Construction Bois CB71, Univ Artois

47
CONSTRUCTION BOIS AU CB71 NOTES DE COURS CHAPITRE 1 : PROPRIETES PHYSIQUES ET MECANIQUES DU BOIS CHAPITRE 2 : CALCUL DES STRUCTURES AU CB71 CHAPITRE 3 : CALCUL DES ASSEMBLAGES AU CB71 CHAPITRE 4 : LE LAMELLE COLLE ANNEXES

Transcript of Construction Bois CB71, Univ Artois

Page 1: Construction Bois CB71, Univ Artois

CONSTRUCTION BOIS

AU CB71 NOTES DE COURS

CHAPITRE 1 : PROPRIETES PHYSIQUES ET MECANIQUES DU BOIS

CHAPITRE 2 : CALCUL DES STRUCTURES AU CB71

CHAPITRE 3 : CALCUL DES ASSEMBLAGES AU CB71

CHAPITRE 4 : LE LAMELLE COLLE

ANNEXES

Page 2: Construction Bois CB71, Univ Artois

PROPRIETES PHYSIQUES ET MECANIQUES DU BOIS

1 Bois et environnement

1.1 Le bois, un matériau biologique

Le bois est un tissu végétal qui assure le rôle de conduction de la sève brute des racines jusqu’aux feuilles et le rôle de soutien mécanique de la plante. Les végétaux sont autotrophes : ils sont capables de fabriquer leur propre nourriture à partir de composés minéraux puisés dans le sol ou prélevés dans l’atmosphère.

La réaction de photosynthèse permet à la plante de produire, à partir du gaz carbonique atmosphérique et de l’eau puisée dans le sol et grâce à l’énergie solaire, les sucres nécessaires à son métabolisme et notamment à la fabrication du bois. La réaction de photosynthèse produit de l’oxygène gazeux.

La fabrication et le recyclage du bois s’inscrivent dans le cycle naturel du carbone.

1.2 Le bois, le cycle du carbone, l’effet de serre

Aujourd’hui, on note des bouleversements rapides du cycle du carbone : l’utilisation des combustibles fossiles et la déforestation ont pour conséquence une augmentation du taux de gaz carbonique atmosphérique qui était de 280 ppm avant la révolution industrielle, en 1750, et atteint en 2000 plus de 360 ppm. Le gaz carbonique est le principal responsable de l’accentuation de l’effet de serre. Dans l’avenir, le choix des matériaux et des technologies ne pourra plus se faire sans une prise en compte des impacts sur l’environnement. L’émission de gaz carbonique généré au cours du cycle de vie d’un produit sera un critère important. La fabrication du bois ne génère pas de gaz carbonique, elle en consomme . Le bois est un matériau de qualité qui se fabrique et se recycle naturellement sur Terre depuis des centaines de millions d’années. Il est donc amené à jouer un rôle primordial dans l’industrie future, notamment dans le domaine de la construction.

Le bois est composé d’environ 50 % de carbone, 43 % d’oxygène, 6 % d’hydrogène et 1 % d’azote. Tout le carbone contenu dans le bois provient du CO2 atmosphérique utilisé par l’arbre par photosynthèse.

Construire en bois, c’est stocker du carbone. Un mètre cube de bois mis en œuvre (700 kg), c’est 350 kg de carbone en moins dans l’atmosphère ou encore plus de 1 200 kg de CO2 . L’utilisation du bois permet ainsi de retarder le moment où le carbone fixé par photosynthèse sera rejeté par décomposition ou combustion. Elle répond à la nécessité actuelle de réagir rapidement, étant donné la longue durée de séjour du gaz carbonique dans l’atmosphère (50 à 200 ans). D’autre part utiliser de préférence du bois, c’est utiliser moins de matières plastiques, moins de métaux, moins de béton, matériaux non renouvelables dont la fabrication dégage du CO2 . Le tableau 1 positionne le bois dans cette approche environnementale.

Tableau 1 - Effet environnemental des matériaux de construction

Procédé de fabrication et mise en œuvre Masse

volumique Dégagement de CO 2

Fixation de CO2

Matériau

(kg/m3 ) (kg/m3 ) (kg/m3 )

Acier 7 200 5 000 0

Béton 2 300 375 0

Ciment 1 600 2 500 0

Bois feuillus 700 Prise en compte des procédés industriels ≈ 200

1 000 (1)

(1) Le bois est constitué de C = 50 %, O = 43 %, H = 6 %, N = 1 % : 700 kg de bois contiennent 350 kg de C ;

1 mole de C = 12 g ; 1 mole de O2 = 32 g ⇒ 1 mole de CO2 = 44 g ; ⇒ pour 350 kg de C : (350/12) × 44 = 1283 kg de CO2 arrondi à 1 tonne de CO 2 par m 3 de

bois utilisé .

1.3 Le bois, un matériau à faible coût énergétique

Page 3: Construction Bois CB71, Univ Artois

La fabrication et l’exploitation du matériau bois, loin d’être polluantes, permettent le stockage du carbone et l’entretien des massifs forestiers. Par ailleurs, le bois, comme toutes les matières organiques naturelles, est biodégradable. Quelle que soit l’essence considérée, le bois sera à plus ou moins long terme réintégré dans le cycle naturel du carbone. C’est là un avantage incontestable du matériau.

Pour augmenter la durabilité du bois, on peut avoir recours à des produits de préservation mais, avant tout, il faut essayer de placer le bois en dehors des conditions de biodégradabilité, grâce à des précautions architecturales, le choix d’essences appropriées, l’utilisation de produits de préservation naturels (sel de bore) et une conception réfléchie. L’une des plus anciennes constructions en bois n’est autre que le sanctuaire bouddhiste Horyu-ji du VIIe siècle situé près de Nara au Japon.

Au-delà des avantages évidents du bois, il en existe d’autres mis en évidence grâce aux écobilans comparés, appelés également analyse des cycles de vie (LCA : Life Cycle Assessment ou Life Cycle Analysis ). Ceux-ci prennent généralement en compte l’impact environnemental des étapes suivantes de la vie d’un produit : élaboration et extraction des matériaux bruts, transformation, transport, installation, performances à l’usage, élimination (déconstruction, recyclage).Le bois apparaît nettement comme le choix « écologiquement responsable ».

Le bois permet donc de stocker une partie du carbone qui a été rejeté par l’activité industrielle passée mais également de participer à la réduction des émissions de gaz carbonique en tant qu’alternative aux matériaux non renouvelables qui induisent des coûts énergétiques que notre planète ne peut que difficilement supporter.

2 Equilibre hygroscopique

Comme schématisé ci-dessous, la structure cannelée du bois permet une circulation d’eau :

Exemple d’un plan ligneux de résineux (pin sylvestre)

Page 4: Construction Bois CB71, Univ Artois

Structure du tronc dans l’arbre. Exemple du chêne, essence à aubier différencié

Le bois est un matériau hygroscopique : il peut fixer ou libérer des molécules d’eau gazeuse en fonction du degré d’hygrométrie de l’air dans lequel il se trouve. La fixation de l’eau se fait sur les groupements chimiques hydroxyles (composés d’un atome hydrogène et d’un atome d’oxygène) qui ont une grande affinité pour l’eau avec laquelle ils établissent des liaisons faibles : les liaisons hydrogène. La cellulose et les hémicelluloses comportent de nombreux groupements hydroxyles et ont donc de bonnes capacités d’adsorption. Des liaisons hydrogène existent aussi entre les différentes molécules, cellulose et hémicelluloses. Lorsque l’eau vient se fixer sur les chaînes de cellulose, celles-ci sont éloignées les unes des autres. C’est ce qui produit le gonflement du bois, observé lorsque l’humidité de l’air augmente. L’adsorption d’eau augmente la largeur des microfibrilles mais pas leur longueur.

Par convention et pour une plus grande facilité de mesure, la quantité d’eau présente dans le bois est exprimée comme un pourcentage de la masse anhydre (après séchage à 103 o C jusqu’à obtention d’une masse constante). Elle s’exprime par:

avec MH masse (ou poids) à l’humidité H

M 0 masse anhydre

H (%) taux d’humidité du bois.

Page 5: Construction Bois CB71, Univ Artois

Au moment de l’abattage, le taux d’humidité du bois peut varier entre 40 et plus de 200 % (dans certains peupliers par exemple).

L’eau dans le bois est présente sous deux formes : l’eau « libre » retenue dans les vides, lumens des fibres, trachéides et vaisseaux, et l’eau « liée » présente dans les parois cellulaires. Pour évaporer l’eau libre, il suffit de fournir la chaleur latente d’évaporation normale. Pour évaporer l’eau liée, il faut fournir une énergie additionnelle ou énergie de sorption pour rompre les liaisons avec les constituants chimiques du bois.

Lorsque le bois ne contient plus que de l’eau liée, il a atteint « le point de saturation des fibres » (les parois cellulaires sont saturées en eau, toute l’eau libre est évaporée). Ce point de saturation des fibres est de l’ordre de 30 % pour pratiquement toutes les essences.

Les qualifications commerciales normalisées des bois en fonction du taux d’humidité sont données ci après :

Tableau 2 - Qualifications normalisées des bois en fonction du taux d’humidité (NF B51-002)

Taux d’humidité Qualification

Au-delà du point de saturation des fibres (30 %) Bois vert

De 30 à 23 % Bois mi-sec

De 22 à 18 % Commercialement sec

De 17 à 13 % Bois sec à l’air

En dessous de 13 % Desséché

0 % Anhydre

2 Aspect réglementaire – définition des classes d’humidité

2.1 Courbes d’équilibre hygroscopique

En fonction de la température et surtout de l’humidité de l’air ambiant, le bois se stabilise à une humidité d’équilibre, dite équilibre hygroscopique, qui est indépendante de l’essence.

Sous les climats tempérés (France) l’équilibre hygroscopique du bois varie d’environ 13 % en été à 19% en hiver.

Toutes les propriétés physiques et mécaniques du bois sont affectées par l’humidité. Un exemple est donné ci après concernant le module d’élasticité longitudinal

Page 6: Construction Bois CB71, Univ Artois

Influence du taux d’humidité du bois sur son module d’élasticité longitudinal

2.2 Eurocode 5

3 classes d’humidité sont définies aux Eurocodes (EC5 2.5.4). Du choix d’une classe d’humidité découle les valeurs caractéristiques de résistances et le calcul des déformations.

Classe 1 : Hair ne dépassant 65% (à 20 ± 2°C)que quelques semaines par an (H ≈ 12% dans les résineux),

Classe 2 : Hair ne dépassant 80% (à 20 ± 2°C)que quelques semaines par an (H ≈ 18% dans les résineux),

Classe 3 : conditions d’humidité plus élevées.

Les valeurs des résistances caractéristiques sont affectées d’un coefficient en fonction de la classe d’humidité. Par exemple :

Si σcompression (classe 3) = R alors σcompression (classe 1 ou 2) = 1,2.R

2.2 CB71

Les contraintes admissibles sont définies pour H = 15%. Il conviendra de pondérer ces contraintes par des coefficients correcteurs en fonction de H et du type de sollicitation.

Par exemple (3-13), en compression axiale :

H% 7,5 10 12,5 15 17,5 20 22,5 25 30

k 1,30 1,20 1,10 1,00 0,90 0,80 0,70 0,60 0,40

3 Caractéristiques physiques

3.1 Masse volumique - densité

La densité d’un bois est un paramètre très important. La plupart des propriétés mécaniques et technologiques en dépendent directement. La densité vraie de la matière ligneuse dépend assez peu de l’essence considérée. Elle est toujours voisine de 1,53. Le bois contient toujours de l’eau (eau libre et eau liée), la densité d’un bois sera toujours précisée pour un degré d’humidité donné La densité du bois est donc très variable selon les espèces : de 0,1 à plus de 1, et à l’intérieur d’une même essence.

Page 7: Construction Bois CB71, Univ Artois

Effet de la densité sur les propriétés mécaniques sur l’ensemble des essences

Effet de la densité sur les propriétés mécaniques à l’intérieur d’une même essence

Le Tableau 3 illustre ces résultats sur les caractéristiques de dureté de surface des bois. L’échelle de dureté est exprimée selon la norme NF B 51-013.

De manière générale toutes les propriétés mécaniques du bois sont bien corrélées avec la densité .

3.2 Anisotropie - dilatation

L’ensemble des caractéristiques et propriétés physico-mécaniques du bois résulte de cette structure de matériau composite alvéolaire multicouche. Cette structure confère au matériau un caractère anisotrope et hétérogène .

Dans l’étude ou la reconnaissance d’un bois, les observations doivent se faire selon trois plans parfaitement définis :

le plan transversal, perpendiculaire à l’axe de l’arbre (bois de bout) ; le plan radial, parallèle à l’axe et passant par le centre structurel de l’arbre (débit sur quartier) ; le plan tangentiel, tangent aux cernes de croissance (débit sur dosse).

Ces trois plans sont illustrés sur la figure ci après.

3.3 Dilatation et conductivité thermique

Le coefficient de dilatation thermique linéique α t caractérise l’augmentation relative de longueur d’un élément pour un échauffement de 1 o C. La dilatation thermique du bois dans les ouvrages est très faible et n’est prise en considération que dans des cas exceptionnels. Le tableau 4 rassemble les valeurs de coefficients de dilatation thermique et de conductivité thermique de quelques matériaux ce qui permet une comparaison avec le bois.

Tableau 4 - Coefficient de dilatation thermique et conductivité thermique

Coefficient de dilatation thermique

Conductivité thermique Matériau

[µm/(m · o C)] [W/(m · o C)]

Béton armé 12 1,5

Page 8: Construction Bois CB71, Univ Artois

Acier 12 50

Laine minérale 0,035

Bois H = 12 % H = 35 %

Chêne (d = 0,65) 3 à 6 0,3 0,34

Épicéa (d = 0,45) 3 à 6 0,2 0,25

Panneaux de fibres de bois isolant 0,045

Compte tenu de sa porosité, le bois contient beaucoup d’air lui assurant une faible conductivité thermique, ce qui en fait un isolant naturel. Pour exemple (à H = 15% ) :

λ = 0,23 W/m.K (chêne)

λ = 0,15 W/m.K (sapin)

λ = 0,02 W/m.K (balsa)

4. Caractéristiques mécaniques

4.1 Paramètres d’influence

Les paramètres influençant les résistances mécaniques sont :

- La sollicitation (traction / compression / flexion / cisaillement)

- L’essence et la qualité du bois

- H

- La direction de la sollicitaion par rapport aux fibres

4.2 Comportement en traction - compression

La structure tubulaire orientée du composite bois explique la différence de comportement traction/compression pour une sollicitation dans la direction longitudinale. La figure suivante montre le caractère fragile du matériau en traction et son caractère ductile en compression. En compression les éléments tubulaires sont soumis à du microflambement expliquant les différences de résistance traction/compression.

Il est à noter que, dans le cas de la compression comme de la traction, le module d’élasticité est le même et est donné en R4.011 en fonction de l’essence du bois et de la sollicitation.

E traction = E compression

Tableau 5 - Caractéristiques mécaniques pour le calcul de structures bois à l’EC5. Valeurs pour H = 12 %

Classes de résistance NF EN 338 (extraits) Notation EC5

C14 C18 C24 C30 C40

Contraintes caractéristiques (Contraintes admissibl es) (MPa)

Flexion fm,k 14 18 (8) 24 (10,5) 30 (13,2) 40

Traction axiale (Longitudinale) f t ,0,k 8 11 (5) 14 (6) 18 (9) 24

Page 9: Construction Bois CB71, Univ Artois

Traction perpendiculaire (Radiale ou Tangentielle) f t ,90,k 0,4 0,5 (0,13) 0,5 (0,2) 0,6 (0,2) 0,6

Compression axiale f c ,0,k 16 18 (8,5) 21 (9) 23 (10,5) 26

Compression perpendiculaire f c ,90,k 2 2,2 (2,1) 2,5 (2,3) 2,7 (2,5) 2,9

Cisaillement f ν ,k 1,7 2 (0,9) 2,5 (1,1) 3 (1,3) 3,8

Module de déformation au fractile de 5 % (Module mo yen) (MPa)

E 0,05 4 700 6 000 7 400 8 000 9 400 Module axial (L)

E 0,moyen (9 000) (11 000) (12 000)

Module perpendiculaire (R ou T) E 90,moyen (300) (370) (400)

Module de cisaillement Gmoyen (560) (680) (750)

Densité moyenne

dmoyen 0,38 0,42 0,46

Le tableau 6 donne, à titre indicatif, les valeurs des résistances à la rupture des essences les plus courantes en compression et en traction.

4.3 Aspect règlementaire

Selon l’EC5, la contrainte admissible est calculée selon le principe suivant :

mk

ff hk

hd γmod=

où kmod est un facteur de modification prenant en compte la durée d’application de la charge (parallèle avec θ de fbu en béton armé) et γm un coefficient de sécurité partiel lié au matériau.

Le CB71 donne les contraintes admissibles en fonction de la sollicitation, contrainte à pondérer en fonction de l’humidité du bois et de la direction principale de la sollicitation.

)....().().( essenceetionsollicitatdetypedirectionkHk σσ ≤

Les vérifications se faisant aux contraintes admissibles, il est conseillé d’effectuer le dimensionnement de l’ouvrage à la déformation (4.85 et 4.96). Il est à noter que la déformation due au fluage n’est prise en compte qu’à la flexion et est négligée en traction – compression . Dans le cas de cette dernière sollicitation, le flambement est à prendre en compte.

Les flèches admissibles sont données au chapitre 4.962 du CB71 en fonction de la destination de l’ouvrage.

Le principe de calcul des déformations est développé ci après :

Page 10: Construction Bois CB71, Univ Artois

Remarque : Ce calcul est équivalent au calcul de la flèche totale en utilisant les données suivantes :

• E = Ei

• Charge totale p = pi + θ.p∞

Le coefficient de fluage θ est calculé en fonction de :

σ f = contrainte admissible en flexion,

2.h

IM

r∞

∞ =σ = contrainte sous les charges de longue durée, avec M∞ = moment sous les charges p∞,

∆H = différence entre le maximum et le minimum des humidités dans le bois entre la mise en œuvre et la stabilisation des déformations,

H = humidité du bois lors de sa mise en œuvre.

Si 5

σσ f

r≤

∞ alors θ = 1

Si σσσfr

f ≤≤∞5

alors

σ

σσθ

f

f

r

H

HH

5

20

51

121−

×−∆+

∆+

+=∞

Le paragraphe 4.962 nous donne les flèches admissibles suivantes :

150

l pour les parties d’ouvrage en console sans circulation (auvents),

200

l pour les pièces de couverture (sauf pannes),

300

l pour les parties d’ouvrage en console avec circulation, les pannes, les supports d’éléments en verre, les

poteaux, les éléments fléchis ne supportant pas d’éléments de remplissage,

400

l pour les éléments fléchis supportant des éléments de remplissage.

Actions de courte durée pi

Actions de longue durée p∞

Flèche fi calculée avec le module

conventionnel Ei

Flèche f∞ calculée avec le module différé

E∞=Ei/θ

Où θ est le coefficient amplificateur de fluage

Flèche totale f = fi + f∞ ≤ flèche admissible donnée en 4.962 du CB71

Page 11: Construction Bois CB71, Univ Artois

5 Classement, dimensions et appellations commerciales

5.1 Classement

En fonctions des défauts (présences de nœuds, de flaches, etc.) et des altérations biologiques (attaque par les champignons), le bois est classé, suivant la NF B 52-001 en trois classes (ST-I pour la meilleure à ST-III) ayant des correspondances dans l’EN 338 selon le tableau suivant :

Page 12: Construction Bois CB71, Univ Artois

Tableau 7 – Correspondances des classements NF B 52-001 et EN 338

La classe C18 convient bien aux charpentes traditionnelles,

La classe C24 convient bien aux charpentes industrielles (fermettes) et au lamellé-collé,

La classe C30 convient mieux au lamellé-collé à hautes performances.

On en retirera les propriétés mécaniques suivantes (pour une humidité de 12%) :

Tableau 8 – Propriétés mécaniques suivant le classement

5.2 Dimensions et appellations commerciales

Les dimensions des sciages sont définies dans des normes : EXP B 53-100 pour les résineux et les feuillus tendres (peuplier essentiellement). Pour les feuillus durs (chêne et hêtre principalement), il n’existe pas de norme fixant les dimensions des sciages, mais l’usage a consacré un certain nombre de sections. Les tableaux ci après indiquent ces dimensions commerciales.

Tableau 7 - Sections standardisées des résineux français (à 20 % d’humidité)

Largeur (mm) Épaisseur (mm)

27 (1) 40 63 75 100 115 125 150 160 175 200 225

15 n n n

18 n n n n n n n n n

22 n n n n n n n n

27 (1) n n n n n n n n

32 n n n n n n n n n n

38 n n n n n n n n n

50 n n n n n n n n

63 n n n

Page 13: Construction Bois CB71, Univ Artois

75 n n n n n n

100 n n n

115 n

125 n

150 n

200 n

225 n

Pour les bois de structure calibrés : 36 × 72/36 × 97/36 × 112/36 × 122/36 × 147/36 × 172/36 × 197/36 × 222. Les longueurs sont les suivantes :

pour le sapin et l’épicéa : de 50 en 50 cm, de 1 à 12 m ; pour les pins : de 30 en 30 cm, de 2,10 m à 3 m, au-delà, par graduation de 50 cm.

(1) 25 mm est une autre dimension possible.

20 % d’humidité)

Par ailleurs, il existe un certain nombre d’appellations commerciales pour désigner des sciages en fonction de leurs dimensions :

• volige : avivé (sciage à vives arêtes) dont le rapport des côtés de la section est égal ou supérieur à 4 et l’épaisseur égale à 12, 15, 18 ou 22 mm ;

• planche : de même, mais d’épaisseur comprise entre 27 et 40 mm ; • solivette (ou demi-bastaing) : avivé d’une épaisseur de 32 ou de 38 mm et d’une largeur de 150 à

200 mm ; • liteau : avivé d’épaisseur inférieure à 40 mm et de largeur inférieure à 50 mm ; • carrelet : avivé de section carrée ou sensiblement carrée, de côté compris entre 15 et 50 mm ; • chevron : de même, mais dont le côté est compris entre 40 et 125 mm ; • bastaing : avivé dont le rapport des côtés de la section est compris entre 2 et 3, de sections habituelles

50 × 150 mm, 63 × 160 ou 63 × 165 mm, 63 × 175 mm ; • madrier : de même, mais de sections habituelles 75 × 115 mm, 75 × 200 mm, 75 × 225 mm ou

100 × 225 mm ; • frise : avivé d’épaisseur comprise entre 18 et 38 mm et de largeur comprise entre 40 et 125 mm ; • latte : avivé étroit (26 à 55 mm) et de faible épaisseur (5 à 12 mm).

Page 14: Construction Bois CB71, Univ Artois

CALCUL DES STRUCTURES AU CB71

1 Actions et sollicitations

Les actions sont définies au paragraphe 1.1 du CB71. On distinguera :

• G : actions dues à la charge permanente,

• P : actions dues aux surcharges d’exploitation, données dans la NF P 06 001

• Pc : actions dues aux charges climatiques, calculées selon le règlement NV (S et W),

• SI : actions sismiques.

Les sollicitations sont le résultat d’un calcul de résistance des matériaux en prenant les plus défavorables des combinaisons d’actions suivantes :

Combinaisons du 1er genre :

S1 = G + 1,2 P

S1’ = G + γp.P + Pc

Où γp prend la valeur 0 ou 1 afin d’obtenir le cas de charge le plus défavorable. Pour simplifier, γp = 0 dans le cas de soulèvement et γp = 1 dans le cas de surpression.

Les sollicitations du 2nd genre sont données par la combinaison d’action suivante :

S2’’ = G + P + SI.

Ces combinaisons sont définies dans les règles simplifiées au chapitre 4.9 du CB71.

2 Principe de justification

Une fois la géométrie des structures définie par un calcul de déformation ou par des considérations architecturales, la justification se fait aux contraintes admissibles, à savoir :

Pour les combinaisons du 1er genre :

)....().().( essenceetionsollicitatdetypedirectionkHk σσ ≤

Pour les combinaisons du second genre :

σσe

directionkHk ).().(≤ où σ e est la limite élastique conventionnelle

avec :

σσ 5,1=e

en compression

σσ 25,2=e

en traction suivant le fil du bois,

σσ 75,1=e

en flexion

σσ 5,1=e

au cisaillement, en traction et compression transversale

3 Vérification

3.1 Traction (CB71 - 3.25)

En traction, on vérifie : σασ ).(kA

N ≤=

où A est la section nette (déduction faite des trous) et k(α) un coefficient de réduction tenant compte de l’inclinaison de l’effort par rapport au fil du bois donné ci après :

Page 15: Construction Bois CB71, Univ Artois

Tableau 1 – Coefficient de réduction en fonction de l’inclinaison des charges en traction axiale

α (°) 0 10 20 30 40 50 60 70 80 90

CAT 1 1 0.67 0.34 0.20 0.13 0.09 0.07 0.05 0.06 0.06

CAT 2 1 0.73 0.41 0.24 0.16 0.12 0.10 0.08 0.08 0.075

3.2 Compression axiale sans risque de flambement (CB71 - 3.24)

En compression axiale sans risque de flambement, on vérifie : σσ ≤=Ab

N

où Ab est la section brute sous réserve que la réduction de section due à la présence de boulons ou d’autres assemblages soit inférieure à 15%.

3.3 Compression axiale avec risque de flambement

En compression axiale avec risque de flambement, on vérifie : σλ

σ ≤=Ab

N

k.

)(

1

Où k(λ) est un coefficient de d’amplification de contrainte qui prend les valeurs suivantes, en fonction de l’élancement λ :

Si λ ≤ 37,5 alors k(λ) = 1 : pas de risque de flambement,

Si 37,5 ≤ λ ≤ 75 alors k(λ) = 1,45 – 1,20 λ / 100,

Si 75 ≤ λ alors k(λ) = 3100 / λ².

3.4 Compression transversale ou oblique (CB71 - 3.243)

En compression axiale sans risque de flambement, on vérifie : σασ ).(kAb

N ≤=

où Ab est la section brute sous réserve que la réduction de section due à la présence de boulons ou d’autres assemblages soit inférieure à 15% et k(α) un coefficient de réduction tenant compte de l’inclinaison de l’effort par rapport au fil du bois donné dans le tableau 10 au paragraphe 3.243 du CB71.

3.5 Flexion simple (CB71 - 3.23)

En flexion simple, on vérifie : σσ ).(2

. hCh

I

M ≤=

Où h est la hauteur de la section droite, I le moment quadratique de cette section et C(h) traduit l’influence de la hauteur. Il est à noter que le CB 71 conseille de prendre le déversement en compte si le rapport hauteur sur largeur est supérieur à 5 (h/b >5) mais ne suggère aucune méthode de calcul. On préfèrera des solutions technologiques telles l’utilisation d’entretoises qui diminuent la portée libre. Cet entretoisement peut être assuré par le solivage (photo page suivante).

3.6 Flexion déviée

Page 16: Construction Bois CB71, Univ Artois

3.7 Flexion composée

3.7.1 Flexion + traction

On doit vérifier : 1≤+σσ

σσ

f

f

t

t

3.7.2 Flexion + compression

On doit vérifier : 1).( ≤+σσ

σσλ

f

f

c

ck où k(λ) est le coefficient de d’amplification de contrainte qui prend les

valeurs suivantes, en fonction de l’élancement λ :

Si λ ≤ 37,5 alors k(λ) = 1,

Si 37,5 ≤ λ ≤ 75 alors k(λ) = 1,45 – 1,20 λ / 100,

Si 75 ≤ λ alors k(λ) = 3100 / λ².

α

p

Si α ≤ 5° 30’ (pente inférieur à 10%), on néglige la composante oblique p1, Si α > 5° 30’, on majore les charges par le biais d’un coefficient c :

c = cosα + (h/b). sinα et on se ramène à un calcul en flexion simple p1

P2

Page 17: Construction Bois CB71, Univ Artois

CALCUL DES ASSEMBLAGES AU CB71

1 Assemblages traditionnels

Ils sont traités au paragraphe 4.61 du CB 71 et consistent à faire transiter les efforts d’une pièce en bois à l’autre sans nécessité de pièces intermédiaires en acier. Les vérifications portent sur la résistance au cisaillement et au matage du bois.

Différents types d’assemblages par tenon - mortaise

Assemblage à tenon et mortaise borgne. Le tenon est de même largeur que la traverse. On coupe l'extrémité pour les excès de colle.

Assemblage à épaulement. La largeur du tenon est diminuée d'un tiers. Le renfort d'épaulement peut être un rectangle ou triangle.

Assemblage à tenon et mortaise traversant et renforcement de chevilles qui sont enfoncées sur les côtés du tenon.

Les chevilles sont ici enfoncées dans les fentes ouvertes sur l'about du tenon pour renforcer un assemblage à mortaise borgne

2 Assemblages par pointes

2.1 Pointes

Un clou (ou pointe) est constitué d'une tête, d'une tige et d'une pointe. Ces trois éléments diffèrent selon les clous.

tige

tête pointe

Ainsi, on distingue plusieurs types de clous

1) selon la forme de sa tige :

- les clous lisses, - les clous annelés, - les clous torsadés, - les clous crantés. 2) selon la forme de sa pointe :

- les clous en pointe diamant, - les clous en pointe biseautée

clou lisse : C'est le type de clou le plus courant, sa tige est ronde et lisse. Sa pointe peut être diamant ou biseautée.

clou avec tige lisse et pointe diamant

Page 18: Construction Bois CB71, Univ Artois

clou avec tige lisse et pointe biseautée

clou annelé : C'est un type de clou dont la tige est constituée d'anneaux convexes. Il est très résistant à l'arrachement. Le diamètre de ce clou est mesuré sur la partie lisse de la tige (diamètre avant roulage).

clou annelé

clou torsadé : C'est un type de clou dont la tige est torsadée et carrée. Il est très résistant à l'arrachement. Son diamètre est mesuré sur les arêtes.

clou torsade

clou cranté : C'est un type de clou dont la tige est dentée. Il est très résistant à l'arrachement.

clou cranté

Les dimensions courantes des pointes sont données ci après :

Les pointes ne peuvent supporter que des sollicitations de cisaillement. Un clou sera sollicité au simple cisaillement, au cisaillement mixte ou au double cisaillement suivant le nombre de plan de cisaillement traversés par le clou et la profondeur de pénétration du clou au-delà du dernier plan de cisaillement traversé. Cela peut se résumer ainsi :

2.2 Cas de cisaillement

Page 19: Construction Bois CB71, Univ Artois

2.3 Justifications

On doit vérifier (4,62-126) pour les résineux courants :

- simple cisaillement : edF ..8,0≤

Plans de cisaillement

Cas du simple cisaillement : chaque clou ne traverse qu’un plan de cisaillement

Plans de cisaillement

p e

Cas du cisaillement mixte ou du cisaillement double: chaque clou traverse deux plans de cisaillement

e = épaisseur de l’élément le plus mince p = profondeur de pénétration dans le dernier élément

0,7e≤ p < 1,5e Cisaillement mixte

p ≥ 1,5e Double cisaillement

Page 20: Construction Bois CB71, Univ Artois

- cisaillement mixte : edF ..3,1≤

- double cisaillement : edF ..2≤ avec :

F Effort repris par clou en daN

d Diamètre du clou en 1/10ème de mm

e Epaisseur de l’élément le plus mince en cm

Ft Effort de traction / compression dans l’assemblage en daN

n Nombre de clous

Pour le chêne : ses valeurs sont multipliées par 1,3

Il faut également prendre en compte l’effet de groupe, à savoir que plus il y a de pointes et plus l’effort par pointe diminue. Un coefficient correcteur k est à appliquer suivant le nombre de pointes n de l’assemblage :

n < 10 Ft = n.F (k = 1)

10 ≤ n < 20 Ft = 0,9.n.F (k = 0,9)

20 ≤ n Ft = 0,8.n.F (k = 0,8)

Effet de l’humidité : F est affecté d’un coefficient réducteur de 0,75 si l’umidité est supérieure à 17 % :

Si H ≥ 17% � Ft = k . n . F . 0,75

Effet de la dureté du bois (4,62-123 – tableau 14) : il faut vérifier les conditions suivantes (tableau 1) :

Tableau 1 – Effet de la dureté du bois

e ≤ 30 mm e > 30 mm

Bois tendres

Bois frais de sciage 7

ed ≤

9

ed ≤

Bois durs

Bois secs 9

ed ≤

11

ed ≤

2.4 Dispositions constructives (4,62-12 Fig. R-IV-6)

Page 21: Construction Bois CB71, Univ Artois

3 Assemblages par boulons

3.1 Prescriptions sur les boulons (4,62-11)

Les boulons (système vis + écrou), comme les pointes, ne peuvent supporter que des sollicitations de cisaillement. Un boulon sera sollicité au simple cisaillement, au double cisaillement ou au cisaillement multiple suivant le nombre de plan de cisaillement traversés par le boulon. Les boulons doivent être conformes aux normes NF E 27 682 et NF E 27 341 avec les prescriptions supplémentaires suivantes (4,62-112) :

65

bd

e ≤≤

où d est le diamètre du boulon, e est l’épaisseur de la rondelle et b la plus petite largeur des pièces en bois assemblées. Toutes les longueurs ne sont pas disponibles dans tous les diamètres. La longueur nécessaire sera un critère de choix. Le tableau 2 nous donne les dimensions courantes des vis partiellement filetées.

Les vis sont référencées par la lettre M suivie du diamètre nominal (exemple : M12 pour un diamètre nominale de 12 mm).

Les boulons sont toujours associés à des plaquettes ou des rondelles afin d’éviter un matage du bois (écrasement localisé) sous le tête de vis ou la tête de l’écrou. Ces dernières doivent obéir aux prescriptions suivantes :

- rondelles : Φ (notée B sur le dessin) ≥ 3,5 d et e ≥ d/3

- plaquettes : 3d x 3d et e ≥ d/3

Tableau 2 – Longueur sous tête des vis pour boulons 12 16 20 25 30 35 40 45 50 55 60 65 70 80 90 100 110 120 Diamètre vis

Longueur filetée

Chaque intervalle e ≥ 5d

a ou b

a ou b

c

c

On prendra b si la barre oblique est en compression et a dans les autres cas (traction ou traction-compression alternée)

a ≥ 12d b ≥ 5d c ≥ 10d d = diamètre clou

Assemblages par pointes (clous)

Page 22: Construction Bois CB71, Univ Artois

1,6 9 2 10

2,5 11 3 12

3,5* 13 4 14 5 16 6 18 8 22

10 26 12 30

(14)* 34 16 38 18* 42 20 46 22* 50 24 54 27* 60 30 66

3.2 Cas de cisaillement

Plan de cisaillement

Cas du simple cisaillement

Plans de cisaillement

Cas du double cisaillement

Page 23: Construction Bois CB71, Univ Artois

3.3 Justifications

On doit vérifier (4,62-113) pour les résineux courants :

- simple cisaillement : edF ..80≤

- cisaillement double: edF ..200≤

- cisaillement multiple : edF ..160≤ avec :

F Effort repris par clou en daN

d Diamètre du clou en de cm

e Epaisseur de l’élément le plus mince en cm (cisaillement simple ou multiple)

Epaisseur de la pièce médiane en cm (cisaillement double)

Ft Effort de traction / compression dans l’assemblage en daN

n Nombre de clous

Pour le chêne, on doit vérifier (4,62-113):

- simple cisaillement : edF ..105≤

- cisaillement double : edF ..260≤

- cisaillement multiple : edF ..210≤

Remarque (4,62-117): Il est possible d’augmenter les valeurs admissibles par boulon en double cisaillement à condition d’utiliser des plaques d’appui dont les dimensions sont supérieures (en longueur et largeur) à 5 fois le diamètre du boulon) et d’épaisseur au moins égale à 0,4d. Dans ce cas, et pour les résineux :

Cas du cisaillement multiple (le nombre de plans de cisaillement doit être ≤ 6)

Plans de cisaillement

Page 24: Construction Bois CB71, Univ Artois

- bois sec à l’air (H = 15%) : edF ..400≤

- bois commercialement sec (H = 18 à 22%) : edF ..300≤

Pour le chêne, ces valeurs admissibles sont à multiplier par 1,3.

3.4 Dispositions constructives (4,62-111 Fig. R-IV-4)

a ≥ d

/3

e ≥ b/2 et d ≥ e/5

d

e b

≥ 3

,5d

l

l ≥ 6d

a ≥ d

/3

e ≥ b/2 et d ≥ e/5 ≥ 3d ≥ 3d ≥ 3d

d

e b

d

≥ 6

d et

≥10

cm

≥ 6

d et

≥10

cm

≥ 6

d et

≥10

cm

Assemblages boulonnés avec rondelles

Page 25: Construction Bois CB71, Univ Artois

4 Assemblages par connecteurs (4,63-13)

4.1 Généralités

Il nous faut vérifier que, quelle que soit la sollicitation, les contraintes dans le connecteur restent inférieures aux valeurs admissibles.

a ≥ d

/3

e ≥ b/2 et d ≥ e/5

d

e b

≥ 3

d

l

l ≥ 6d

Assemblages boulonnés avec plaquettes

a ≥ 0

,4d

e ≥ b/2 et d ≥ e/5

d

e b

≥ 5

d

l

l ≥ 6d

Assemblages boulonnés avec plaques d’appui

Page 26: Construction Bois CB71, Univ Artois

4.2 Résistance à la compression (4,63-14)

Nous devons vérifier :

feAF C .sin.2

≤α

où A est la section du connecteur et fe la limite élastique de l’acier.

4.2 Résistance au cisaillement

Nous devons vérifier :

MpaARt 100

'≤

où A’ est la section efficace du connecteur et Rt est la force de cisaillement, soit :

Rt = (FC + FD ).cos(α)

A’ est donné dans le tableau suivant :

Tableau 3 – répartition des surfaces efficaces des connecteurs (cm²)

b (mm) h (mm) Section A A’ cas 1 A’ cas 2 A’ cas 3 A’ cas 4

75 36 21 26.4 18.2 15.4

100 48 28 38.4 25.2 22.4

48

125 60 35 50.4 32.2 29.4

75 54 39 39.6 33.8 28.6 72

100 72 52 57.6 46.8 41.6

δ h

b

α

FA FB

Fc

FD

Page 27: Construction Bois CB71, Univ Artois

125 90 65 75.6 59.8 54.6

150 108 78 93.6 72.8 67.6

75 72 57 52.8 49.4 41.8

100 96 76 76.8 68.4 60.8

125 120 95 100.8 87.4 79.8

96

150 144 114 124.8 106.4 98.8

100 120 100 96 90 80

125 150 125 126 115 105

150 180 150 156 140 130

120

180 216 180 192 170 160

125 180 155 151.2 142.6 130.2

150 216 186 187.2 173.6 161.2

144

180 259.2 223.2 230.4 210.8 198.4

4.3 Résistance à la flexion

On doit vérifier : Mpa

vIpMf

f 100)(2

≤=σ

Cas 1 Cas 3 Cas 2 Cas 4

Page 28: Construction Bois CB71, Univ Artois

Avec Mf = (FB – FA).δ et ²².6

.hb

hbv

Ip +=

Page 29: Construction Bois CB71, Univ Artois

LE LAMELLE COLLE

1 Le lamellé collé

1.1 Historique et normalisation

Les actions sont définies au paragraphe 1.1 du CB71. On

Le lamellé-collé est un procédé de fabrication consistant à coller des lamelles, généralement de bois, avec le fil du matériau dans le même sens. Son intérêt est la fabrication d'une pièce de grande dimension ou de formes particulières qui n'aurait pu être obtenue par utilisation du même matériau sans transformation. Ces pièces fabriquées gardent les propriétés mécaniques du matériau utilisé. Cette technique d'assemblage, inventée à l'origine par Philibert Delorme (1510 – 1570), est reprise en 1890 par Otto Hetzer qui y introduit de la colle pour aboutir à la charpente lamellé-collé.

Au Japon, cette technique d'assemblage de materiaux semble encore plus ancienne, c'est le procédé utilisé pour la mise en œuvre de leurs arcs composite le Yumi. Ils sont constitués de bambou et de bois collés.

les essences (ou mélanges d'essences) suivantes conviennent à la fabrication du bois lamellé-collé : sapin (Abies alba), épicéa (Picéa abies) pin sylvestre (Pinus sylvestris), douglas (Pseudotsuga mensiesii). D'autres essences peuvent etre utilisées, en particulier le western hemlock (Tsuga heterophylla), le pin laricio et le pin noir d'Autriche (Pinus nigra), le mélèze (larix decidua), le pin maritime (Pinus pinaster), le peuplier (Populus robusta, Populus alba), le pin radiata (Pinus radiata), l’épicéa de Sitka (Picea sitchensis), le western red cedar (Thuya plicata).

Le bois doit être classé conformément aux prescriptions des normes EN 518 ou EN 519 relatives au classement des bois massifs pour l'emploi en structure et de la norme NF B 52001 - Partie 4.

Il est possible d'utiliser d'autres bois feuillus, à condition de disposer des moyens et des données nécessaires pour pouvoir réaliser des assemblages collés satisfaisants et particulièrement de s'assurer de la compatibilité de la colle avec le bois.

Tableau 1 - Essences utilisables en France pour la fabrication d'une poutre en bois lamellé-collé

Essences de bois Collage Classe de risque d'attaque biologique avec traitement

Classe de risque d'attaque biologique sans traitement

Châtaignier Spécial 3 3

Chêne* Spécial 3 3

Douglas* Courant 3 3

Epicéa* Courant 2

Mélèze Courant 3 3

Pin Sylvestre* Courant 4 3

Pin maritime Courant 4 4

Robinier Spécial 3

Sapin* Courant 2

Western Red Cedar Courant 3 3

Dousier, Merbau, Maobi, Padouk Spécial 4

Tatajouba Spécial 4

Iroko Spécial 3

* Essences les plus utilisées.

1.2 Colles

Les adhésifs utilisés pour les éléments de structures en bois lamellé collé sont principalement :

• Résorcine-formaldéhyde (R.F)

• Phénol-résorcine-formaldéhyde (R.P.F.)

Page 30: Construction Bois CB71, Univ Artois

• Mélamine-urée-formaldéhyde (M.U.F.)

• Urée-formaldéhyde (U.F.) modifiée

Ces colles sont classées selon la norme NF EN 301 en :

• Adhésifs du type I, capables de résister à toutes les expositions extérieures et aux températures dépassant 50°C

• Adhésifs du type II, pour usage intérieur chauffé et ventilé, et à l’extérieur mais à l’abri des intempéries et avec une température supérieure à 50°C très occa sionnelle.

Le choix des colles pour aboutage et lamellation peut se faire conformément aux tableaux 2 et 3 suivants.

La Certification ACERBOIS-GLULAM en atteste de la conformité.

Tableau 2 - Choix des colles pour aboutage et lamellation

Adhésif Temps de serrage (x)

Précaution d’emploi (x)

Avantages Inconvénients

Résorcine (RPF)

8 à 16 h à 20°C

2 à 4 h à 40°C

5 à 15 mn si HF + temps de stabilisation sous

presse 1 à 3 mn

Conservation :

5 à 12 mois à 20°C

Température minimale d’application : 15°C

Toxicité

Tenue aux intempéries

Tenue au feu

Collage de matériaux divers

Joints épais possible

Joints de couleur foncée

Abrasivité

Résorcine : à application séparée pour lamellation

12 h à 20°C

2 à 3 h à 40°C

Conservation :

6 mois à 20°C

Température minimale d’application : 18°C

Mêmes que RPF

Durée de vie en pot plus longue

Nettoyage réduit

Limitation des déchets

Mêmes que RPF

Nécessité d’une installation spécifique

Mélamine urée formol (MUF)

6 à 12 h à 20°C

1 à 3 h à 40°C

4 à 5 mn si HF plus temps de stabilisation sous

presse 1 à 3 mn

Conservation :

2 à 6 mois à 20°C

Température minimale d’application : 18°C

Tenue à l’eau et à l’humidité

Tenue satisfaisante à la chaleur

Rigidité très élevée

Joints clairs

Joints épais possible

Abrasivité

Urée formol modifiée (UF)

8 à 16 h à 20°C

15 à 30 mn à 60°C

5 à 10 mn si HF plus temps de stabilisation sous

presse 1 à 3 mn

Conservation :

6 à 12 mois à 20°C

Température minimale d’application : 15°C

Rigidité élevée

Joints clairs

Joints épais possible

Mauvaise tenue aux intempéries

Sensibilité aux températures supérieures à 70°C

Abrasivité

(x) Se conformer aux prescriptions des fournisseurs d’adhésifs

Page 31: Construction Bois CB71, Univ Artois

Tableau 3 – Préconisation des adhésifs de type I ou II selon NF EN 301/302

Température de service < 50°C Classes

d’utilisation

Température de

service ³ 50°C Humidité bois ≤ 18%

Humidité bois > 18%

Exposition en atmosphère corrosive (produits chimiques ou autres)

I1 type 1 type 1 ou 2 sans objet sans objet

I2 type 1 type 1 ou 2 type 1 type 1

H3 type 1 type 1 type 1 type 1

H4 type 1 sans objet type 1 type 1

Les résultats connus des examens de type montrent que :

1° - Les adhésifs de type 1 correspondent en généra l aux formulations résorcine et mélamine-urée-formol

2° - Les adhésifs de type 2 correspondent en généra l aux formulations urée-formol

1.2 Fabrication

Les principes généraux de fabrication sont indiqués dans les paragraphes suivants. De nombreuses variantes existent notamment au niveau des techniques de mise sous presse et de polymérisation de la colle.

1re opération : Séchage ou Stabilisation

La première opération consiste à amener l’humidité du bois approvisionné à celle requise pour la fabrication. L’humidité d’une lamelle dépend du traitement ou non du bois. Pour le bois non traité, l’humidité doit être homogène, à savoir entre 8 et 15 % et avec un écart maximal de 4 % dans une même lamelle. Pour le bois traité, l’humidité doit être comprise entre 11 et 18 %.

2e opération : Enturage et Aboutage

Après une opération dite " de purge " (triage) consistant à éliminer les défauts, les lamelles sont tronçonnées et aboutées, afin de réaliser les longueurs nécessaires à la fabrication. Au cours de cette opération, la température du bois doit être supérieure ou égale à 15°C.

Les joints à entures multiples sont les plus utilisés "(enture de 5 à 50 mm) avec une tendance actuelle aux entures courtes (10 à 15 mm). La pression minimale pour l’aboutage est de l’ordre de 20 bars.

3e opération : Le rabotage des lamelles

Après aboutage, un rabotage des lamelles s’effectue au maximum 24 h avant l’encollage.L’écart maximum admissible par rapport à l’épaisseur moyenne sur une longueur de lamelle de 1 m, est égal à 0,2 mm.Pour les adhésifs urée-formol non modifiés, cet écart doit être inférieur à 0,1 mm.

4e opération : Encollage des lamelles

Autrefois, il était effectué manuellement. Aujourd’hui, cette opération est réalisée avec des encolleuses à rideaux ou rouleaux. Au moment du collage, les surfaces doivent être propres, et l’adhésif appliqué uniformément.

5e opération : Serrage des lamelles

Il a pour but de maintenir les pièces encollées à la pression voulue dans la forme désirée pendant le temps de polymérisation de la colle. Ce temps est variable suivant le type de colle employée, la température et l’hygrométrie de l’air ambiant, le mode de chauffage, éventuellement.

La pression minimale pour les différents types de colle généralement employées dépend de l’épaisseur de la lamelle (inférieure à 35 mm ou supérieure jusqu'à 45 mm) ; elle varie de 6 bars pour les faibles épaisseurs et, pour les plus fortes, de 8 ou 10 bars. Cette pression est obtenue :

Page 32: Construction Bois CB71, Univ Artois

• - par des tiges filetées de forte section dont le serrage se fait à l’aide de clé à choc ayant un dispositif dynamométrique de débrayage automatique,

• - par des vérins hydrauliques ou pneumatiques,

• - par la répartition de l’effort à l’aide de blocs de serrage sur la planche de répartition,

• - par le nombre de tiges filetées suivant l’épaisseur des lamelles et de la planche de répartition.

Lors du séchage, le retrait de la pièce en cours de collage nécessite un maintien constant de la pression qui peut se faire :

• - manuellement, par un resserrage régulier,

• - automatiquement, par des ressorts compensateurs ou par tout autre système équivalent.

L’entre-axe maximal des presses dépend de la pression de collage ainsi que de l’épaisseur de la poutre à serrer et ne devra jamais dépasser 40 cm à l’intrados.

6e opération : Taillage et Finitions

Il s’agit essentiellement des opérations de rabotage, de perçage et taillage et application de produits de traitement et/ou finitions.

2 Classes de résistance

Les classes de résistance (d'après EN 1194 - version Juillet 1999) du bois lamellé collé sont les suivantes :

Tableau 4 - Classes de résistance des lamelles de bois selon EN 338

Lamellé collé homogène C 24 C 30 C40

Lamellé collé combiné C 24 / C 18 C 30 / C 24 C 40 / C 30

Classes du BLC GL 24 GL 28 GL 32

Pour utiliser les Règles CB 71, les valeurs de contraintes admissibles et les propriétés associées aux classes de résistance du Bois Lamellé Collé sont définies dans les tableaux 5a et 5b (Règles Professionnelles SNCCBLC/FIBC )

Page 33: Construction Bois CB71, Univ Artois

Tableau 5a – Contraintes admissibles et propriétés associées au BLC combiné à H = 12 % en N/mm2 (*), KN/mm2 ** et Kg/m3 *** et relevant du marquage règlementaire (Note SNCCBLC/FIBC)

Classe de résistance du Bois Lamellé Collé

Notation CB 71

GL 24 c

combiné

GL 28 c

combiné

GL 32 c

combiné

GL 36 c

combiné

Résistance en flexion

σ f 11,4 13,3 15,2 17,1

Traction axiale σ 6,7 7,9 9,3 10,7

Traction transversale

σ t 0,2 0,2 0,2 0,2

Compression axiale

σ ‘ 10 11,4 12,6 13,8

Compression transversale

σ ‘ t 2,2 2,6 2,8 3,2

Cisaillement τ 1,0 1,3 1,5 1,8

Module moyen d’élasticité axiale **

E F 11,60 12,60 13,7 14,7

Module moyen de cisaillement **

E G 0,59 0,72 0,78 0,85

Masse volumique moyenne***

420 460 500 540

(*) Les règles CB 71 prévoient une humidité de base de 15 % pour les valeurs de contraintes. Il est convenu d’utiliser directement celles à 12 % (prEN 1194) comme contraintes de base et sans correction.** Modules - *** Masses volumiques

Page 34: Construction Bois CB71, Univ Artois

Tableau 5a – Contraintes admissibles et propriétés associées au BLC homogène à H = 12 % en N/mm2 (*), KN/mm2 ** et Kg/m3 *** et relevant du marquage règlementaire (Note SNCCBLC/FIBC)

Classe de résistance du Bois Lamellé Collé

Notation CB 71

GL 24 c

combiné

GL 28 c

combiné

GL 32 c

combiné

GL 36 c

combiné

Résistance en flexion

σ f 11,4 13,3 15,2 17,1

Traction axiale σ 7,9 9,3 10,7 12,4

Traction transversale

σ t 0,2 0,2 0,2 0,3

Compression axiale

σ ‘ 11,4 12,6 13,8 14,8

Compression transversale

σ ‘ t 2,6 2,8 3,2 3,4

Cisaillement τ 1,30 1,50 1,80 2,0

Module moyen d’élasticité axiale **

E F 11,60 12,60 13,70 14,70

Module moyen de cisaillement **

E G 0,72 0,78 0,85 0,91

Masse volumique moyenne***

440 480 520 560

(*) Les règles CB 71 prévoient une humidité de base de 15 % pour les valeurs de contraintes. Il est convenu d’utiliser directement celles à 12 % (prEN 1194) comme contraintes de base et sans correction.** Modules - *** Masses volumiques

3 Justifications

Les justifications se font de manière analogue à celles menées pour les pièces en bois massif : le dimensionnement se fera aux déformations et les vérifications aux contraintes admissibles, en appliquant les coefficients de pondération adéquats en fonction de l’humidité, de la hauteur de section, ….

Page 35: Construction Bois CB71, Univ Artois

ANNEXES

Exemples d’assemblages

GSE/2,5 - Grands Sabots à Ailes Extérieures

APPLICATIONS : Types : solives, pannes, poutres lisses et montants de bardage, butées de chevrons, renforcement d'assemblages existants. Produits : bois massif, bois composite, bois lamellé collé, fermes triangulées, profilés. Supports : bois massif, bois composite, bois lamellé collé, béton, acier. MATIERE : Acier S250GD + Z275 suivant NF EN 10326 DIMENSIONS : voir tableau CHARGES ADMISSIBLES : voir tableau Essais de cisaillement réalisés par notre laboratoire d'essais anglais conforme aux spécifications de l'EC5. FIXATIONS : Assemblage bois/bois: pointes crantées estampillées PB ou No Equal. Assemblage bois/béton: chevilles mécaniques Ø12.

Page 36: Construction Bois CB71, Univ Artois

Dimensions (en mm)

Dimensions Fixation sur porté Fixations sur porteur REFERENCE

A B C Ep Larg 38 à 50 Larg > 51 Sur béton Sur bois

GSE300/2,5X 32 à 110 95 à 134 110 2,5 6 - Ø4.2x35 6 - Ø4,2x50 2 - Ø12 12 - Ø4,2x50

GSE340/2,5X 32 à 110 115 à 154 110 2,5 8 - Ø4.2x35 8 - Ø4,2x50 2 - Ø12 16 - Ø4,2x50

GSE380/2,5X 32 à 140 120 à 174 110 2,5 8 - Ø4.2x35 8 - Ø4,2x50 4 - Ø12 16 - Ø4,2x50

GSE440/2,5X 32 à 140 150 à 204 110 2,5 12 - Ø4.2x35 12 - Ø4,2x50 4 - Ø12 22 - Ø4,2x50

GSE500/2,5X 32 à 140 180 à 234 110 2,5 14 - Ø4.2x35 14 - Ø4,2x50 4 - Ø12 28 - Ø4,2x50

GSE500/2.5X-AL 141 à 200 150 à 179,5 110 2,5 12 - Ø4.2x35 12 - Ø4,2x50 2 - Ø12 28 - Ø4,2x50

GSE540/2,5X 32 à 140 200 à 254 110 2,5 16 - Ø4.2x35 16 - Ø4,2x50 4 - Ø12 32 - Ø4,2x50

GSE540/2.5X-AL 141 à 200 170 à 199,5 110 2,5 14 - Ø4.2x35 14 - Ø4,2x50 4 - Ø12 32 - Ø4,2x50

GSE600/2,5X 32 à 140 230 à 284 110 2,5 20 - Ø4.2x35 20 - Ø4,2x50 4 - Ø12 38 - Ø4,2x50

GSE600/2.5X-AL 141 à 200 200 à 229,5 110 2,5 18 - Ø4.2x35 18 - Ø4,2x50 4 - Ø12 38 - Ø4,2x50

GSE660/2,5X 32 à 140 260 à 314 110 2,5 22 - Ø4.2x35 22 - Ø4,2x50 6 - Ø12 44 - Ø4,2x50

GSE660/2.5X-AL 141 à 200 230 à 259,5 110 2,5 20 - Ø4.2x35 20 - Ø4,2x50 4 - Ø12 44 - Ø4,2x50

GSE720/2,5X 32 à 140 290 à 344 110 2,5 26 - Ø4.2x35 26 - Ø4,2x50 6 - Ø12 50 - Ø4,2x50

GSE720/2.5X-AL 141 à 200 260 à 289,5 110 2,5 24 - Ø4.2x35 24 - Ø4,2x50 6 - Ø12 50 - Ø4,2x50

GSE780/2,5X 32 à 140 320 à 374 110 2,5 28 - Ø4.2x35 28 - Ø4,2x50 6 - Ø12 56 - Ø4,2x50

GSE780/2.5X-AL 141 à 200 290 à 319,5 110 2,5 26 - Ø4.2x35 26 - Ø4,2x50 6 - Ø12 56 - Ø4,2x50

GSE840/2,5X 60 à 140 350 à 390 110 2,5 32 - Ø4.2x35 32 - Ø4,2x50 6 - Ø12 62 - Ø4,2x50

GSE840/2.5X-AL 141 à 200 320 à 349,5 110 2,5 30 - Ø4.2x35 30 - Ø4,2x50 6 - Ø12 62 - Ø4,2x50

GSE900/2,5X 60 à 140 380 à 420 110 2,5 38 - Ø4.2x35 38 - Ø4,2x50 6 - Ø12 68 - Ø4,2x50

GSE900/2.5X-AL 141 à 200 350 à 379,5 110 2,5 32 - Ø4.2x35 32 - Ø4,2x50 6 - Ø12 68 - Ø4,2x50

GSE960/2,5X 60 à 140 410 à 450 110 2,5 38 - Ø4.2x35 38 - Ø4,2x50 6 - Ø12 74 - Ø4,2x50

GSE960/2.5X-AL 141 à 200 380 à 409,5 110 2,5 34 - Ø4.2x35 34 - Ø4,2x50 6 - Ø12 74 - Ø4,2x50

GSE1020/2,5X 60 à 140 440 à 480 110 2,5 40 - Ø4.2x35 40 - Ø4,2x50 6 - Ø12 80 - Ø4,2x50

GSE1020/2.5X-AL 141 à 200 410 à 439,5 110 2,5 38 - Ø4.2x35 38 - Ø4,2x50 6 - Ø12 80 - Ø4,2x50

Page 37: Construction Bois CB71, Univ Artois

EA - Equerres d'assemblages Les équerres d'assemblages permettent de connecter des petites ossatures de mensuiserie intérieures et extérieures. Elles sont étudiées pour des assemblages bois/bois. APPLICATIONS : Types : aménagements intérieures, meubles, petites ossatures Produits : bois massif, bois lamellé collé, fermes triangulées, profilés et bois composite. Supports : bois, béton, acier MATIERE : Acier galvanisé S250GD + Z275 suivant NF EN 10326. DIMENSIONS : voir tableau. AVANTAGES : Large gamme de dimensions et perçages. FIXATIONS : Trous de pointes et de boulons (Ø voir tableau). - Sur bois : pointes crantées PB Ø4,2 mm, boulons, tirefonds, vis. - Sur béton : chevilles, scellement chimique… - Sur métal : boulons, boulons HR, rivets…

Dimensions

Dimensions (en mm) Perçages REFERENCE

A B C Ep Trous ailes A Trous ailes B

EA442/2 20 40 40 2 2 Ø5 2 Ø5

EA444/2 40 40 40 2 3 Ø5 3 Ø5

EA446/2 60 40 40 2 4 Ø5 4 Ø5

EA534/2 40 50 30 2 4 Ø5 - 1 Ø11 3 Ø5

EA554/2 40 50 50 2 4 Ø5 - 1 Ø11 4 Ø5 - 1 Ø11

EA644/2 40 60 40 2 4 Ø5 - 1 oblong 10x20 4 Ø5 - 1 Ø11

EA664/1,5 40 60 60 1,5 6 Ø5 - 1 oblong 10x30 4 Ø5 - 1 oblong 10x20

EA664/2 40 60 60 2 6 Ø5 - 1 oblong 10x30 4 Ø5 - 1oblong 10x20

EA666/2 60 60 60 2 4 Ø5 - 1 oblong 10x42 4 Ø5 - 1oblong 12x20

EA754/1,5 40 70 50 1,5 6 Ø5 - 1 oblong 10x30 5 Ø5 - 1oblong 10x20

EA754/2 40 70 50 2 6 Ø5 - 1 oblong 10x30 5 Ø5 - 1oblong 10x20

EA756/2 60 70 50 2 6 Ø5 - 1 oblong 10x42 4 Ø5 - 1oblong 10x20

EA844/2 40 80 40 2 4 Ø5 - 1 oblong 12x20 6 Ø5 - 1 oblong 8x40

EA844/2,5 40 80 40 2,5 4 Ø5 - 1 oblong 12x20 6 Ø5 - 1 oblong 8x40

EA846/2,5 60 80 40 2,5 4 Ø5 - 1 oblong 12x20 6 Ø5 - 1 oblong 10x42

EA954/2,5 40 90 50 2,5 5 Ø5 - 1 oblong 12x20 7 Ø5 - 1oblong 8x50

EA956/2,5 60 90 50 2,5 8 Ø5 - 1 oblong 10x52 4 Ø5 - 1oblong 12x20

EA1064/2,5 40 100 60 2,5 5 Ø5 - 1 oblong 12x20 7 Ø5 - 1oblong 8x50

EA1066/2,5 60 100 60 2,5 8 Ø5 - 1 oblong 10x52 5 Ø5 - 1oblong 12x20

Page 38: Construction Bois CB71, Univ Artois

ABE- PBS - Embases de poteau fortes charges APPLICATIONS : Types : auvent, pergola, veranda. Produits : bois massif, bois composite, bois lamellé collé. Supports : bois massif, bois composite, bois lamellé collé, béton. MATIERE : Acier galvanisé. DIMENSIONS : voir tableau. CHARGES ADMISSIBLES : voir tableau. Les pieds de poteau ont été testés aux Etats-Unis dans des conditions de charges permanentes et soumis à différents cas d’humidité (en soubassement, eau stagnante, intempéries) FIXATIONS : - Sur poteau: pointes crantées estampillées PB Ø4,2x50, boulons Ø10 ou Ø12 mm. - Sur support: chevilles mécaniques Ø16, scellement.

Dimensions (en mm)

Base Flanc REFERENCE

D Ep F A B C Ep

ABE44 -- 1,6 -- 90 71 89 1,6

ABE46 -- 2,7 -- 90 103 138 1,6

ABE66 -- 2,7 -- 140 79 138 2

PBS44A 103 2,5 89 90 159 57 2

PBS46 102 2,5 138 90 162 57 2

PBS66 152 2,5 137 140 165 57 2,5

Page 39: Construction Bois CB71, Univ Artois

BDDD type C1 - Crampons BulldogLes crampons Buldog double denture entrent dans la réalisation d'assemblages boulonnés. Ils permettent d'augmenter la charge admissible des assemblages. APPLICATIONS : Types : Tous types d'assemblages bois/bois boulonnés… Produits : bois massif, bois composite, bois lamellé collé… Supports : Bois massif, bois composite, bois lamellé collé… MATIERE : - Acier galvanisé à chaud sur une épaisseur de 60 microns (400 gr/m²). - Les modèles C1 Ø48, Ø62 et Ø75 mm sont disponibles en finition type AVZ, acier galvanisé à chaud sur une épaisseur de 20 microns. - Epaisseur, voir tableau. DIMENSIONS : voir tableau. Les dimensions standard des crampons type C1, C2, C3 et C4 sont définies par la norme NF EN 912. CHARGES ADMISSIBLES : voir tableau. L'ensemble de nos tests est réalisé par les membres du Réseau des Laboratoires du Génie Civil Bois. FIXATIONS : Le montage des crampons double denture se fait à l'aide d'une presse ou d'une clé par enfoncement des dents lors du boulonnage des pièces entres elles. Une fois le serrage effectué l'assemblage est réalisé. Le montage d'un boulon nécessite toujours deux rondelles.

Dimensions des connecteurs de type C1

Diamètres Epaisseur Hauteurs Nombre de dents REFERENCE

d d1 t Dents int h2 h Ext. Int.

BDDD48 48 17,0 1,0 - 12,5 24 -

BDDD62 62 21,0 1,2 - 16,0 24 -

BDDD75 75 26,0 1,25 - 19,5 24 -

BDDD95 95 33,0 1,35 9,5 24,0 24 12

BDDD117 117 48,0 1,5 10,5 29,5 24 12

Hauteur sans dent extérieures h1=(h-t)/2. Tolérances: - Epaisseur t: +/-0,02 - Autres dimensions +/- 0,5THA - Etriers à bretelles pour fermettesL'étrier à bretelles THA a été conçu spécialement pour la fixation des fermes triangulées. APPLICATIONS : Types : fixation d'un empanon, 1/2 fermes triangulées, solives… Produits : bois massif, fermes triangulées, bois composite. Supports : bois massif, fermes triangulées, bois composite. MATIERE : Acier galvanisé S250GD + Z275 suivant NF EN 10326 Epaisseur 1,2 mm. DIMENSIONS : Produits standard, voir tableau. CHARGES ADMISSIBLES : voir tableau. FIXATIONS : Voir tableau. REMARQUES :

Page 40: Construction Bois CB71, Univ Artois

Se reporter aux caractéristiques méaniques de l'élément de fixation. INSTALLATION : 2 configurations possibles : - Ailes à plat, montage traditionnel à l'identique des sabots à ailes extérieures. - Ailes pliées pour ajuster la hauteur du sabot par rapport à l'élément porteur. Clouer les ailes rabattues (voir schéma).

Dimensions - Clouage maximum

Dimensions (en mm) Fixations Sections (en mm) REFERENCE

A B C E Portée Porteur (Face) Porteur (Top) Ferme

THA250/38 38 256 63 125 6 - Ø3,75x75 24- Ø3,75x32 -- Larg. 38

Dimensions - Clouage minimum

Dimensions (en mm) Fixations Sections (en mm) REFERENCE

A B C E Portée Porteur (Face) Porteur (Top) Ferme

THA250/38 38 256 63 125 6 - Ø3,75x75 4 - Ø3,75x32 4 - Ø3,75x32 Larg.38

T/L - Ferrures Les ferrures en L et en T sont requises pour le renforcement d'intersections. Elles sont utilisables en rénovation. APPLICATIONS : Types : • Pour les types 55L et 66L: - Renforcements ouvrants, chassis de fenêtre ou portes, liaison poteaux poutres… • Pour les types 66T: - liaisons poteaux poutres… MATIERE : Acier galvanisé. Pour les 55L : épaisseur 1,5 mm. Pour les 66T et 66L : épaisseur 2 mm. FIXATIONS : • Pour les 55L: - vis autoforeuses SD8 Ø4,0x32 mm. - Pointes crantées Ø3,7x50 mm ou Ø3,1x35 mm. • Pour les 66L et 66T: - Boulons perçages Ø9,5 mm. Vis autoforeuses SD8 Ø4,0x32 mm. - Pointes crantées Ø3,7x50 mm ou Ø3,1x35 mm. - Pointes lisses Ø4,0x90 mm.

Dimensions

Page 41: Construction Bois CB71, Univ Artois

Dimensions (en mm) REFERENCE

A B C Ep

55L 32 125 125 1,5

66L 38 150 150 2

66T 38 125 150 2

PFA - PFP - Pieds de FermettesLes pieds de fermettes permettent un ancrage rapide et précis des fermettes, chevrons ou solivettes. Le modèle à plat est utilisé principalement pour reprendre des efforts horizontaux. Le modèle plié est plus adapté aux efforts de soulèvement important. APPLICATIONS : Types : Pied de fermettes, de chevrons ou ancrage de solivettes… Produits : bois massif, bois lamellé collé, fermes triangulées… Supports : Bois massif, bois lamellé collé. CONDITIONNEMENT : Cartons de 250 pièces. MATIERE : Acier galvanisé S250GD + Z275 suivant NF EN 10326 Epaisseur. 1 mm DIMENSIONS : voir tableau et dessin Autres dimensions, nous consulter. AVANTAGES : Les trous de pointes sont décalés pour éviter le fendage du bois. FIXATIONS : Trous de pointes Ø4,8 mm. Pièce portée : pointes crantées Ø4,2. Pied de fermette sur support : pointes crantées Ø4,2. REMARQUES : Se reporter aux caractéristiques mécaniques de l'élément de fixation.

Dimensions

Dimensions (en mm) Perçages REFERENCE

A B C D E Nombre

PFA38 38 84 23 114 29 12 - Ø4,8

PFP38 38 84 23 114 29 12 - Ø4,8

ECH - EchantignolesAPPLICATIONS : Types : Pannes sur ferme, poteau-poutre, poutres, renforcement d'assemblages existants. Produits : bois massif, bois lamellé collé, fermes triangulées, profilés et bois composite. Supports : Bois, béton, acier… MATIERE : Acier galvanisé (S250GD + Z275 suivant NF EN 10326), épaisseur 2 mm. DIMENSIONS : voir tableau.

Page 42: Construction Bois CB71, Univ Artois

FIXATIONS : - Trous de pointes Ø5 mm. - Pièce portée : pointes crantées PB Ø4,2 mm, vis autoforeuses. - Elément porteur : pointes crantées PB Ø4,2 mm, vis autoforeuses… REMARQUES : Se reporter aux caractéristiques mécaniques de l'élément de fixation.

Dimensions

Dimensions (en mm) Perçages flancs REFERENCE

A B C D Ep. Pointes

ECH90/19090 65 90 90 55 2 14 Ø5

ECH125/19130 79 125 125 66 2 19 Ø5

ECH160/19170 93 160 160 67 2 23 Ø5

ECH200/19210 100 200 200 67 2 28 Ø5

SF - Supports de faîtageDeux modèles: - l'un est doté de pattes pliables - l'autre se fixe en applique MATIERE : Acier galvanisé S250 + Z275 conformément à la NF EN 10147. DIMENSIONS : Voir tableau. FIXATIONS : - Pointes crantées Ø4,2. - Pointes torsadées.

Dimensions

Dimensions (en mm) REFERENCE

A B C D Ep. Perçages

SF/2800 51 284 20 57 1,5 14 Ø5

SF/2840 40 253 20 57,5 1,5 20 Ø5

SF/2850 51 247,5 20 57,5 1,5 20 Ø5

ZS38N - Fixations d'entretoises

Page 43: Construction Bois CB71, Univ Artois

Le clip ZS38N assure la fixation des entretoises entre les entraits de fermettes ou le solivage de poutre I. MATIERE : Acier galvanisé DX51D+ Z275 suivant NF EN 10327, épaisseur 0,9 mm. DIMENSIONS : voir tableau et plan coté. CHARGES ADMISSIBLES : voir tableau. FIXATIONS : Pointes crantées Ø3,1x35 mm ou pointes torsadées Ø3,75x32 mm.

Dimensions

Dimensions (en mm) REFERENCE

A B C E

ZS38N 52 46 38 31

PCRIX - Pointes Crantées Inox et Pointes torsadées galvaniséesLes pointes crantées inoxydables sont préconisées en ambiance agressive, en milieu salin et dans l'industrie alimentaire. APPLICATIONS : Types : Fixation de sabots, fixation d'équerre, fixation de feuillard Produits : bois massif, bois composite, bois lamellé collé. Supports : Bois massif, bois composite, bois lamellé collé. CONDITIONNEMENT : Deux conditionnements disponibles : par boites de 1 kg ou par seau de 5 kg. MATIERE : Inox AISI 316 Symbolique: X5CrNiMo17-12-2 Numérique: 1.4401 DIMENSIONS : Produits standard, voir tableau et schéma. Tête plate conique renforcée: Ø4,0 mm. Tête ronde sans marquage: Ø2,5 mm. CHARGES ADMISSIBLES : voir tableau.

Dimensions

Dimensions (en mm) REFERENCE

D D2 L

PCRIX 2,5/35 2,5 5,4 35

PCRIX 2,5/50 2,5 5,4 50

PCRIX 2,5/60 2,5 5,4 60

PCRIX 4,0/50 4,0 7,6 50

Les pointes torsadées galvanisées à chaud, N3,75x38/1,25 sont utilisées pour la fixation de poutres en I recommandées dans la gamme spécifique des étriers pour bois composites. CONDITIONNEMENT : Cartons de 20 boites de 1,25 kg. MATIERE : Acier galvanisé

Page 44: Construction Bois CB71, Univ Artois

DIMENSIONS : voir tableau. CHARGES ADMISSIBLES : voir tableau.

Dimensions

Dimensions (en mm) REFERENCE

Diamètre Longueur

N3,75x32/1,25 Ø3,75 32

BSH - Boulons à tête carréeLes boulons de charpente à tête carrée sont utilisés dans les assemblages boulonnés. La charge reprise par un assemblage boulonné peut-être augmentée avec les crampons BDSD / BDDD ou les anneaux AD. MATIERE : acier de classe 4.8, galvanisé à chaud suivant la norme NF EN ISO 1461 DIMENSIONS : voir tableau REMARQUES : Utiliser des rondelles adaptées. INSTALLATION : La mise en œuvre des boulons est indissociable de l'emploi de rondelles conformes aux normes.

Dimensions

Dimensions REFERENCE

diamètre Filetage L

BSH12/180 12 100 180

BSH12/200 12 100 200

BSH12/240 12 100 240

BSH16/180 16 100 180

BSH16/200 16 100 200

BSH16/240 16 100 240

BSH16/300 16 100 300

BSH18/180 18 100 180

BSH18/200 16 100 200

BSH18/240 16 100 240

BSH18/300 18 100 300

Page 45: Construction Bois CB71, Univ Artois

Dimensions

Dimensions REFERENCE

diamètre Filetage L

BSH20/180 20 100 180

BSH20/200 20 100 200

BSH20/240 20 100 240

BSH20/300 20 100 300

LL - Rondelles Galvanisées à ChaudProduits complémentaire aux boulons et conforme aux exigences de diamètre extérieur des règles CB71 DIMENSIONS : voir tableau. REMARQUES : Le diamètre intérieur doit être supérieur de 2 mm au diamètre nominal du boulon.

Dimensions

Dimensions (en mm) REFERENCE A B Ep. Type de boulon

LL40/14/4 14 40 4 M12

LL50/18/5 18 50 5 M16

LL55/20/6 20 55 6 M18

LL60/22/6 22 60 6 M20

LL70/26/8 26 70 8 M24

Page 46: Construction Bois CB71, Univ Artois

Cette famille d’assembleur est composée d’éléments métalliques industrialisés utilisables en fermettes, charpentes traditionnelles et lamellé collé. Caractéristiques et dimensionnement : Epaisseurs de tôle : Les épaisseurs de tôle les plus courantes sont comprises entre 1 et 4 mm. Leurs géométries sont obtenues par pliage et/ou emboutissage. Dimensionnement : Il est d’usage d’assimiler les boîtiers et étriers à des appuis simples, en revanche, les équerres peuvent dans certains cas être assimilées à des pivots. En conséquence, selon le cas pour le dimensionnement il est indispensable d’évaluer l’effort tranchant (et normal pour les équerres) qui agit sur ces produits. Une fois ce travail réalisé, les abaques diffusées par les fabricants permettent de contrôler et de valider si l’assembleur et capable de reprendre cette charge. Il est important de souligner que les valeurs de comparaison établis dans ces abaques doivent avoir pour origine des essais et une interprétation réalisée par un laboratoire accrédité. Fabrication : Assembleurs : En France, l’acier utilisé pour la fabrication de ces produits correspond à une qualité de type DX51D (Norme EN 10142) galvanisée (Z275). La forme finale est obtenue par pliage et emboutissage à froid de tôle mince (1 à 4 mm). Références normatives : Normes actuelles : • NF P 21-701 : Règles CB 71 - Règles de calcul et de conception des charpentes en bois • NF ENV 1995 (NF P 21-711) : EC 5 – Eurocode 5 : Calcul des structures en bois Autres documents : • ETAG 015 : Eléments de connexion tridimensionnels • Guide des assemblages (CTBA) Principales spécifications et recommandations : Efforts de traction : Il est important de souligner que les sabots et étriers n’ont pas été testé dans des configurations de reprise d’effort de traction. En conséquence, il est seulement autorisé de les faire travailler en reprise d’effort tranchant. Selon la structure, il est donc important de contrôler ce point (par exemple la liaison de montant de poutre au vent). Mise en œuvre : La mise en place de ce type de produit est réalisé en atelier ou sur chantier au moyen de pointes torsadées, annelées ou cannelées, ou de chevilles. Il est d’usage d’appliquer la règle suivante pour définir le type du sabot : • Développé du boîtier : 2/3 de la hauteur de la poutre x 2+ épaisseur de la poutre Tenue au feu : Il est également important de noter que, lorsque la structure doit répondre à des exigences de tenue au feu, il est obligatoire que l’épaisseur de la tôle des sabots soit de 4 mm pour une stabilité de 30 minutes (DTU Bois Feu 88). Marquage CE : Chaque composant structurel de la construction classé et devant circuler au sein de l’Europe devra avoir une attestation de conformité, selon la directive communautaire sur les produits de la construction (DPC n° 89-106), et q ui sera matérialisée par le marquage CE. Les répartitions des tâches à réaliser en fonction des systèmes d’attestation de conformité sont les suivantes :

Certificatif Déclaratif Systèmes d’attestation 1+ 1 2+ 2 3 4

Evaluation du produit Essai de type initial ORN ORN FAB FAB ORN FAB Essai sur échantillon par sondage ORN ORN* FAB*

Page 47: Construction Bois CB71, Univ Artois

Contrôle production en usine (FPC) FAB FAB FAB FAB FAB FAB

Evaluation du contrôle de la production en usine Inspection initiale ORN ORN ORN ORN Surveillance continue ORN ORN ORN

ORN : Organisme notifié (d’essais, d’inspection ou de certification) FAB : Fabricant * : Non obligatoire

Les boîtiers, étriers et équerres métalliques nécessitent un système d’Attestation de Conformité de niveau 2+, selon les exigences du guide d’Agrément Technique Européen ETAG 015, applicable à partir du 24/09/2002 et exigible à partir de juin 2006. Acquis environnementaux : Données environnementales : Le format des données environnementales, que peut fournir sur demande le fabricant d’un produit de construction, doit respecter la norme NF XP01-010. Déchets acier : Les filières de recyclage des éléments en acier sont opérationnelles. L’optimisation de la valorisation peut être assurée par un tri à la source des éléments métalliques.