+ rK pKc

1 + K pKc

di ~NIDI(μ,σ2)

Page 30: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.29

Manufacturing

5/1/08

And For ExampleAnd For Example

Higher loop gain K improves Higher loop gain K improves ““rejectionrejection”

but only

K = ∞ eliminates mean shifts

Thus if we want to eliminate the constant (mean) component of the disturbance

y∞

di

=1

1+ K pKc

=1

1+ K

Page 31: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.30

Manufacturing

5/1/08

Error: Try an IntegratorError: Try an Integrator

Gc (z) = Kcz

z − 1=

ue

ui = Kc eij =1

i

∑ running sum of all errors

recursive formui+1 = ui + Kcei+1

zU = U + KczE

(ei = r − yi )

di

-r yiui K p

zKc

zz − 1

Page 32: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.31

Manufacturing

5/1/08

Constant Disturbance Constant Disturbance --Integral ControlIntegral Control

Zero error Zero error regardless regardless of loop of loop gaingain

yi+1 + (1− KcK p )yi = di+1 − di

Y (z) =z − 1

z − 1+ KcK p

D

-r yiui K p

zKc

zz − 1

(Assume r=0)

or

Again at steady state yi+1 = yi = y∞

And since D is a constant y∞ (2 − KcK p ) = 0

D

Page 33: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.32

Manufacturing

5/1/08

Effect of Loop Gain K on Time Response: Effect of Loop Gain K on Time Response: II--ControlControl

Time (samples)

TextEnd

Step Response

0 10 20 30 40

Time (samples)

TextEnd

Step Response

0 2 4 6 8 10 12

K=1.5

K=2

Time (samples)

Ampl

itude

TextEnd

Step Response

2 4 6 8 10 12

K=0.5

1.0

0

Time (samples)

Ampl

itude

TextEnd

Step Response

0 2 4 6 8 10

K=0.9

1.0

0

1.0

0

1.0

0

Page 34: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.33

Manufacturing

5/1/08

Effect of Loop Gain K = KEffect of Loop Gain K = KccKKpp

Time (samples)

Ampl

itude

TextEnd

Step Response

0 2 4 6 8 10

K=1.0

1.0

0

Best performance at Loop Gain K= 1.0

Stability Limits on Loop Gain 0<K<2

Page 35: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.34

Manufacturing

5/1/08

What about random component of What about random component of dd? ?

•• ddi i is defined as a NIDI sequenceis defined as a NIDI sequence•• Therefore:Therefore:

–– Each successive value of the sequence is Each successive value of the sequence is probably differentprobably different

–– Knowing the prior values: Knowing the prior values: ddii--11, d, dii--22, d, dii--33,,……will not help in predicting the next valuewill not help in predicting the next value

e.g. di ≠ a1di−1 + a2di−2 + a3di− 3 + ...

Page 36: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.35

Manufacturing

5/1/08

ThusThus

di

Kp/z-r y

Kc

This implies that with our cycle to cycle process model under proportional control:

xue

The output of the plant xi will at best represent the errorfrom the previous value of di-1

xi = −KcKpdi −1will not cancel will not cancel ddii

Page 37: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.36

Manufacturing

5/1/08

Variance Change with Loop Variance Change with Loop GainGain

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 0.2 0.4 0.6 0.8 1 1.2

Loop Gain

σCtC

σ

2

2

Page 38: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.37

Manufacturing

5/1/08

Conclusion Conclusion -- CtC with UnCtC with Un--Correlated Correlated (Independent) Random Disturbance(Independent) Random Disturbance

•• Mean error will be zero using Mean error will be zero using ““II”” controlcontrol•• Variance will increase with loop gainVariance will increase with loop gain•• Increase in Increase in σσ at at KK=1 ~ 1.5 * =1 ~ 1.5 * σσ open loopopen loop

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4

Page 39: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.38

Manufacturing

5/1/08

NIDI Sequence

az-a

Filter(Correlator)

What if the Disturbance is not NIDI?What if the Disturbance is not NIDI?

di cdi

CD(Z )(z − a) = aD(z)

cdi +1 = a(di − cdi )

unknown known

expect some correlation, expect some correlation, therefore ability to therefore ability to counteract some of the counteract some of the disturbancesdisturbances

Page 40: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.39

Manufacturing

5/1/08

What if the Disturbance is What if the Disturbance is not NIDI?not NIDI?

++

Sum1

y

Ouput

+-

Sum

0.7z+0.7

Filter(Correlator)

NIDI Sequence

n

Disturbance

1/z

Process

Kc

Gain

Kc σ2Ctc /σ2

o

0 1

0.1 0.89

0.25 0.77

0.5 0.69

0.9 1.39

Proportional ControlProportional Control

SimulationSimulation

Page 41: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.40

Manufacturing

5/1/08

Gain Gain -- Variance ReductionVariance Reduction

Loop Gain

σCtC2

σ 2

0 0.5 1.0 1.5

1.0

2.0Increasing Correlation

Page 42: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.41

Manufacturing

5/1/08

Conclusion Conclusion -- CtC with Correlated CtC with Correlated (Dependent) Random Disturbance(Dependent) Random Disturbance

•• Mean error will be zero using Mean error will be zero using ““II”” controlcontrol•• Variance will decrease with loop gainVariance will decrease with loop gain•• Best Loop Gain is still Best Loop Gain is still KKccKKpp =1=1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-4 -3 -2 -1 0 1 2 3 4

Page 43: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.42

Manufacturing

5/1/08

Conclusions from Conclusions from Cycle to Cycle Control TheoryCycle to Cycle Control Theory

•• Feedback Control of NIDI Disturbance Feedback Control of NIDI Disturbance will Increase Variancewill Increase Variance–– Variance Increases with GainVariance Increases with Gain

•• BUT: If Disturbance is BUT: If Disturbance is NIDNID but not but not II; ; We CAN Decrease VarianceWe CAN Decrease Variance–– Higher Gains Higher Gains --> Lower Variance> Lower Variance–– Design Problem: Low Error and Low Design Problem: Low Error and Low

VarianceVariance

Page 44: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.43

Manufacturing

5/1/08

How to Tell if DisturbanceHow to Tell if Disturbanceis Independentis Independent

•• Correlation of output dataCorrelation of output data–– Look at the Autocorrelation Look at the Autocorrelation –– Effect of Filter on AutocorrelationEffect of Filter on Autocorrelation

•• Reaction of Process to FeedbackReaction of Process to Feedback–– If variance decreases data has dependenceIf variance decreases data has dependence

Page 45: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.44

Manufacturing

5/1/08

Is DisturbanceIs Disturbanceis Independent?is Independent?

•• Correlation of output dataCorrelation of output data–– Look at the Autocorrelation Look at the Autocorrelation –– Effect of Filter on AutocorrelationEffect of Filter on Autocorrelation

•• Reaction of Process to FeedbackReaction of Process to Feedback–– If variance decreases then data must have If variance decreases then data must have

some dependencesome dependence

Φxx (τ) = x(t)x( t −τ )dt−∞

Page 46: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.45

Manufacturing

5/1/08

But Does It Really Work?But Does It Really Work?–– LetLet’’s Look at Bending and Injection s Look at Bending and Injection

MoldingMolding

Page 47: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.46

Manufacturing

5/1/08

Experimental DataExperimental Data

Cycle to Cycle Feedback Control of

Manufacturing Processesby

George Tsz-Sin SiuSM Thesis

Massachusetts Institute of Technology

February 2001

Page 48: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.47

Manufacturing

5/1/08

Experimental ResultsExperimental Results

•• BendingBending–– Expect NIDI NoiseExpect NIDI Noise–– Can Have Step Mean ChangesCan Have Step Mean Changes

•• Injection MoldingInjection Molding–– Could be Correlated owing to Thermal Could be Correlated owing to Thermal

EffectsEffects–– Step Mean Changes from Cycle Step Mean Changes from Cycle

DisruptionDisruption

Page 49: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.48

Manufacturing

5/1/08

Process Model for BendingProcess Model for Bending

Kpui yi

yi = Kpui −1

Y (z) =Kp

zKp=?

Page 50: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.49

Manufacturing

5/1/08

Local Response Curve (Mat'l I)

y = 150.85x - 156R2 = 0.9992

0

10

20

30

40

50

60

1.15 1.2 1.25 1.3 1.35 1.4Punch depth

Ang

le

Process Model for BendingProcess Model for BendingA

n gle 0.025” steel

Page 51: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.50

Manufacturing

5/1/08

33.5

34

34.5

35

35.5

36

36.5

0 10 20 30 40 50 60 70 80 90 100

Run number

Target

Open-loop Closed-loop

Results for KResults for Kcc=0.7;=0.7;ΔμΔμ=0 =0

=1.67

Theoretical =1.96

σCtC2

σ 2

Page 52: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.51

Manufacturing

5/1/08

II--Control Control ΔμΔμ≠≠0 0

2627282930313233343536

0 5 10 15 20Run numberMaterial

Shift

Tart

σCtC2

σ 2 = 1.01

Angle ss= 34.95=0.14%

Kc=0.5

Page 53: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.52

Manufacturing

5/1/08

Minimum Expected Loss Minimum Expected Loss IntegralIntegral--ControllerController

Performance Index versus Feedback Gain(σ 2̂ = 0.0618, S = 7.2581, N = 20)

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2Feedback Gain, Kc

Perf

orm

ance

Inde

x, V

Calculated Expected Loss vs. Gain

Kc V0.5 4.47

0.98 3.111.5 4.89

Experimental Verification

Page 54: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.53

Manufacturing

5/1/08

Disturbance Response for Disturbance Response for ““OptimalOptimal”” Integral Control GainIntegral Control Gain

25

27

29

31

33

35

37

39

0 5 10 15 20 25

Run number

Ang

le

MaterialShif t

Target

0.025” steel to 0.02” steel

K=1

Page 55: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.54

Manufacturing

5/1/08

Injection Molding: Injection Molding: Process ModelProcess Model

ˆ Y = β0 + β2 ⋅ X2 + β3 ⋅ X3 + β23 ⋅ X2 ⋅ X3 Initial ModelProcess inputs Levels

X2 = Hold time (seconds) 5 sec 20 sec X3 = Injection speed (in/sec) 0.5 in/sec 6 in/sec

ˆ Y = β0 + β2 ⋅ X2 Final Model

Effect beta SS DOF MS F Fcrit p-value1 1.437 49.6 1 49.568 2E+07 4.35 0

X2 (Hold time) -1.04E-03 0 1 2.60E-05 10.593 4.35 0.004X3 (Injection speed) -3.75E-04 0 1 3.38E-06 1.373 4.35 0.255

X2X3(Hold time*Injection speed) 2.92E-04 0 1 2.04E-06 0.831 4.35 0.373

Error 0 20 2.46E-06Total 49.6 24

ANOVA on model terms

Page 56: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.55

Manufacturing

5/1/08

PP--Control Injection MoldingControl Injection Molding

1.41

1.415

1.42

1.425

1.43

1.435

1.44

1.445

1.45

0 20 40 60 80 100Run

Dia

met

er

Open Loop Closed Loop, Gain = 0.5

Hot

Cold

Experiment Mean ( Hotmeasurement) Variance Variance

Ratio

Open-loop 1.437 9.97E-06 -

Closed-loop 1.439 2.34E-06 0.234

Page 57: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.56

Manufacturing

5/1/08

Output AutocorrelationOutput Autocorrelation

0 5 10 15 20-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 5 10 15 20-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Bending Injection Molding

Matlab function XCORR

Page 58: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.57

Manufacturing

5/1/08

1.41

1.415

1.42

1.425

1.43

1.435

1.44

1.445

1.45

1.455

0 20 40 60 80 100 120 140Run

Dia

met

er

Closed LoopTarget = 1.436

Closed LoopTarget = 1.44

Open Loop

PP--control: Moving Targetcontrol: Moving Target

Experiment Mean ( Hotmeasurement) Variance Variance Ratio

Closed-loop, target = 1.436Ó 1.438 6.79E-06 0.471

Closed-loop, target = 1.440Ó 1.440 4.54E-06 0.315

Open-loop 1.437 1.44E-05 -

Page 59: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt, all rights reserved58

Manufacturing

5/1/08

Injection Molding:Injection Molding:Integral ControlIntegral Control

1.41

1.415

1.42

1.425

1.43

1.435

1.44

1.445

1.45

0 10 20 30 40Run

Dia

met

er

Experiment Mean (Hot measurement) Variance Variance

Ratio

Closed-loop, target = 1.436 1.438 3.94E-06 0.395

Open-loop, from first experiment 1.437 9.97E-06 -

Page 60: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.59

Manufacturing

5/1/08

ConclusionConclusion

•• Model Predictions and Experiment are Model Predictions and Experiment are in Good Agreementin Good Agreement–– Delay Delay -- Gain Process ModelGain Process Model–– Normal Normal -- Additive DisturbanceAdditive Disturbance–– Effect of Correlated vs. Uncorrelated Effect of Correlated vs. Uncorrelated

(NIDI) Disturbances(NIDI) Disturbances

Page 61: Control of Manufacturing Processes - MIT OpenCourseWare · Control of Manufacturing Processes Subject 2.830 Spring 2007 ... Box, G., Luceno, A., “Discrete Proportional-Integral

Lecture 20 © D.E. Hardt.60

Manufacturing

5/1/08

ConclusionConclusion

•• Cycle to Cycle ControlCycle to Cycle Control–– Obeys Root Locus Prediction wrt DynamicsObeys Root Locus Prediction wrt Dynamics–– Amplifies NIDI Disturbance as ExpectedAmplifies NIDI Disturbance as Expected–– Attenuate nonAttenuate non--NIDI DisturbanceNIDI Disturbance–– Can Reduce Mean Error (Zero if ICan Reduce Mean Error (Zero if I--control)control)–– Can Reduce Can Reduce ““Open LoopOpen Loop”” Expected LossExpected Loss–– Correlation Sure Helps!!!!Correlation Sure Helps!!!!

•• Can be Extended to Multivariable CaseCan be Extended to Multivariable Case–– PhD by Adam Rzepniewski (5/5/05)PhD by Adam Rzepniewski (5/5/05)

•• Developed Theory and demonstrated on 100X100 Developed Theory and demonstrated on 100X100 problem (discrete die sheet forming)problem (discrete die sheet forming)