consys-04.pdf

download consys-04.pdf

of 38

Transcript of consys-04.pdf

  • 8/18/2019 consys-04.pdf

    1/38

    1

    Chapter 5

    Time Response

    Analysis

    Test signals• Impulse

    • Step

    • Ramp

    Test signals

    • Sinusoidal.

    (frequency response)

    Laplace Transforms

    step u-1 (t) 1/s

    Ramp t u-1 (t) 1/s2

    Impulse δδδδ (t) 1

  • 8/18/2019 consys-04.pdf

    2/38

    2

    Order of a

    system is ???

    Order of a

    system is order

    of the differentialequation

    zeroth order system :

    C(s) / R(s) = K

    a constant

    (algebraic equation)

    dc tachogenerator

    Examples of zeroth

    order systems :

    Potentiometer

    dc amplifier

  • 8/18/2019 consys-04.pdf

    3/38

    3

    First order systems:

    C(s) / R(s) = K / (s + a)

    Open loop

    1000 / ( 100 + 200 s )

    = 10 / ( 1 + 2 s )

    Closed loop

    1000 / ( 200 + 200 s )

    = 5 / ( 1 + s )

    open loop

    vt (s) = (vr (s) )(10 / ( 1+2 s ))

    = (25 / s )( 10 / (1 + 2 s)

    Vt (∞∞∞∞) = 250 Vclosed loop

    vt(s) = ( 25 / s)( 5 / ( 1+s ))

    Vt (∞∞∞∞) = 125 V.0

    50

    100

    150

    200

    250

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    x1

    x2

  • 8/18/2019 consys-04.pdf

    4/38

    4

    K : steady state value of the

    function

    : time constant

    smaller, faster response.

    In general K ( 1- e - t / )τ

    ττ

    Ramp response

    of first order

    systems

    Ramp Response

    r (t) = t u-1

    (t)

    R (s) = 1 / s21=KLet

    s1R(s)

    C(s)

    +

    =

  • 8/18/2019 consys-04.pdf

    5/38

    5

    R G C

    s

    s R

    ssG

    2

    1)(

    1

    1)(

    =

    +

    =

    τ   

    )s1(s1)

    2 τ +=c(s

     

     

     

     

    +−−= τ 

    τ 

    τ   s1s1

    s

    12

    )e1(-t=c(t)-t/ τ 

    τ    −0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    0 0.

    5

    1 1.

    5

    2 2.

    5

    3 3.

    5

    4 4.

    5

    5 5.

    5

    6 6.

    5

    7 7.

    5

    8 9 9

  • 8/18/2019 consys-04.pdf

    6/38

    c

    t

    ττττc

    t

    ττττ

    Second order

    systems 2nn 22

    n

     +s2s)s(R

    )s(C

    ω ζω 

    ω 

    +=

  • 8/18/2019 consys-04.pdf

    7/38

    For unit step input

     R (s ) =1

    s

    Applying final valuetheorem

    C(t) t →→→→ ∞∞∞∞  =1.0

    Second order

    example

    - position control.

    θr   θLKp KA

    +

    -

    +

    -

    KTRa

    1

    s(Js+B)

    sKb

  • 8/18/2019 consys-04.pdf

    8/38

    Taking

    KP = 0.1 V / rad

    KA = 10 V / V

    KT = Kb = 0.5 Nm/A

    or

    V/rad/sec.

    B = 0.5 Nm / rad / sec

    J = 1 Kg m2

     1+ss

    1

    )s(

    )s(2

    r

    L

    +=θ 

    θ    ∴∴∴∴ ωωωωn = 1 rad / sec.

    ζζζζ = 0. 5

  • 8/18/2019 consys-04.pdf

    9/38

    9

    s2 + s + 1 =

    (((( ))))   (((( ))))s + 0.5 2 3 22

    ++++××××

    ××××  j 3 2

    - j 3 2

    - 0.5

    In general

    ( )   (   )222 1+s   ζ ω ζω    −+=   nn

    s2 + 2 ζζζζ ωωωωn s + ωωωωn2

    2

    n

    n1,2

    1 j

    s

    ζ ω 

    ζ 

    ±−=∴

  • 8/18/2019 consys-04.pdf

    10/38

    10

    = - ζζζζ  ωωωωn  ±±±±  j ωωωωd ωd = ωn √1 - ζ2

    ωωωωd damped frequencyζζζζ  →→→→  damping factorωωωω n →→→→   undamped

    natural frequency

    For 0 < ζζζζ  < 1roots of s are

    complex conjugate

    roots are

    repeating at

    s = - ωωωωn

    For ζζζζ  = 1 For ζζζζ > 1

    roots are real

  • 8/18/2019 consys-04.pdf

    11/38

    11

    ζ = 0 : undamped0 

  • 8/18/2019 consys-04.pdf

    12/38

    12

    22

    1

    ns

    s

    s   ω +

    −=ζζζζ = 0

    c ( t ) = 1 - cos ωωωωnt

    (pure oscillation)

     :10  

  • 8/18/2019 consys-04.pdf

    13/38

    13

    1= -

    s

    s + ζ ωns2 + 2ζ ωns +ωn2

    ζ ωns2 + 2ζ ωns +ωn2

    we know

    at cosas

    s

    )t(us

    1

    22

    1-

    +

    atsin22 →+ as

    a

    atsinea+)b+s(

    a

    atcosea+)b+s(

    b+s

    bt-

    22

    -bt

    22

  • 8/18/2019 consys-04.pdf

    14/38

    14

    22

    2

    )(

    )(

    22

    d n

    n

    nn

    n

    s

    s

    ss

    s

    ω ζω ζω 

    ω ζω 

    ζ  

    ++

    +

    =

    ++

    +

    t e d t n ω ζω  cos−→

    22

    22

    )(.

    2

    d n

    n

    n

    n

    s

    ss  n

    ω ζω 

    ω 

    ω 

    ζω 

    ω ζω 

    ζ  

    ++

    =

    ++

     tsine. dt-

    d

    n n

    ω ω 

    ζω    ζω 

  • 8/18/2019 consys-04.pdf

    15/38

    15

    tsin e.

    1d

    t-

    2

    n ω 

    ζ 

    ζ    ζω  

    =

    Combine sine cos terms :

    1

    1

    1 2- ζζζζ

    ( )ζζζζ

    ζζζζ1 2-

    θθθθ

    1

    1 2- ζζζζωωωω θθθθ  sin ( t +d   ))))

    where cos θθθθ  = ζζζζ .)+t(sin

    1

     e -1

    = (t)c

    d2

    t- n

    θ ω ζ 

    ζω 

  • 8/18/2019 consys-04.pdf

    16/38

    16 

    C(t)

    1.0

    Time(t)

    1+e- ζωnt

    √ 1- ζ2

    1-e-ζωnt

    √ 1-ζ2

    Unit step response of 2nd order system for ζ

  • 8/18/2019 consys-04.pdf

    17/38

    17 

    C(t)

    1.0

    tp

    Mp

    tr

    Time

    Tolerance band

    Time response spceification

    Peak overshoot (Mp)

    dc

    dt

      ==== 0

    ⇒⇒⇒⇒ sin (ωωωωdt + θθθθ). cos θθθθ

    - cos (ωωωωdt + θθθθ).Sin θθθθ = 0

    ⇒ sin (ωωωωdt) = 0

    ωωωωdt = ππππ

  • 8/18/2019 consys-04.pdf

    18/38

    18 

    Time at peakovershoot ( tp )

    tp = π / ωd

    At t = tp ,

    )+(sin

    1

    1)(

    2

    .

    θ π 

    ζ 

    ζω 

    −=

    −  pn t 

     p

    et c

    21

    21.

    1

    ζ ζπ 

    ζ ω π ζω 

    −−

    =∴

    +=  −−

    e M 

    e

     p

    nn

    %.100

    21

    ×=

    −−   ζ ζπ 

    e

  • 8/18/2019 consys-04.pdf

    19/38

    19

    As damping factor

    increases …

    peak overshoot ??

    As damping factor

    increases …

    peak overshoot reduces

    ζζζζ Mp0 1000.1 730.2 53

    0.3 37

    0.4 25

    0.5 16

    ζζζζ Mp

    0.7 4.60.8 1.5

    0.9 0.02

    1.0 0

    0.6 9.5

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    ζ

  • 8/18/2019 consys-04.pdf

    20/38

    20

    Settling time (ts)Assume tolerance

    band   ±±±± 5 %0.05 = e- ζωnts

    n

    snn   t l

    ζω 

    ζ 

    3 =or t

    )05.0(

    s

    −=

    n

    s

    ise toleranc2%fort

    ζω 

  • 8/18/2019 consys-04.pdf

    21/38

    21

    Rise time (tr)

    )+t(sin

    1

     e -1=1= )(tc

    rd

    2

    t-

    r

    rn

    θ ω 

    ζ 

    ζω 

    or

    sin (ωωωωdtr + θθθθ) = 0ωωωω

    d

    tr

    + θθθθ = ππππ

    trd

    ====  −−−−ππππ θθθθ

    ωωωω

    or Steady stateerror for step

    input = 0

  • 8/18/2019 consys-04.pdf

    22/38

    22

    Steady state errorof a second order

    system with ramp

    input:

    1   ωn2= 1-

    s2 (s2 + 2ζ ωns + ωn2)

    E(s) = R(s) - C(s)

    2

    n

    2

    n

    2

    2 +s2s

    2.

    1

    n

    ss

    s   ω ζω 

    ζω 

    +

    +

    =

    nω 

    ζ  2=

    e(t) = Lt sE(s)t ∞ s 0

  • 8/18/2019 consys-04.pdf

    23/38

    23

    For ζζζζ  = 0.5 &  ωωωωn  = 1

      ess  = 1 unit

    Some more MATLAB

    commands .

    >> ng = [1 1]; dg =[1 2];

    >> printsys (ng,dg)

    num/den =

    >>>>>>>>++++

    ++++

    2S

    1S 

    >> z = roots(ng)

    z =

    -1

  • 8/18/2019 consys-04.pdf

    24/38

    24

    >> p = roots(dg)p =

    -2

    >>

    >>pzmap(ng,dg)

    >>title(‘pole-zero map’)

    >>[nt,dt] =

    cloop(ng,dg,-1)

    >>zc = roots(nt)

    zc =

    -1

    >>pc = roots(dt)

    pc = -1.5

    >>

  • 8/18/2019 consys-04.pdf

    25/38

    25

    >>ng = [1];

    dg = [1 1 1];

    >>p = roots(dg)

    p =

    -0.5 + j 0.866

    -0.5 - j 0.866

    >>t = [0:0.5:10];

    >>[y,x,t] = step(ng,dg,t);

    >>plot(t,y), grid

    >>xlabel(‘Time[sec]’)

    >>ylabel(‘output’)

  • 8/18/2019 consys-04.pdf

    26/38

  • 8/18/2019 consys-04.pdf

    27/38

    27 

    Let K = 100

      ωωωωn  = 10 rad / sec

      ζζζζ  = 0.05

    ∴∴∴∴ ====

    ××××−−−− −−−−

    M

    e

    p

    ζπζπζπζπ ζζζζ1 2

    100%

    = 85 %

    ess for ramp input

    = 2ζζζζ / ωωωωn= 0.1 / 10

    = 0.01

    While the steady state

    error is acceptable

    Mp is not. - Damping

    to be increased to say,

    0.5

  • 8/18/2019 consys-04.pdf

    28/38

    28 

    1

    0.52

    1 = 

    1=2Then

    n

    n

    =

    ×

    ∴ ω 

    ζ  ess increases to 1 - notacceptable. So we go for

    changing the configuration

    of the amplifier - derivative

    error compensation.

    R(s)+

    -

    E(s) C(s)G(s)

    Error coefficients We know

    C (s) = R (s) . G (s) / ( 1+G (s) )

    and

    E (s) G (s) = C (s)

    ( )(s)G+1(s)R = (s)E∴

  • 8/18/2019 consys-04.pdf

    29/38

    29

    (s)EsLt=

    )(eerrorstateSteady

    0s

    ss

    step input

    R (s) = 1 /s

    (constant position)

    )(1

    1

    .

    1

    0   sGss Lt e sss

    += →

    Let

    coeff.)error(position

    )(0

      ps

    K sG Lt    =→

    Then

     pss K e += 1

    1

  • 8/18/2019 consys-04.pdf

    30/38

    30

    Ramp input

    R (s) = 1/s2

    (Constant velocity)

    Steady state errorin position

    vs

    s

    K ssG Lt 

    sGss Lt 

    1

    )(

    1

    )(1

    1.

    1

    0

    20

    +=

    K v = velocity error coefficient

    parabolic input

    R (s) = 1/s3

    (constant acceleration)

    Steady state error

    in position

    as

    s

    K sGs Lt 

    sGss Lt 

    1)(

    1

    )(1

    11.

    20

    30

    ≅=

    +=

    Ka = acceleration error

    coefficient

  • 8/18/2019 consys-04.pdf

    31/38

    31

    systemtheof type

    )(....))((

    )(....))(()(

    21

    21

    ++

    ++=

    n

     ps pss

     zs zssG

    n

    Type ‘0’ system

     valuefinite

    1

    1e

     valuefinite)(

    ss

    0

    =

    +

    =∴

    ==→

     p

    s p

    sG Lt K 

    Type ‘0’ system

    ∞=∴

    ==→

    ss

    0

    e

    0)(ssG Lt K s

    v

    Type ‘0’ system

    ∞=∴

    ==→

    ss

    2

    0

    e

    0)(sGs Lt K s

    a

  • 8/18/2019 consys-04.pdf

    32/38

    32

    Type ‘1’ system

    0e

    )(

    ss

    0

    =∴

    ∞==→

    sGt  LK s

     p

    Type ‘1’ system

     finiteK 

     finite

    sGst  LK 

    v

    sv

    ==∴

    =

    =→

    1e

     

    )(

    ss

    0

    Type ‘1’ system

    ∞=∴

    ==→

    ss

    2

    0

    e

    0)(sGs Lt K 

    s

    a

    Type ‘2’ system

    0e

    )( 

    ss

    0

    =∴

    ∞==→

    sGt  LK s

     p

  • 8/18/2019 consys-04.pdf

    33/38

    33

    Type ‘2’ system

    0e

     (s)GstLK

    ss

    0sv

    =∴

    ∞==→

    Type ‘2’ system

     finiteK 

     finite

    a   ==∴

    ==→

    1e

     (s)GsLtK

    ss

    2

    0sa

    input

    Typet

    u t

    2

    12   −−−−  ( )

    1

    1 ++++ K p

    1

    K v

    aK 

    1

    0

    1

    2

    ∞   ∞

    0

    0 0

    u-1(t) tu-1(t)When feedback is non unity,

    )()(Lt

    )()(Lt

    )()(Lt

    2

    0s

    0s

    0s

    s H sGsK 

    s H sGsK 

    s H sGK 

    a

    v

     p

    =

    =

    =

  • 8/18/2019 consys-04.pdf

    34/38

    34

    R +

    -K

    1s(s+1)

    C

    Derivative error

    Compensation   θrθL

    θL

    Kp KA+-

    +

    -KT /Ra

    1s(Js+B)

    sKb

    with

    K = 100

    ωωωωn = 10 rad/secζ= 0.05Mp = 85% (not acceptable)

    .sec84%)2(   == nst    ζω 

    ess for ramp input(type ‘1’ system)

    = 0.01

  • 8/18/2019 consys-04.pdf

    35/38

    35

    Objective : increase the

    damping factor

    from 0.05 to 0.5.

    Change the amplifier

    transfer functionto K + s KD

    )1()(

    ++=∴sssK K sG   D

     D

     D

    K sK ss

    K sK 

    sG

    sG

     1)(

    )(

    2 +++

    +=

    +

    ωωωωn  = K  ( no change)  = 10 rad/sec

      2ζζζζ ωωωωn  = 1 + KD∴∴∴∴ for ζζζζ = 0.5,  KD  = 9

    ess for ramp inputremains the same

    at 0.01

    ts

    n

      sec.( .2%)4

    0 8==== ====ζωζωζωζω

  • 8/18/2019 consys-04.pdf

    36/38

    36 

    R +

    -K

    1s(s+1)

    C

    sKt

    +

    -

    Derivative output Compensation

    Introduce another feed back loop

    K K ss

    K sGsG

    K ss

    K sG

    +++

    =+∴

    ++=

    )1(

    ))(1()(

    )1()(

    2

    Specifications

    ζζζζ = 0.5

    ess  for ramp input

      = 0.01

    K Lt sG s

    K

    K

    vs

    t

    ====

    ==== ++++   ====

    →→→→0

    1 100

    ( )

      - - - - - ( 1 )

  • 8/18/2019 consys-04.pdf

    37/38

    37 

    )2(1K 

    12

    −−−+=

    +=

    t n

    K or 

    K ω ζ 

    From (1) & (2),

    .99 

    10000 

    100 

    =

    =

    =

    t K 

    K or 

    Comparing both methods…

    derivative output

    •transducer required•gain reduced due to

    feedback 

    +

    -K

      K

    sAI

    ++++

       

       

        

       

    1

    1s s( )++++

    Integral Control

  • 8/18/2019 consys-04.pdf

    38/38

    38 

    )1()(

    2 +

    +=

    ss

    K sK sG   I  A

    type 2 →→→→

    ∴∴∴∴ ess  for step input = 0

      ess for ramp input = 0

      ess for parabolic

      input is finite

    However system

    becomes of 3 rd order

    - stability problem -

    will be discussed inlater chapters