Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical...

32
Fiber and Waveguide Optics Fiber and Waveguide Optics for Optical Manipulation for Optical Manipulation for Optical Manipulation for Optical Manipulation - Shifting their role from IT Shifting their role from IT backbone to frontier optical science enabler to frontier optical science enabler to frontier optical science enabler to frontier optical science enabler K. Oh K. Oh Photonic Device Physics Laboratory Photonic Device Physics Laboratory Ph i D t t Ph i D t t Physic Department Physic Department College of Science College of Science Yonsei Yonsei University University K. Oh-Yonsei University Contents Contents Historical perspectives Structured cladding optical fibers for photonic devices Hollow optical fibers, a universal compact fiber cage MOW on MAP, a mechanical optical nerve Fiber Optic Sciences for optical manipulation K. Oh-Yonsei University Acknowledgements Prof. T. F. Morse, Brown U., B. U. Photonics Center Prof. U. C. Paek and Photonics Group Faculties in GIST Dr. D. DiGiovanni, OFS Labs Prof. J. A. Harrington, Rutgers U. Prof. D. N. Payne, U. Southampton Prof. J. Knight, U. Bath Prof. B. Y. Kim in KAIST Prof. Y. H. Lee in KAIST Prof. S. Y. Shin in KAIST Prof. H. Bartelt, IPHT Prof. H. Bartelt, IPHT Prof. A. Tuennerman, Fraunhofer and my students K. Oh-Yonsei University and my students Historical perspectives Log(Resource Log(Resource Input Input x x Output Output) Industry Industry Industry Industry T h l T h l Industry Industry T h l T h l Industry Industry Science Science T echnology T echnology Science Science T echnology T echnology Science Science Time Time K. Oh-Yonsei University

Transcript of Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical...

Page 1: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Fiber and Waveguide Optics Fiber and Waveguide Optics

for Optical Manipulationfor Optical Manipulationfor Optical Manipulationfor Optical Manipulation

-- Shifting their role from IT Shifting their role from IT backboneto frontier optical science enablerto frontier optical science enablerto frontier optical science enablerto frontier optical science enabler

K. OhK. Oh

Photonic Device Physics LaboratoryPhotonic Device Physics LaboratoryPh i D t tPh i D t tPhysic DepartmentPhysic DepartmentCollege of ScienceCollege of ScienceYonseiYonsei UniversityUniversity

K. Oh-Yonsei University

ContentsContents

• Historical perspectives

• Structured cladding optical fibers for photonic devices

• Hollow optical fibers, a universal compact fiber cage

• MOW on MAP, a mechanical optical nerve

• Fiber Optic Sciences for optical manipulation

K. Oh-Yonsei University

Acknowledgements

Prof. T. F. Morse, Brown U., B. U. Photonics Center

Prof. U. C. Paek and Photonics Group Faculties in GIST

Dr. D. DiGiovanni, OFS Labs

Prof. J. A. Harrington, Rutgers U.

Prof. D. N. Payne, U. Southampton

Prof. J. Knight, U. Bath

Prof. B. Y. Kim in KAIST

Prof. Y. H. Lee in KAIST

Prof. S. Y. Shin in KAIST

Prof. H. Bartelt, IPHTProf. H. Bartelt, IPHT

Prof. A. Tuennerman, Fraunhofer

and my students

K. Oh-Yonsei University

and my students

Historical perspectives

Log(Resource Log(Resource InputInput x x OutputOutput))

IndustryIndustry IndustryIndustry

T h lT h l

IndustryIndustry

T h lT h l

IndustryIndustry

ScienceScience

TechnologyTechnology

ScienceScience

TechnologyTechnology

ScienceScience

TimeTime

K. Oh-Yonsei University

Page 2: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Chronology of Key Events in Photonics1611, Johannes Kepler,

P t d l ti f th i i l f i d t lPresented an explanation of the principles of microscopes and telescopes. Discovered total internal reflection

1666, Isaac Newton,Described the splitting p of hite light into its component colors thro gh a prismDescribed the splitting up of white light into its component colors through a prism

1733, Chester More Hall,Achromatic compound lens using glasses with different refractive indices

1801 Thomas Young1801, Thomas Young, Provided support for the wave theory by demonstrating the interference of light

1815, David BrewsterDescribed the polarization of light by reflectionDescribed the polarization of light by reflection

1816, Augustin Jean FresnelPresented a rigorous treatment of diffraction and interference phenomena

1846 Carl Fredrich Zeiss, Opened Carl Zeiss Firm at Jena, developed the first compound microscope

1872 Ernst Abbe1872 Ernst Abbe, “Abbe Sine condition” a theory for optical imaging

1881 Otto SchottStarted Schott glass foundation for optical glass fabrication

The first optical imaging industry,in the world,

K. Oh-Yonsei University

Started Schott glass foundation for optical glass fabrication ,

Chronology of Key Events in Photonics

•1841 Daniel Colladon,demonstrated light-guiding in water jets in Geneva.

•1854 John Tyndall,showed that light is guided by a bending water jet.

•1864 James Clerk Maxwelldi t d th i t f l t tipredicted the existence of electromagnetic waves

•1880 Alexander Graham Bell,invented the Photophone using the optical effects of seleniuminvented the Photophone, using the optical effects of selenium.

K. Oh-Yonsei University

• 1940s Corning scientists

Chronology of Key Events in Photonics

1940s Corning scientistsdeveloped flame hydrolysis/vapor deposition technique for pure silica

• 1949-1954 Abraham C. S. van Heel, Technical University of Delft, , y ,developed technique of cladding fibers to improve total internal reflection

• 1956 Lawrence E. Curtiss, U. of Michigan undergraduate made the first glass-clad fiber by the rod-in-tube method

• 1958 Arthur Schawlow at Bell Lab, and Charles Townes at Columbia U., presented the theoretical principles of the laser.

• 1960 Theodore Maiman, Hughes Aircraft Co.,demonstrated the first laser, using a synthetic ruby.

•1960 Ali Javan, MITd t t d th fi t ti (h li ) ldemonstrated the first operating gas (helium-neon) laser.

•1962 GE, IBM, and Lincoln Laboratory at MIT,demonstrated GaAs semiconductor lasers

K. Oh-Yonsei University

demonstrated GaAs semiconductor lasers

Chronology of Key Events in Photonics

• 1961 Elias Snitzer, American Optical, theoretical work on mode behavior in cylindrical dielectric waveguides

1966 Ch l K d G H kh• 1966 Charles Kao and George Hockham,“landmark” paper predicting low loss transmission in glass fiber

• 1970 Robert D Maurer Peter C Schultz Donald Keck of Corning Glass• 1970 Robert D. Maurer, Peter C. Schultz, Donald Keck, of Corning Glass,Low loss optical fiber fabricated in mass production scale

• 1970 Morton B Panish and Izuo Hayashi Bell Labs• 1970 Morton B. Panish and Izuo Hayashi, Bell Labs, CW GaAs LD at room temperature near 850 nanometers.

• 1970 Charles Burrus Bell Labs1970 Charles Burrus, Bell Labs, first small-area, highradiance, LED

• 1974 John B MacChesney and U. C. Paek, at Bell Lab,1974 John B MacChesney and U. C. Paek, at Bell Lab,Developed mass production of optical fiber using MCVD andfast optical fiber drawing

K. Oh-Yonsei University

Page 3: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Three Major Photonic Industry from 20 C and present

Optical Communicationsp

O ti l Di lOptical Display

Optical Storage

What would follow after then?

K. Oh-Yonsei University

Historical perspectives

Where are e no ?Log(Resource Log(Resource InputInputXXOutputOutput))

Where are we now?

A time for imagination and ardor for new sciencealong with

IndustryIndustry IndustryIndustryalong with

broad understanding of technology and industry

TechnologyTechnology TechnologyTechnology

ScienceScience ScienceScience

K. Oh-Yonsei University

TimeTime

ContentsContents

• Historical perspectives

• Structured cladding optical fibers for photonic devices

•Hollow optical fibers, a universal compact fiber cage

• MOW on MAP, a mechanical optical nerve

• Fiber Optic Sciences for optical manipulation

K. Oh-Yonsei University

Introduction

Semiconductor devices are based on;

eEnergy level structure

C

To generate photon

hV

Refractive index structure

To guide photon

K. Oh-Yonsei University

Page 4: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Introduction

In optical fibers, refractive index variations have beenthe major concern to control attenuation and dispersion.

Er3+Er3+

SiO2 SiO2

Er

Refractive index Energy level

Erbium Doped Fiber (EDF) was the first of the kind

K. Oh-Yonsei University

p ( )that has true multi-dimensional functions

Structured cladding optical fibers

E l i d f f d i id d i

Emitting ion Photosensitive

Exploring degrees of freedom in waveguide design

Absorbing ioncore

Graded Clad

Amplifier/Lasers Long period Grating

Non-photosensitive

p g p g

Emitting ionpCore index raiser

Photosensitive/i l d

W type Clad

K. Oh-Yonsei University

core/inner-cladBragg grating Lasers

Evanescent wave filtering for self-gain regulation in EDFA

Emitting

I

Absorbing

Concept of evanescentwave filtering

Concept of evanescentwave filtering

Ion

gIon

“A” doped

wave filteringwave filtering

“E” doped

A dopedinner cladding ring

E dopedcore

Amplification

Selective suppressionf ASE d i f

Attenuationof ASE and gain of

a rare earth Emitter bysurrounding another rare

earth Absorber by earth Absorber byEvanescent wave interaction

Uh Chan Ryu W Shin K Oh and U C Paek “Inherent enhancement of gain flatness and achievement of broad gain

K. Oh-Yonsei University

Uh-Chan Ryu, W. Shin, K. Oh, and U. C. Paek, Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium doped silica fiber amplifiers,” IEEE Journal of Quantum Electronics, vol. 38, no. 2, pp.149-161, Feb. 2002

Evanescent wave filtering for self-gain regulation

0 35

Emitter and absorber in reality

5000.30

0.35

300

400

dB/K

m)

0.20

0.25

y, a

rb. u

nits

200

bsor

ptio

n (d

0.15

n In

tens

ity

100

Sm

Ab

0.05

0.10

*1000

Er E

mis

sio

0.001000 1200 1400 1600 1800

0.00

E

wavelength, nm

K. Oh-Yonsei University

Page 5: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Evanescent wave filtering for self-gain regulation

New fiber structure

HE11 mode field distribution 2a11

980 nm pump light is more confined

than 1530nm signal light.2b

Er0.15 1530nm

c

Sm0.07

980nm

Make the overlap of the 980 mode negligible

0.00

0.05

d

and that of the 1530 nm significant enough for evanescent wave filtering

10 5 0 5 10-0.05

Radius (m)

g

Seungtaek Kim Uh-Chan Ryu and K Oh “41nm 3dB Gain-Band Optical Amplifier Using Er-doped Core

K. Oh-Yonsei University

Seungtaek Kim, Uh-Chan Ryu, and K. Oh, 41nm 3dB Gain-Band Optical Amplifier Using Er-doped Core and Sm-doped Inner-cladding Fiber Without External Filters,” IEEE Photonics Technology Letters, Vol. 12, No. 8, pp.986-988, August 2000

Evanescent wave filtering for self-gain regulation

Signal gain under saturation

1 6

1 8

2 0

dB)

1 0

1 2

1 4

al G

ain

(d

2.3 dB

6

8

1 0

mal

l Sig

na

1 5 3 0 1 5 3 5 1 5 4 0 1 5 4 5 1 5 5 0 1 5 5 5 1 5 6 00

2

4Sm

1 5 3 0 1 5 3 5 1 5 4 0 1 5 4 5 1 5 5 0 1 5 5 5 1 5 6 0

W a v e le n g th (n m )

Uh-Chan Ryu, W. Shin, K. Oh, and U. C. Paek, “Inherent enhancement of gain flatness and achievement of broad gain

K. Oh-Yonsei University

Uh Chan Ryu, W. Shin, K. Oh, and U. C. Paek, Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium doped silica fiber amplifiers,” IEEE Journal of Quantum Electronics, vol. 38, pp.149-161, Feb. 2002

Graded index cladding for novel LPG filters

L P i d G ti (LPG) l th d t l ddi dLong Period Grating (LPG) couples the core mode to cladding modes,which leak out at high index polymer coating

to make band rejection filters

0LPG optimized for C band EDFA

-6-4-2

n [d

B]

LPG optimized for C-band EDFAInduces insertion loss

near S, E, O bands

-12-10-8

smiss

ion

FSRFSR

-18-16-14

Tran

New Technique to controlNew Technique to control1200 1300 1400 1500 160

18

Wavelength [nm]

New Technique to controlNew Technique to controlFree spectral range (FSR)Free spectral range (FSR)

is required!is required!

K. Oh-Yonsei University

Graded index cladding for novel LPG filters

Conventional fibers allowed only a limited function to cladding

P di ShiftP di Shift

Conventional fibers allowed only a limited function to cladding-infinite uniform refractive index silica cladding

1 464 1 464

Paradigm ShiftParadigm ShiftIntroduce graded refractive index in cladding!Introduce graded refractive index in cladding!

1.458

1.461

1.464

Stepex 1.458

1.461

1.464

44 5m Step24 5mex

1.452

1.455

Step

0.003 Triangular

0.006 Triangular 1.454

1 4510 009 Triangular

ract

ive

inde

1.452

1.455

44.5m

Trape 1Trape 2

Step24.5m

Triangular

ract

ive

inde

0 10 20 30 40 50 60

1.446

1.449

3.81m

1.451

1.448

0.009 Triangular

Refr

0 10 20 30 40 50 60

1.446

1.449

3.81m

Refr

0 10 20 30 40 50 60Radius [m]

0 10 20 30 40 50 60Radius [m]

H. Jeong, K. Oh, “Theoretical analysis of cladding mode waveguide dispersion and its effects on the spectra of

K. Oh-Yonsei University

g, , y g g p plong period fiber grating,” IEEE/OSA Journal of Lightwave Technology, vol. 21, no.. 8, pp.1838-1845, Aug. 2003.

Page 6: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

C ti l if i d l ddi

Graded index cladding for novel LPG filters

900

1000

Conventional uniform index cladding

m)

700

800

9001

2

pe

rio

d (

500

600

700 3

4

Gra

tin

g

300

400

500

5

100

200

300

Peak wavelength (nm)1000 1100 1200 1300 1400 1500 1600 1700

100

K. Oh-Yonsei University

FSR about 100 nm near C band

Graded index cladding for novel LPG filters

800Triangular Cladding

600

700

d (

m) 1

2

400

500

ng p

erio

d

34

300

400

Gra

tin

1000 1100 1200 1300 1400 1500 1600 1700100

200

1000 1100 1200 1300 1400 1500 1600 1700Peak wavelength (nm)

FSR more than 200 nm near C band!

K. Oh-Yonsei University

FSR more than 200 nm near C band!

Graded index cladding for novel LPG filters

0

Triangular Cladding

8

-4

0

Transmi

16

-12

-8 ission powSingle isolated resonance

-20

-16

wer [dB

]

gfrom 1000 to 1700nm

-24

0.003 Triangular

Step index

1000 1100 1200 1300 1400 1500 1600 1700

0.009 Triangular

0.006 Triangular

K. Oh-Yonsei University

Wavelength [nm]

Competing systems in rare earth-doped glasses

Spectrum slicing using W type fiber

Competing systems in rare earth doped glasses

ses

Nd+3 in silica

4F3/2

4F5/2, 4H5/2

808nm

4F3/2

4F5/2, 4H5/2

808nm

3-level system 4-level system

ence

pe

d gl

ass

Al2O3-SiO2GeO -SiO

4I9/2

4I11/2

808nm

4I9/2

4I11/2

Fluo

resc

eof

Nd-

dop GeO2-SiO2

1060 1090 1120900 940880F o

Wavelength (nm)

For the common pump ground state absorption (GSA) at 808nm3 level and 4 level systems are competing but

High threshold pump power for population inversion in 3-level system O 4 l l k h f 3 l l

K. Oh-Yonsei University

Once 4-level system starts to work, no chance for 3-level system

Page 7: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

sses

3 level system 4 level system

Spectrum slicing using W type fiber

cenc

e op

ed g

las 3-level system 4-level system

Al2O3-SiO2GeO2-SiO2

Fluo

resc

of N

d-do

900 1060940 1090 1120880W l th ( )n er Wavelength (nm)

ve in

dex

LP01 guided LP01 cut-offn+

n+

nsm

issi

onW

-type

fibe

Bending fiber

Ref

ract

iv 01

n0

n-n-Tr

anin

W

1060c

a b r

c’940 Wavelength (nm)

K. Oh-Yonsei University

Wavelength (nm)

Spectrum slicing using W type fiber

Experimental results

DM DM

Nd-doped W-type fiber

DM DM

Nd-doped W-type fiber

20

-10

0

B s

cale

)

20

1.5x10-20

Em

iss

LD @808nm LD @808nm

Lens Lens

2R

LD @808nm LD @808nm

Lens Lens

2R

-40

-30

-20

wer

(a.u

. in

dB

Suppression6.0x10-21

9.0x10-21

1.2x10-20

sion cross se

Output in 900nm region Bulk gratingOutput in 900nm region Bulk grating

0) 1.0x10-20

GeO2-SiO2 Al2O3-SiO2

850 900 950 1000 1050 1100-70

-60

-50

Out

put p

ow

0.0

3.0x10-21

ction (cm2)

-30

-20

-10

u. in

dB

scal

e)

6.0x10-21

8.0x10-21

Em

ission cro

Wavelength (nm)

-60

-50

-40

put p

ower

(a.u

Suppression2.0x10-21

4.0x10-21

oss section (cm850 900 950 1000 1050 1100

-70

Wavelength (nm)

Out

p

0.0m

2)

S. Yoo, K. Oh et al., Optics Communications, vol. 247, no.1-3, pp.153-162, Mar. 2005. D B S S h K Oh t l IEEE J l f Q t El t i l 40 9 1275

K. Oh-Yonsei University

D. B. S. Soh, K. Oh, et al., IEEE Journal of Quantum Electronics, vol. 40, no.9, pp.1275-1282, September 2004

U-band(1625-1675nm) from Tm

Spectrum slicing using W type fiber

( )& S-band(1450-1530nm) from Er

*

n+

TDF EDF

inde

x

n+

U-band S-bandn+

TDF EDF

inde

x

n+

U-band S-band**

n0 l

s

Ref

ract

ive

n0

s

l1600 1670nm 1450 1530nm

n0 l

s

Ref

ract

ive

n0

s

l1600 1670nm 1450 1530nm

n-

ab

l s l s

n-

a bFiber radius

n-

ab

l s l s

n-

a bFiber radiusFiber radiusFiber radius

Parameter n+ n- n0 a (m) b (m) c in LP01 mode (nm)

1670U-band 1.4683 1.4520 1.4570 2.0 6.0 1670

S-band 1.4672 1.4520 1.4570 2.0 6.0 1530

K. Oh-Yonsei University

*T.Sakamoto et al., Photon.Technol.Lett., 8 (1996) pp.349-351.** Y.Im, MS.Dissertation (2003)***L.G.Cohen et al., J.Quan.Electron., QE-18 (1982) pp.1467-1472.

Spectrum slicing using W type fiber

le)

U-band

U-band tuning out of Tm doped fiber laser

0

-10

0

in d

B s

cal

n dB

sca

le)

-20

-10

-30

-20

pow

er (a

.u.

tput

pow

er (a

.u. i

n

-40

-30

1620 1630 1640 1650 1660 1670 1680-50

-40

Out

put p

1560 1580 1600 1620 1640 1660 1680 1700

Out

-60

-50

Wavelength (nm)Wavelength(nm)

- Launched power: 1020mW- Threshold power: 700mW

- Tuned by adjusting bending radius- Tuning range: 1648-1665nm with 10m fiber

mmnmReff

lasing /7.1

p

- Max. signal power: ~ 1mW @1665nm Low fiber efficiency- Fiber length: 10m

K. Oh-Yonsei University

Page 8: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Structured Cladding FiberStructured Cladding Fiber

E l d th l f l ddi tExplored the role of cladding to - modify- hybridize

core

hybridize- integrate optical functions

core

cladding

Passive transmission medium

K. Oh-Yonsei University

Integrated Photonic Functional Block

ContentsContents

• Historical perspectives

• Structured cladding optical fibers for photonic devices

• Hollow optical fibers, a universal compact fiber cage

• MOW on MAP, a mechanical optical nerve

• Fiber Optic Sciences for optical manipulation

K. Oh-Yonsei University

Introduction

AiAi Sili id i i t f ti l fibSili id i i t f ti l fibAirAir--Silica guidance in various types of optical fibersSilica guidance in various types of optical fibers

Omni guideMIT

Di l t i A I +Dielectric: AgI +....

Metal: Ag, Au, CuSilica Tubing

Photonic Crystal FiberU. Bath, U. Southampton,

Tech U DenmarkPolymer Coating

Tech. U. Denmark

Hollow IR waveguideRutgers

K. Oh-Yonsei University

Rutgers

Introduction

Liquid core fiber D. N. Payne and W. A. Gambling, y gElectronics Letters, vol. 8, p374, 1972

Hollow silica tube filled with HCBD(hexachlorobutadiene)

Step index multimode fiber with p

Attenuation 4 dB/km, Bandwidth 1GHzKm

K. Oh-Yonsei University

Page 9: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Hollow Optical Fiber

Hollow optical fiber with an inner core ring

Core Region

r=ar=b d250

300

Air Region Cladding Region

n %340150

200

ncore

ncladding

%34.0

50

100

nair

50 100 150 200 250 300

K. Oh-Yonsei University

One Hole, One Index Ring!

New FeaturesHollow Optical Fiber

SMF HOF

Cross section of HOF

HOF output light mode

SMF input light mode

Inherent adiabatic mode conversion with a low lossInherent adiabatic mode conversion with a low loss

Perfect compatibility with current fiber optics- Perfect compatibility with current fiber optics- Enhanced mechanical deformation capability

Versatile design for both passive and active devices

K. Oh-Yonsei University

- Versatile design for both passive and active devices

Hollow Optical Fiber

Invited talks and papers

Worldwide Attention

v ed s d p pe sK. Oh, S. Choi, W. Shin, and U. C. Paek, “Solid Mechanics, Acoustics, and Light Propagation, -Hollow core fibers and their applications in photonic devices," The sixteenth International pp pConference on Optical Fiber Sensor (OFS-16), organized by IEICE, JSAP, IEEJ, and SICE, 2003, Noh-Drama Theater, Nara, Japan.

K. Oh, S. Choi, W. Shin, “Hollow core fibers and their applications in optical communications,” Frontiers in Optics, 87’th OSA Annual Meeting, symposium on fiber based novel photonic devices Tuscon Convention Center Organized by OSA and APS-Division of Lasernovel photonic devices, Tuscon Convention Center, Organized by OSA and APS Division of Laser Science, 2003, Tuscon, Arizona, USA.

K. Oh, “Acoustic control of polarization in a novel hollow core optical fiber,” Fiber and Planar Waveguide sub-committee, IEEE-Laser and Electro Optics Society (LEOS) 2003 Annual Meeting, paper ThP4, October 26-30, 2003, Tuscon, Arizona, USA. .

K. Oh, S. Choi, Y. Jung, and Jhang. W. Lee, “Novel hollow optical fibers and their applications in photonic devices for optical communications,” Invited paperIEEE/OSA Journal of Lightwave Technologies, vol. 23, no.2, pp.524-532, Feb.

K. Oh-Yonsei University

g g , , , pp ,2005

Giga Bit Ethernet Enabler Motivations

DMD Schematic in MMFDMD Schematic in MMF

Least modal dispersion

longest

n

n2

n Least modal dispersionin parabolic index fiber

R j i

shortestn1 n1

Ray trajectories n2

n1

n2

Differential Modal Delay (DMD) for central launchingn1

n2

(DMD) for central launching in fiber with center dip

K. Oh-Yonsei University

Page 10: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Selective LaunchingGiga Bit Ethernet Enabler

How do we enhance the capacity of installed MMF systems ?

1. Offset launching technique 2. The technique to emit a ring shapef th t h d VCSEL

Launching Spot

from the etched VCSEL

Fiber CladdingFiber Core

Fiber Cladding

L. Raddatz et al., JLT, 16 (3), Mar. 1998 M. Webster et al., JLT, 17 (9), Sep., 1999

L. J. Sargent et al., Electron. Lett., Vol 34 (21), 1998 M. Webser et al., CLEO’99 Tech., Dig., CWD6, 1999

K. Oh-Yonsei University

SMF HOF MMF M d C t

Giga Bit Ethernet Enabler

SMF-HOF- MMF Mode Converter

50 ㎛50 ㎛

8 ㎛

5.8㎛

8 ㎛ 8 ㎛

125 ㎛SMF MMFHOF

125㎛ 90.9㎛

S. Choi, K. Oh, W. Shin, and U. C. Ryu, “A Low Loss Mode Converter Based on th Adi b ti ll T d H ll O ti l Fib ” IEE El t i L tt l 37

K. Oh-Yonsei University

the Adiabatically Tapered Hollow Optical Fiber,” IEE Electronics Letters, vol.37, no. 13, pp. 823-825, 2001.

BER MeasurementsGiga Bit Ethernet Enabler

SMF HOF MMFSMF

1.31㎛ FP LaserTransmitter

Direct Mod.2.5 Gb/s direct & external transmission experiment setup

50/125㎛ GIMMF 500

PPG

Ext. Ratio:10.95dB

Mode Converter

(Back-To-Back)

MMF 500 m1.55㎛

DFB Laser PCIntensity

Modulator SMFHole diameter : 7~ 8 ㎛

PPG : Pulse Pattern GeneratorMMF CDRData

( )PPG Driver

Bias-TeeExternal Mod.length: 100 ~ 150 mm

PC : Polarization ControllerVOA : Variable Optical AttenuatorCDR : Clock/Data ReceiverED E D t t

MMF VOAMMF

Coupler

EDData

Clock

10

90

ED : Error Detector pOptical Power Meter

S. Choi, K. Oh, et al., “Novel mode converter based on hollow optical fiber for gigabit LAN

K. Oh-Yonsei University

communication,” IEEE Photonics Technology Letters, vol. 14, no. 2, pp.248-250, Feb. 2002.

BER MeasurementsGiga Bit Ethernet Enabler

(a) 2.5Gb/s 1.31 ㎛ FP LDdirect modulation

(b) 2.5Gb/s 1.55 ㎛ DFB LDexternal modulation

: Back-to-Back : SMF-HOF-MMF 500m : SMF-MMF 500m

S Ch i K Oh t l “N l d t b d h ll ti l fib f i bit LAN

K. Oh-Yonsei University

S. Choi, K. Oh, et al.,“Novel mode converter based on hollow optical fiber for gigabit LAN communication,” IEEE Photonics Technology Letters, vol. 14, no. 2, pp.248-250, Feb. 2002.

Page 11: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

MotivationsOptical Medium Converter

METRO DWDMSMF LINK: 1.5m

Inter-connecting device

Gigabit ethernetMMF LINK:0.8 or 1.3m

Wavelength and Mode selective inter-connection device is needed in the inter-connection between metro DWDM system and GiGa bit Ethernet system

K. Oh-Yonsei University

connection between metro DWDM system and GiGa-bit Ethernet system.

Mode ConversionOptical Medium Converter

Mode shape characteristics in tapered Hollow optical fiber(HOF)

SMF !SMF !

HOFTapering region

Ring shape mode in HOF

K. Oh-Yonsei University

W. Shin, S. Choi, and K. Oh, “All-fiber wavelength- and mode-selective coupler for optical interconnections,” OSA Optics Letters,vol. 27, no.22, pp.1884-1887, November, 2002.

CouplerOptical Medium Converter

The Schematic of proposed All Fiber Wavelength and Mode Selective Coupler for Optical Inter-Connections

DWDM

SMF

DWDM

SMF

GbEHOF

MMF

K. Oh-Yonsei University

W. Shin, S. Choi, and K. Oh, “All-fiber wavelength- and mode-selective coupler for optical interconnections,” OSA Optics Letters,vol. 27, no.22, pp.1884-1887, November, 2002.

Experimental ResultsOptical Medium Converter

0.80.91.0

ower

HOF SMF

6-4-20

B]

2.1dB0.15dB

20dB

0.40.50.60.7

zed

optic

al p Test Signals

1.29m + 1.53m0 dBm

-14-12-10

-8-6

smiss

ion

[dB 9.8 dB ~20dB

OH absorption

0.00.10.20.3

Nor

mai

z

-22-20-18-1614

Tran

s

SMF HOF

p

C li ffi i

1250 1300 1350 1400 1450 1500 1550 1600 1650

Wavelength [nm]1250 1300 1350 1400 1450 1500 1550 1600 1650

Wavelength [nm]

LP01 mode of SMF Ring shape mode of HOF around 1.3m : ~88% LP d f SMF LP d f SMF d 1 5 97%

Coupling efficiency

LP01 mode of SMF LP01 mode of SMF around 1.5m : ~97%.

W Shi S Ch i d K Oh “All fib l th d d l ti l f ti l

K. Oh-Yonsei University

W. Shin, S. Choi, and K. Oh, “All-fiber wavelength- and mode-selective coupler for optical interconnections,” OSA Optics Letters,vol. 27, no.22, pp.1884-1887, November, 2002.

Page 12: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

High Order Mode Enabler Motivations

Higher-Order Mode Dispersion Compensation

Higher-order model b d i Higher order mode DCFDCF

MCMC MCMC

pulse broadening due chromatic dispersion

LP01 LP11

LP01 LP02

SMF LP11 LP01

LP02 LP01

Transmitter ReceiverSMF

01 02 LP02 LP01

Why is this technique being investigated ?

B d b d di i d di i l tiBroad-band dispersion and dispersion slope compensation Large effective area Reduce fiber nonlinear effectsLarge negative dispersion Decrease fiber installation cost

K. Oh-Yonsei University

Reduce module loss

High Order Mode Enabler Review

1 P i di t 2 Mi b di 3 Ph t i d d i d h

Mode Converters (MCs)

1. Periodic stress 2. Micro-bending 3 . Photo-induced index changes

K. O. Hill et al, Electron. Lett. Vol. 26, pp. 1270-2, 1990.F. Bilodeau et al, Electron. Lett. Vol. 27, pp. 682-4, 1991.

J. N. Blake et al, Opt. Lett., Vol. 11, pp. 177-179, 1986.C D Poole et al JLTR. C. Youngquist et al, Opt. Lett., pp

N. H. Ky et al, Opt. Lett. Vol. 23, pp. 445-447,1998.C.D.Poole et al, JLT.,vol. 9 , pp. 598-604, 1991.Vol. 9, pp. 177-179, 1984.

MCs based on periodic couplingVulnerable to environmental change (Temperature, Strain)

Bandwidth limited due to phase matching requirements

K. Oh-Yonsei University

Special packaging

High Order Mode Enabler HOF and matching DCF

Block diagram of proposed technique

LP dLP mode LP02 mode

Transmitter Receiver

ModeConverter Mode

Converter

LP01 mode

Compensating fiber

Single-modefiber links

SMF HOF LP02 DCF

SMFHOFLP02 DCF

S Ch i d K Oh “A LP d di i ti h b d d t

K. Oh-Yonsei University

S. Choi, and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Optics Communications, vol. 221(4-6), pp. 307-312, 2003.

High Order Mode Enabler HOF and matching DCF

Design of ring-core LP02 DCF

2r1 2r

Di t ( ) Relative index LP02 cut-off

2r2 2r3

Diameter (m) difference (%) Parameter 2r1 2r2 2r3

02 cut owavelength

(m) Specification 1.2 7.4 9.4 1.96786 0.06437 1.60

K. Oh-Yonsei University

Page 13: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

17.5-600 Chromatics DispersionHigh Order Mode Enabler

16.5

17.0

-700

-650

ps/n

m/k

m]

Ring-core DCF: LP02 mode

ps/n

m/k

m]

15.5

16.0 SMF: LP01 mode-750

Disp

ersio

n [p

Disp

ersio

n [p

1.53 1.54 1.55 1.56 1.5714.5

15.0

-850

-800

Wavelength [m]

Parameter Unit SMF LP02 ring-core True-Wave*HOM-DCF**Parameter Unit SMF DCF RS fiber HOM-DCF

Dispersion (D) ps/nm/km 16 -769.34 4.5 -420Dispersion Slope (S) ps/nm2/km 0.057 -5.364 0.045 -3.36

RDS (S/D) nm-1 0.00356 0.00695 0.010 0.008

*L. Gruner-Nielsen et al, ECOC’2000, Paper 2.4.1.** S. Ramachandran et al, IEEE Photon. Technol. Lett., Vol. 13, no. 6, pp. 632-634, 2001.

( )

S Ch i d K Oh “A LP d di i i h b d d

K. Oh-Yonsei University

S. Choi, and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Optics Communications, vol. 221(4-6), pp. 307-312, 2003.

PrinciplesCore Mode Blocker

HOF core mode blocker in bandpass filterHOF core mode blocker in bandpass filter

LPG-1 LPG-2

HOFCore mode Cladding mode

Cladding mode

IEEE Photonics Technology Letters,

Core mode

K. Oh-Yonsei University

vol. 14, no. 12, pp.1701 –170, Dec., 2002.vol. 17, no. 1, pp.115-117, Jan., 2005

Core Mode Blocker

Tunable HOFTunable HOF--BPFBPF

To Temp. controller Temp. sensor Nicrome wire

Fiber coreHOF1st LPG 2nd LPG 5X7 mm2 tube

K. Oh-Yonsei University

TransmissionCore Mode Blocker

Temperature tuningTemperature tuning

GeO2 fiber GeO2-B2O3 fiber

-5

0

20 oC 100 oC 180 oC

2

-5

0

25 oC 125 oC 215 oC

-15

-10

miss

ion

[dB]

-10

miss

ion

[dB]

-25

-20

Tran

sm-15

Tran

sm

1250 1300 1350 1400 1450 1500 1550 1600

-30

1300 1350 1400 1450 1500 1550 1600

-20

Wavelength [nm] Wavelength [nm]

K. Oh-Yonsei University

Page 14: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

TransmissionCore Mode Blocker

Temperature tuningTemperature tuning

GeO fiber G O B O fib

1500

1550

S= 0.13 nm/ oC

C band 1550

1600

-0.44 nm/ oC

HE14

GeO2 fiber GeO2-B2O3 fiber

1450

1500

ngth

[nm

]

HE14

1500

0 37 / oCth [n

m]

HE13

S and C band

1350

1400

HE

HE13S= 0.10 nm/ oC

Wav

elen

E band 1400

1450

-0.34 nm/ oC

-0.37 nm/ oC

Wav

elen

gt

HE12 E band

20 40 60 80 100 120 140 160 180 2001300

1350 HE12S= 0.09 nm/ oCO band

25 50 75 100 125 150 175 2001300

1350

-0.33 nm/ oC HE11 O band

Temperature [oC] Temperature [oC]

IEEE Photonics Technology Letters,

K. Oh-Yonsei University

vol. 14, no. 12, pp.1701 –170, Dec., 2002.vol. 17, no. 1, pp.115-117, Jan., 2005

Fiber optic acoustics The Device

Flexural acoustic waveShear mode PZT

Glass

acoustic damper

SMF SMFSMFGlass

hornRF signal

SMFInnovative and extensive works

of Prof. B. Y. Kim’s group in KAISTHollow optical fiber

GIST

Acoustic wave breaks circular symmetry, andits magnitude can be controlled by amplitude and frequency

K. Oh-Yonsei University

CLEO 2003, paper CThV6. OFC 2003, paper ThU5

Fiber optic acoustics Polarization Control

Change of polarization state by acoustic wave.(a) RF frequency swept from 1 to 358 kHz with the voltage fixed at 40 V, (b) RF lt t f 0 t 40 V ith th f fi d t 82 3 kH(b) RF voltage swept from 0 to 40 V with the frequency fixed at 82.3 kHz.

Chaos in SOP?

K. Oh-Yonsei University

Chaos in SOP?

Fiber optic acoustics Polarization Control

Polarization control by acoustic wave

• RF voltage was increased 5.6Vp-p per 1 minute.

• Frequency was swept 73 to 86kHz for 1 min.

• All of SOP can be obtainable by combining RF frequency & y g q yvoltage.

K. Oh-Yonsei University

Ultra-fast control < 20 micro second!!

Page 15: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Fiber optic acoustics Variable DGD

8

RF frequency

567

m [p

s]

RF frequency 78kHz 80kHz 83kHz

@76kH

234

@1.

55 84kHz @76kHz

012

DG

D @

0 10 20 30 40 50 60-1

RF voltage [Vp-p]

Total HOF length : 67cm DGD dynamic range >30dB

K. Oh-Yonsei University

DGD dynamic range >30dB

Universal Optical Fiber Cage Concept

SMFSMF HOF

순대 광섬유

Filling MaterialGas, Liquid, Solid, Colloid, Emulsion

Fiberized Nonlinear DeviceRaman Cell, Brillouin Cell,

Saturable Absorber, Dye Laser, Switching Device

K. Oh-Yonsei University

Switching Device……….

Liquid Crystals filled HOF

Liquid crystals- Liquid crystal phases: smectic, nematic, and cholestericLiquid crystal phases: smectic, nematic, and cholesteric - Nematic LC: uniaxial dipole moment dynamic director alignment along the applied electric fieldSwitching time: ~msec- Switching time: ~msec

Twisted nematic LC in liquid crystal displays (LCD’s)

A li bl tApplicable tofiber-optic devices?

V = 0V (off) V = 5V (on)

K. Oh-Yonsei University

VLC = 0V (off) VLC = 5V (on)

Liquid Crystals filled HOF

On

Comb electrode- Periodically patterned electrode with openings

+V

Director Alignment

-V

z

Electrically controllable director alignment- Periodical modulation of director alignment- Controllable long-period gratings

LC Fiber Gratings with a Comb Electrode

K. Oh-Yonsei University

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. S. Choi, K. Oh, “Electrically controllable long period liquid crystal fiber gratings,” IEEE Photonics Technology Letters, Vol. 12, No. 5, pp. 519-521, May 2000.

Page 16: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Liquid Crystals filled HOF

Experiments Simulations

-4

-6

-8

(invertTransm

iss-4

-6

-8

(invertTransm

iss -4

-6

-8

(invertTransm

iss-4

-6

-8

(invertTransm

iss

2502

0

-2

[V]

ted)sion [dB

]

2502

0

-2

[V]

ted)sion [dB

]

52

0

-2

g]

ted)sion [dB

]

52

0

-2

g]

ted)sion [dB

]

1500 1520 1540 1560 1580 1600

200150

10050

W l h [ ]Applie

d Voltage [V

1500 1520 1540 1560 1580 1600

200150

10050

W l h [ ]Applie

d Voltage [V

1500 1520 1540 1560 1580 1600

43

21

W l th [ ]

Angle [deg]

W l th [ ]1500 1520 1540 1560 1580 1600

43

21

W l th [ ]

Angle [deg]

W l th [ ]Wavelength [nm]Wavelength [nm]Wavelength [nm]Wavelength [nm] Wavelength [nm]Wavelength [nm]Wavelength [nm]Wavelength [nm]

• Comb electrode for polarization control

Young-Hoon Oh, Min-Suk Kwon, Sang-Yung Shin, S. Choi, K. Oh, “ In-line polarization controller that uses a hollow optical fiber filled with a liquid crystal,” O ti L tt V l 29 I 22 2605 2607 N b 2004

K. Oh-Yonsei University

Optics Letters, Vol. 29 Issue 22 pp. 2605-2607, November 2004

Conclusions for HOFConclusions for HOF

We have developed a unique air-silica fiber structure that provides,

- the highest compatibility to conventional SMFs among Holey ones

- versatile functionalities to manipulate higher order modes

enhanced acoustic coupling for polarization control- enhanced acoustic coupling for polarization control

- ample capacity to encapsulate non-linear material in fiber cage

- flexible design to enhance rare-earth doped active fiber devices

- a new type of probe for fiber optic sensors- a new type of probe for fiber optic sensors….

K. Oh-Yonsei University

One Hole, One Ring do pay

ContentsContents

• Historical perspectives

• Structured cladding optical fibers for photonic devices

• Hollow optical fibers, a universal compact fiber cage

• MOW on MAP, a mechanical optical nerve

• Fiber Optic Sciences for optical manipulation

K. Oh-Yonsei University

Introduction

Current MEMS DEVICE for Optical CommunicationCurrent MEMS DEVICE for Optical CommunicationCurrent MEMS DEVICE for Optical CommunicationCurrent MEMS DEVICE for Optical Communication

Fundamentally freeFundamentally free space beam steering mechanismspace beam steering mechanismFundamentally freeFundamentally free--space beam steering mechanism space beam steering mechanism using micro mirror arraysusing micro mirror arrays

Requires auxiliary components for wavelength selectivity!!Requires auxiliary components for wavelength selectivity!!Requires auxiliary components for wavelength selectivity!!Requires auxiliary components for wavelength selectivity!!

Port to port switch + Wavelength selectivity

K. Oh-Yonsei University

Port to port switch + Wavelength selectivity

Page 17: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Introduction

MOW on MAP structure Using fused taper coupler

Longitudinal StrainLongitudinal Strain

g

Endow new degrees of freedomEndow new degrees of freedomSpectral SelectivitySpectral Selectivity

MAPMAP

Spectral SelectivitySpectral SelectivityPower SelectivityPower Selectivity

Polarization SelectivityPolarization SelectivityMAPMAP

Torsional StressTorsional Stress Multi Functional Multi Functional ReRe--configurable configurable

K. Oh-Yonsei University

Photonic DevicePhotonic Device

Main Goals of Research

Introduction

Main Goals of Research

Fully exploit the degrees of freedom, and potentials,combine established features

Develop reliable and versatile tuning mechanisms,Generate new

Micro Optical Waveguide on Micro Actuating PlatformMicro Optical Waveguide on Micro Actuating PlatformMOW on MAP

To provide flexible, re-configurable, all fiber solutions

K. Oh, W. Shin, Y. S. Jeong, Jhang W. Lee, “Development of micro-optical waveguide on micro-actuating platform technologies for reconfigurable optical networking,” IEEE/OSA Journal of Lightwave

K. Oh-Yonsei University

reconfigurable optical networking, IEEE/OSA Journal of Lightwave Technologies, Invited Paper, vol. 23, no.2, pp. 533-532, Feb. 2005

Introduction

MOW on MEMS?

I t P tI t P t Initial StateInitial StateAfter PullingAfter PullingInitial StateInitial StateAfter RotatingAfter Rotating

MOW on MEMS?

Input PortInput Port

Fused Region

1+2gg

Input PortInput Port

Fused Region

1+2Input PortInput Port

Fused Region

1+2

t a Statet a StateAfter RotatingAfter RotatingInput PortInput Port

Fused Region

1+2

Port 1Port 1Port 1Port 1Port 1Port 1Port 1Port 1

Port 2Port 2MEMS PlatformMEMS Platform

Port 2Port 2 MEMS PlatformMEMS Platform

2

Port 2Port 2 MEMS PlatformMEMS Platform

1

Port 2Port 2 MEMS PlatformMEMS Platform

2

22

Axial stress typeAxial stress typeTorsional stress typeTorsional stress type

K. Oh-Yonsei University

Axial stress typeAxial stress typeTorsional stress typeTorsional stress type

Introduction

Geometrical structure of

Fused Taper Couplersl/2 l/2lb

P0 P1

Fused Taper Couplers

b(z)

P0 P1

P2

z0

P2

l/2 l/2+lb l+lb

d

)2()(2 WKzU

nclb0 a0

d0

d(z)

b(z) a(z)

)()2()()( 2

13

0

WKbVWKzUzC

n1b(z) ( )

2)/(1 aircladding nnfew m

to few tens of m

K. Oh-Yonsei University

Page 18: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Operation PrinciplesOperation Principles

IndexIndex IndexIndex

WaveguideWaveguideDeformationDeformation

Pulling ProcessPulling ProcessPulling ProcessPulling Process

WaveguideWaveguideDeformationDeformation

R t ti PR t ti PR t ti PR t ti PPulling ProcessPulling ProcessPulling ProcessPulling Process Rotating ProcessRotating ProcessRotating ProcessRotating Process

Mechanical perturbationover MOW

Photoelastic Effect

Stress-strain Effect

Index Change

Dimension Changeg

Coupling constant of MOW can be tuned

K. Oh-Yonsei University

By mechanical perturbation by MAP

InterInter--band Routerband Router

Band 2Band 2Band 1Band 1Before rotatingBefore rotatingAfter rotatingAfter rotating Band 2Band 2Band 1Band 1

Band 1Band 1Band 2Band 2

InputInput

Band 1Band 1 Band 2Band 2

P t 1P t 1

InputInput

Band 1Band 1 Band 2Band 2

Port 1Port 1

Port 2Port 2

Fused RegionFused Region

Band 1Band 1B d 2B d 2

Port 1Port 1

Port 2Port 2

Fused RegionFused Region

Inter Band Inter Band Band 1Band 1 Band 2Band 2Band 2Band 2 Routing !!Routing !!

Fused RegionFused Region

Setup 사진

K. Oh-Yonsei University

Spectral response

InterInter--band Routerband Router

Spectral response

-5

0

n [d

B]

Switching Characteristic

-15

-10

ansm

issio

n

• Source : white light source• Insertion loss : <~0.15dB

-25

-20

Opt

ical

Tra • Channel X-talk : <~20dB

• Twist angle : 0~690 degree• Switching angle: ~660 degree

1250 1300 1350 1400 1450 1500 1550 1600 1650-30

O

W avelength [nm ]

g g g

W. Shin, S. W. Han, C. S. Park, and K. Oh, “All fiber optical inter-band router for broadband wavelength division multiplexing ” Optics Express vol 12 no 9 pp 1818 1822 May 03 2004

K. Oh-Yonsei University

wavelength division multiplexing, Optics Express, vol.12, no.9, pp.1818-1822, May 03, 2004.

Optical InterOptical Inter--band Routerband Router

O/C inter-band router

Shift of transmission Shift of transmission spectra under torsion stressspectra under torsion stress

Transmission spectra of output port before and after routing.

K. Oh-Yonsei University

Page 19: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Optical InterOptical Inter--band Routerband Router

E/L inter-band router

Shift of transmission Shift of transmission spectra under torsion stressspectra under torsion stress

Transmission spectra of output port before and after routing.

K. Oh-Yonsei University

Optical InterOptical Inter--band Routerband Router

1550

1575

1600 Center wavelength variation

Linear Fitting

Maxim) -10

-5

0

Center wavlength isolation variation

E/L inter-band router

1500

1550

Maxim

u

)

Center wavelength variation

Linear Fitting-10

-5

0

Center wavelength isolation variation

O/C inter-band router

1475

1500

1525

1550angle=0.249nm/ o

mum

Isolatielen

gth

(nm

)

-25

-20

-15

10

1400

1450

1500/= 0.448 nm/ o

m Isolationle

ngth

(nm

)

-25

-20

-15

10

0 100 200 300 400 500 600 700

1400

1425

1450

ion (dB)W

ave

-40

-35

-30

0 100 200 300 400 500 6001250

1300

1350

n (dB)

Wav

el

-40

-35

-30

0 100 200 300 400 500 600 700

Rotation Angle (degree)

Switching Characteristic

0 100 200 300 400 500 600Rotation angle (degree)

Switching Characteristic

Insertion loss : <~0.16dB• Channel X talk : <~23dB

g(E/L band router)

•Insertion loss : <~0.16dB• Channel X talk : < 23dB

g(O/C band router)

• Channel X-talk : <~23dB• Twist angle : 0~760 degree• Switching angle: ~760 degree

• Channel X-talk : <~23dB• Twist angle : 0~600 degree• Switching angle: ~560 degree

K. Oh-Yonsei University

W. Shin, S. W. Han, C. S. Park, and K. Oh, “All fiber optical inter-band router for broadband wavelength division multiplexing,” Optics Express, vol.12, no.9, pp.1818-1822, May 03, 2004.

Optical InterOptical Inter--band Routerband Router

Bit Error Rate(BER) Test in 10 Gbps Transmission SpeedBit Error Rate(BER) Test in 10 Gbps Transmission Speed

1

10-5

10-3

10-1

e(BE

R)

10Gb signal at 1550nm port Befor switching After switching

11

10-9

10-7

t Err

or R

ate

-22 -21 -20 -19 -18 -17 -1610-13

10-11

Bit

Reciever Power[dBm]

K. Oh-Yonsei University

Reciever Power[dBm]Eye Diagram at ReceiverEye Diagram at Receiver BER performance of InterBER performance of Inter--band Routerband Router

ReRe--configurable Optical Switchconfigurable Optical Switch

0.5

0.5

Before SwitchingBefore Switching After SwitchingAfter Switching

0.5

0.5

0.5

0.5

Off0.5

Fused RegionFused Region

Fused RegionFused Region

Fused RegionFused Region

Fused RegionFused Region

0.5

Fused RegionFused Region

F d R iF d R i

Fused RegionFused Region

Switch ON!Switch ON!

0.5

0.5

0.5

0.5

On

Fused RegionFused RegionPort 1Port 1

Port 2Port 2Port 3Port 3

Port 4Port 4

Fused RegionFused RegionPort 1Port 1

Port 2Port 2Port 3Port 3

Port 4Port 4Spectral Routing Function!!

0.5 0.5

1X4 CWDM SWITCH

1X4 CWDM SWITCH

F d R iF d R i

•• Signal wavelength : 1510/1530/1550/1570nmSignal wavelength : 1510/1530/1550/1570nm•• Channel Isolation : >23dBChannel Isolation : >23dB•• Insertion Loss : < 0 5dBInsertion Loss : < 0 5dB

•• Signal wavelength : 1510/1530/1550/1570nmSignal wavelength : 1510/1530/1550/1570nm•• Channel Isolation : >23dBChannel Isolation : >23dB•• Insertion Loss : < 0 5dBInsertion Loss : < 0 5dB

실물 사진Setup 사진

Fused RegionFused Region

K. Oh-Yonsei University

•• Insertion Loss : < 0.5dBInsertion Loss : < 0.5dB•• Switching displacement : <~200mm Switching displacement : <~200mm •• Insertion Loss : < 0.5dBInsertion Loss : < 0.5dB•• Switching displacement : <~200mm Switching displacement : <~200mm

Page 20: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

ReRe--configurable Optical Switchconfigurable Optical Switch

1510nm port

20-15-10

-50

ssio

n [d

B] Before Switching After Switching

15-10

-50

1530nm port

ion

[dB]

Before Switching After Switching

1.01

al

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590

-30-25-20

Tran

smis

Wavelength [nm]1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590

-30-25-20-15

Tran

smiss

i

Wavelength [nm]

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 15900.00.20.40.60.8

42

1

Nor

mal

ized

Sig

naPo

wer

Wavelength [nm]

Befor Switching After Switching

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 15900.00.20.40.60.81.0

3

2

1

Nor

mal

ized

Sig

nal

Pow

er

Before Switching After Switching

Wavelength [nm] 1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590N

Wavelength [nm]

0

1550nm port

B]

Before Switching After Switching

-50

1570nm port

[dB]

Before Switching After Switching

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590-30-25-20-15-10

-5

Tran

smiss

ion

[dB

W l th [ ]

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 1590

-30-25-20-15-10

-5

Tran

smiss

ion

Wavelength [nm]

0.20.40.60.81.0

4

3

2

mal

ized

Sig

nal

Pow

er

Before Switching After Switching

Wavelength [nm]

0 00.20.40.60.81.0

4

31

rmal

ized

Sig

nal

Pow

er

Before Switching After Switching

Wavelength [nm]

K. Oh-Yonsei University

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 15900.0

Nor

m

Wavelength [nm]

1490 1500 1510 1520 1530 1540 1550 1560 1570 1580 15900.0

Nor

Wavelength [nm]

ReRe--configurable Optical Switchconfigurable Optical Switch

K. Oh-Yonsei University

ReRe--configurable Optical Switchconfigurable Optical Switch

K. Oh-Yonsei University

W. Shin, and K. Oh, Optics Express, vol.16, no.11, pp.2499-2501, Nov., 2004.

Variable optical attenuator

Longitudinal compressionLongitudinal compression

throughput port

it t

(b)(a) (c)

monitor port

28m

44m 42m

32m

44

44m

K. Oh-Yonsei University

44m

Page 21: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Variable optical attenuator

Cascaded MOW on MAP

0.5dB over 100nmupto 20dB

K. Oh-Yonsei University

Conclusions for MOW on MAP

New degrees of freedom obtained in MOW on MAP

- throughput optical power- optical spectrum- spatial port to port transition

for flexible and versatile re-configurablity

by electro-mechanical perturbation over

the micron scale coupling zone of optical waveguide coupler

K. Oh-Yonsei University

ContentsContents

• Historical perspectives

• Structured cladding optical fibers for photonic devices

• Hollow optical fibers, a universal compact fiber cage

• MOW on MAP, a mechanical optical nerve

• Fiber Optic Sciences for optical manipulation

K. Oh-Yonsei University

B k t B iBack to Basics

• Light generation and light controlLight generation and light control

• Light-matter interaction

• Light-human interaction• Light-human interaction

K. Oh-Yonsei University

Page 22: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Light generation and light control

Clad pumped fiber laser

K. Oh-Yonsei University

Light generation and light control

Over 1kW CW Yb doped silica fiber lasersFSU and U. Southampton, 2004FSU and U. Southampton, 2004

Crystal fiber, SPI

K. Oh-Yonsei University

Light generation and light control

High power Q switching is not yet available

MOW-on-MAP Modulator

High power Q switching is not yet available

0

0

Before Mounting MOW on MAP After Mounting MOW on MAP

-10

-5

dB)

10

-5

(dB)

25

-20

-15

ansm

issio

n (d

Axial Displacement

-15

-10

rans

miss

ion

A li d V l

9 0 1000 10 0 1100 11 0 1200 12 0 1300 13 0-35

-30

-25

Tra 0m

5m 10m 15m -25

-20Tr Applied Voltage 0V 23.5V

950 1000 1050 1100 1150 1200 1250 1300 1350

Wavelength (nm)950 1000 1050 1100 1150 1200 1250 1300 1350

Wavelength (nm)

K. Oh-Yonsei University

Light generation and light control

M d l ti d th

6

7

10Hz

1

6

7

100Hz

1

Modulation depth

3

4

5

dula

ted

Out

put 1

3

4

5

dula

ted

Out

put 1

0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8

0

1

2

Mod

0

0 00 0 02 0 04 0 06 0 08 0 10

0

1

2

Mod

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (sec)0.00 0.02 0.04 0.06 0.08 0.10

Time (sec)

7

7

18.6kHz

3

4

5

6

ulat

ed O

utpu

t

2.62kHz

1

3

4

5

6

ted

Out

put 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

Mod

u

Time (ms)

0

0

1

2

3

Mod

ulat

0

K. Oh-Yonsei University

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0

Time (ms)

0

Page 23: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Light generation and light control

RF Spectrum Response

80

90

100%

] "Data Trace Real"

60

70

80

Dep

th [%

Comparable to relaxation oscillation time of

Yb+3 i i SiO

30

40

50

dula

tion

D Yb+3 ions in SiO2

0

10

20Mod

0 5 10 15 20 25 30 35 40 45 50

0

Repetition Rate [kHz]

K. Oh-Yonsei University

Light generation and light control

K. Oh-Yonsei University

Light generation and light control

Q-Switched Laser Output

Repetition Rate = 18.6kHz Pump Power: 4.1WSignal Average Power: 10mW

er O

utpu

t

ser O

utpu

t Repetition Rate: 18.6kHzPulse Width: 2.8microsecond

Lase La

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Time [ms]

-15 -10 -5 0 5 10 15

Time [microsecond]

The first reliable all-fiber laser Q-switching,GIST d FSU

K. Oh-Yonsei University

GIST and FSU

Photonic crystal fiber research boom

Light generation and light control

Photonic crystal fiber research boom

University of Bath, University of Southampton,Technical University of Denmark IPHT Crystal Fiber

K. Oh-Yonsei University

Technical University of Denmark, IPHT, Crystal Fiber

Page 24: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Light generation and light control

K. Oh-Yonsei University

Light generation and light control

K. Oh-Yonsei University

Light generation and light control

Air-Glass PCF and BGF have provided

Ne aspects of fiber design• New aspects of fiber design• New waveguide parameters for

- chromatic dispersionchromatic dispersion- mode field distribution- polarization- nonlinearity

• New applications insuper continuum generation- super continuum generation

- high power delivery- high power fiber lasershigh power fiber lasers- novel fiber sensors

Is there any new avenue in PCF/BGF?

K. Oh-Yonsei University

Is there any new avenue in PCF/BGF?

Light generation and light control

Crystal Lattice, and Defects

New type of defect and super lattice in PCFNew type of defect and super lattice in PCF

We can add new degrees offreedom in defect design!!freedom in defect design!!

K. Oh-Yonsei University

Annulus mode similar to HOF!!

Page 25: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Light generation and light control

Super lattice PCFGe-SiO2 lattice vs

P2O5-F-SiO2 latticedue to viscosity mismatchy

Totally differentadiabatic mode conversion

The first annulus mode in PCF

adiabatic mode conversion

The first annulus mode in PCFthat can separate nonlinearityand other optical properties

GIST and IPHT

K. Oh-Yonsei University

Light generation and light control

A li ti f i d f t i PM PCFApplications of ring defect in PM-PCF

Wringx

Diny

Wring

Wringy

Dcy

Din

nGdoped

D

Dcx nsilica

Dix

K. Oh-Yonsei University

Dx nair

Din

Light generation and light control

1.424

1.428

HE11y

HE xBirefringent6.6

Wring/ 0.85 1.0 1.5 1.8 2.0

1.420

HE11

cladding mode

Single mode 6.2

6.4

n x-ny|)

1.412

1.416

n eff

Single polarization

5 8

6.0

ngen

ce (|

n

1.4085.6

5.8

dal B

irefr

in

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 81.400

1.404SPSM cutoff=1.42m

5 2

5.4Mod

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Wavelength [m]1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45

5.2

Wavelength [m]

U if hi h bi f i 5 6 10 3 300

K. Oh-Yonsei University

Uniform high birefringence, 5-6x10-3 over 300nm

= Dy /Dx = Dcy / Dcx = Wring_y / Wring_x

Dcy

Dy

Dx

Dy

Dcx

Dxx

yWring_y Dy

(b)x

(c)x

Wring_x

nGe-doped

D

Dcy

D

Dcx

Wring_x

Wring_y

Wring x

Wring_y

Dx

nair

nsilica

(a)Dy

Dx

Dy

Dx

g_

(d) (e)

K. Oh-Yonsei University

Page 26: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Asymmetry in Field distribution-Main attributes to high birefringence

4 4

Y

1

2

3

Y 0

1

2

3

Y

3-

2-

1-

0 Y

3-

2-

1-

0

X5- 4- 3- 2- 1- 0 1 2 3 4 5

4-

3

X5- 4- 3- 2- 1- 0 1 2 3 4 5

4-

K. Oh-Yonsei University

X

HE y HE x W 0 D 0 [Fi 1 ( )]

HE y HE x : W = 0 D = 0 2 [Fig 1 (b)]

1.424

1.428 HE11

y HE11 Wring=0, Dc=0 [Fig.1-(a)]

HE11y HE11

x Wring=2, Dc=0 [Fig.1-(c)]

1.424

1.428 HE11 HE11 : Wring = 0, Dc = 0.2 [Fig.1-(b)]

HE11y HE11

x : Wring = 2, Dc = 0.2 [Fig.1-(d)]

1 416

1.420

ve in

dex

1.416

1.420

ive

inde

x

1.412

1.416

Effe

ctiv

n

1.412Effe

cti

nclad

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.408

Wavelength [m]

ncladCutoff wavelength of SPSM=1.7m

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.408

Wavelength[m]

cladCutoff wavelength of SPSM=1.42m

g [ ] g [ ]

K. Oh-Yonsei University

Uniform Birefringence

10-3

Uniform Birefringenceover a wide spectral range

6

7 x 10 3

5

3

4

n =

|nx-n

y|

2

Wring = 0, Dc= 0 Wring = 2, Dc= 0 Wring = 0, Dc= 0.2

1.05 1.20 1.35 1.50 1.65

1

cutoff_3cutoff_2W l th [ ]

Wring = 2, Dc= 0.2

cutoff_1

K. Oh-Yonsei University

Wavelength [m]

Flat negative dispersionFlat negative dispersionin S,C, and L bands

4

-4

0

m.n

m)]

-12

-8

ion

[ps/

(km

-20

-16

Dis

pers

i

Wring = 0, Dc = 0 Wring = , Dc =0 Wring = 0, Dc = 0.2

1.32 1.44 1.56 1.68 1.80-24

cutoff_3cutoff_2

l h [ ]

Wring =, Dc = 0.2

cutoff_1

K. Oh-Yonsei University

Wavelength [m]

Page 27: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Light-matter interaction

Optical tweezer

A. Ashkin, J.M. Dziedzic, et al., Opt. Lett. 11, 288 (1986).

K. Oh-Yonsei University

Current issues in optical trapping

1 Multiple traps in transverse dimension1. Multiple traps in transverse dimension

K. Oh-Yonsei University

Current issues in optical trapping

2 N l b h i2. Novel beam shaping

1) Laguerre-Gaussian beam

Transfer the angular momentum oflight to a trapped particle to make itlight to a trapped particle to make itrotate.

Double helix

K. Oh-Yonsei University

K. Dholakia et al., Physics World, 2002

Current issues in optical trapping

2 N l b h i2. Novel beam shaping

2) Bessel beam : non(?) diffracting beam

MacDonald et al. 2002 Creation and manipulation of three-pdimensional optically trapped structures Science 296 1101–1103

Longitudinal expansion of optical trapping

K. Oh-Yonsei University

Longitudinal expansion of optical trapping

Page 28: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

HOF for novel beam shaping

Mode field evolution of HOF

near

near field

field

far field far

fieldfield

K. Oh-Yonsei University

B h t i ti b f th t il d!!

HOF for novel beam shaping

Beam characteristics can be further tailored!!

K. Oh-Yonsei University

Nano phase front inscription on fiber end

OH CH3 OHAmorphous Azo Polymer

Surface Relief Grating (SRG) on Azo Polymer Films

H2C CH

H2C O

CH3

OH2C CH

H2C N

n

Amorphous Azo PolymerPDO3

NN

N

NODirect and one step process NO2p p

Capability to superimpose multiple patternsFlexible control of modulation period

Advantages

K. Oh-Yonsei University

Nano/Micro phase front inscription on fiber end

Mirror Ar ion Laser

Collimating /2 waveplate Lens

FibMirror

Mirror

Polarizer Spatial filter

Fiber Holder

Bragg’s equation : =/(2sin)

: Grating period

Optical Fiber

g p : Wavelength of input beam

K. Oh-Yonsei University

S. Choi, K. Oh, et al., CLEO/QELS’03, Paper CTuL3, Baltimore, USA, 2003.

Page 29: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Nano/Micro phase front inscription on fiber end

One dimensional SRGOne dimensional SRG Two dimensional SRGTwo dimensional SRG

Fiber Core Fiber Core

S Ch i K Oh t l A l Ph L tt 15(7) 1080 1082 2003

K. Oh-Yonsei University

S. Choi, K. Oh et al., Appl. Phys. Lett., 15(7), pp. 1080-1082, 2003.

Nano/Micro phase front inscription on fiber end

Diffraction beam patternsDiffraction beam patterns

1-D SRG 2-D SRG

S Choi K Oh et al Appl Phys Lett 15(7) pp 1080 1082 2003

K. Oh-Yonsei University

S. Choi, K. Oh et al., Appl. Phys. Lett., 15(7), pp. 1080-1082, 2003.

Nano/Micro phase front inscription on fiber end

C i ib t i i tt fib d?

SMF28 125µm fiber Coreless silica fiber

Can we inscribe concentric ring pattern on fiber end?

460µm(a)

790µm(b)

1100µm(c)

Mirror Ar ion Laser

L

MirrorSMF CSF Sample fiber

Azo polymer MasklessNano-lithography

K. Oh-Yonsei University

Lens

Nano/Micro phase front inscription on fiber end

Near FieldFar FieldNear FieldFar Field

Circular phase front enabled Bessel beam like propagation

K. Oh-Yonsei University

Circular phase front enabled Bessel beam like propagation

Page 30: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Nano/Micro phase front inscription on fiber end

Hybrid micro fiber lens

Lens-tip

Coreless silica fiber (CSF)

Lens-tipLens-tip

Single mode fiber (SMF)

Coreless silica fiber (CSF)

Single mode fiber (SMF)Single mode fiber (SMF)

Coreless silica fiber (CSF)

J. Kim, K. Oh, et al, Photon. Tech. Lett. vol. 16, pp.2499-2501, 2004 K.R. Kim, K. Oh, et al, Photon. Tech. Lett., vol. 15, pp.110-1102, 2003

K. Oh-Yonsei University

K. R. Kim and K. Oh, Applied Optics, vo. 42. pp.6261-6266, 2003

Nano/Micro phase front inscription on fiber end

MicroscopeMicroscope

CCD Camera

Video output

Computer Video input

K. Oh-Yonsei University

Fabricated fiber lenses

Nano/Micro phase front inscription on fiber end

Fabricated fiber lenses

6464㎛㎛ 9595㎛㎛7070㎛㎛

Single mode fiber Coreless silica fiber Lens

175175㎛㎛120120㎛㎛ 350350㎛㎛

J. Kim, K. Oh, et al, Photon. Tech. Lett. vol. 16, pp.2499-2501, 2004 K.R. Kim, K. Oh, et al, Photon. Tech. Lett., vol. 15, pp.110-1102, 2003

K. Oh-Yonsei University

K. R. Kim and K. Oh, Applied Optics, vo. 42. pp.6261-6266, 2003

Fiberized optical trap

Singer et al, JOSA, 2003S. D. Collins et al,Appl. Opt. 1999

R. S. Taylor et al., Optics Express 2004Z. Hu et.al,

Optics Express20042004

K. Oh-Yonsei University

Page 31: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Future research area

What can we do with our leverages and core competences?

SMF/MMFSMF/MMF

all-fiber laser, amplifier,filter, switch, modulator+

HOF

, ,

along with Photonic crystal fiber

+Photonic crystal fiber

K. Oh-Yonsei University

Future research area

Switched fiber fabrics for 3-D optical traps

FluorescenceDetection

K. Oh-Yonsei University

Future research area

Optical ether and matter interaction

O i l f i l h h h ll i l idOptical transport of particle through hollow optical waveguide

Guided photon and meso-scopic matter interactionp p

Optical levitation, optical trapping, and microfluidics

K. Oh-Yonsei University

Conclusions

• New degrees of freedom in fiber cladding structures have been proposedalong with novel hybrid functionalities

• Hollow ring core structures and their adiabatic mode transformation have been applied to versatile photonic devices

• MOW on MAP has been proposed for flexible and reconfigurable photon manipulation

• A new avenue of defect, and lattice structure in PCF/PBF has been explored

• Nano/micro phase front formation on fiber end has been successfully developed

• Novel fiber optic beam forming techniques have been attempted for optical trapping applications

K. Oh-Yonsei University

p pp g pp

Page 32: Contents Fiber and Waveguide Optics for Optical Manipulationfor Optical …qmmrc.net/winter-school-2009/k.oh.pdf · 2019. 4. 24. · Fiber and Waveguide Optics for Optical Manipulationfor

Conclusions

Where are e no ?Log(Resource Log(Resource InputInputxxOutputOutput))

Where are we now?

I dI d

T h lT h l

IndustryIndustry

TechnologyTechnology

IndustryIndustry

ScienceScience

TechnologyTechnologyScienceScience

TechnologyTechnology

TimeTimeAmple opportunities for the transition period

of new coming era of photonics,

K. Oh-Yonsei University

of new coming era of photonics,from IT backbone to frontier enabler for future science