Constructing Log Book

6
Week One: elearning Knowledge Map Ching (2008): Static loads: structures will gradually respond under a static load, the deformation of the structure will reach a peak when the force is a maximum. Static loads include: Live loads: an applied load, whose force typically acts in a vertical direction. Examples include: occupancy loads (people, furniture), snow loads, rain loads Dead loads: the self weight of the structure. Dynamic loads: applied rapidly to the structure, the deformation of the structure is not directly related to the force that is applied. Dynamic loads include: Wind loads Earthquake loads Criteria to think about when considering and selecting materials: Strength (how strong is the material?) Stiffness (how flexible is the material?), Shape, Material behaviours (materials will behave differently with the force applied), Economy and sustainability (how expensive? how readily available?). Forces: tension forces: when a load pulls the structural member apart in opposite directions. compression forces: when a load pushes the structural member. Load path diagrams: considers the applied load, not the self load. The diagram shows how the load is transferred down into the ground. Loads are respresented as arrows, these also suggest the direction and scale The load takes the most simple route through the beams At the ground there are reaction forces – this is force is equal and opposite so that the structure is stable

description

A01 Log Book Constructing Environments University of Melbourne

Transcript of Constructing Log Book

Page 1: Constructing Log Book

     

Week  One:  e-­‐learning  Knowledge  Map  

Ching  (2008):      Static  loads:  structures  will  gradually  respond  under  a  static  load,  the  deformation  of  the  structure  will  reach  a  peak  when  the  force  is  a  maximum.    Static  loads  include:  

-­‐ Live  loads:  an  applied  load,  whose  force  typically  acts  in  a  vertical  direction.    Examples  include:  occupancy  loads  (people,  furniture),  snow  loads,  rain  loads  

-­‐ Dead  loads:  the  self  weight  of  the  structure.      Dynamic  loads:  applied  rapidly  to  the  structure,  the  deformation  of  the  structure  is  not  directly  related  to  the  force  that  is  applied.  Dynamic  loads  include:  

-­‐ Wind  loads  -­‐ Earthquake  loads  

 

Criteria  to  think  about  when  considering  and  selecting  materials:    

-­‐ Strength  (how  strong  is  the  material?)  -­‐ Stiffness  (how  flexible  is  the  material?),    -­‐ Shape,    -­‐ Material  behaviours  (materials  will  behave  

differently  with  the  force  applied),    -­‐ Economy  and  sustainability  (how  expensive?  how  

readily  available?).    Forces:  

-­‐ tension  forces:  when  a  load  pulls  the  structural  member  apart  in  opposite  directions.  ç☐è  

-­‐ compression  forces:  when  a  load  pushes  the  structural  member.  è☐ç  

Load  path  diagrams:  

-­‐ considers  the  applied  load,  not  the  self  load.  -­‐ The  diagram  shows  how  the  load  is  transferred  

down  into  the  ground.  -­‐ Loads  are  respresented  as  arrows,  these  also  

suggest  the  direction  and  scale  -­‐ The  load  takes  the  most  simple  route  through  the  

beams  -­‐ At  the  ground  there  are  reaction  forces  –  this  is  

force  is  equal  and  opposite  so  that  the  structure  is  stable  

Page 2: Constructing Log Book

 

There  are  three  types  of  construction:   1)  Mass  construction             2)  Frame  (column  and  beam)             3)  Tensile/fabric    Mass  construction:  

1) Small  module  (eg.  Mud/clay  bricks,  concrete  bricks)  -­‐  not  strong  against  natural  forces  

2) Large  module  (eg.  Precast  concrete)    Small  module  mass  construction:                      Bricks  used  in  small  module  mass  construction  can  be:  

-­‐ pressed  bricks  (vary  in  colour.  Harder  the  brick,  darker  the  colour)  -­‐ wire  cut/extruded  

 

Tutorial  07-­‐03-­‐2014  

We  started  with  brick  that  were  placed  on  top  of  one  another  but  soon  realised  that  the  structure  would  become  unstable  when  it  was  built  higher.  

We  chose  to  create  a  pattern  with  the  bricks  to  ensure  the  structure  became  more  stable  and  therefore    higher.  

Page 3: Constructing Log Book

During  this  activity  we  were  asked  to  create  the  highest  structure  possible  made  out  of  wooden  bricks  and  clay  bricks.  We  chose  to  use  a  circular  shape,  as  we  believed  it  would  allow  us  to  easily  build  higher.  However,  we  could  not  find  an  easy  way  to  create  a  roof  over  the  top  of  the  structure  due  to  the  way  it  was  constructed.  Our  choice  to  include  the  clay  bricks  into  our  construction  allowed  us  to  create  compression  and  ensured  the  structure  was  more  stable.

The  self  weight  and  compression  force  pushing  down  allows  for  a  stronger  structure.  

Page 4: Constructing Log Book

     

Week  Two:  e-­‐learning  Knowledge  Map  

Ching  (2008):      Structural  system:  This  system  is  used  to  ensure  applied  loads  and  gravity  support  and  transmit  safely  to  the  ground.  Enclosure  system:  the  exterior  of  the  building.  Mechanical  systems:  ensures  that  services  are  supplied  to  the  structure.    

Structual  systems:  -­‐ Solid  –  find  in  early  buildings  (Egypt,  great  wall  of  china),  

compression  is  the  main  force  -­‐ Surface  –  example:  opera  house  uses  a  shell  structure  -­‐ Skeletal  –  frame  system,  efficient  ways  of  transforming  the  load  

down  to  the  ground  -­‐ Membrane  –  used  less  commonly  in  the  built  environment  (north  

court,  sails)  There  can  be  a  hybrid  that  uses  a  number  of  structural  systems.    Construction  systems:  make  decisions  based  on  these  criteria  –  performance  requirements,  aesthetic  qualities,  economic  efficiencies,  environmental  impacts.    ESD  and  selecting  materials:  

-­‐ Embodied  energy  is  the  total  energy  used.  -­‐ Consider  what  can  be  reused,  design  is  at  the  center  of  the  

lifecycle  of  a  building  and  its  materials.  -­‐ Recyclability  –  reduce,  reuse,  recycle  -­‐ Carbon  footprint  –  how  much  greenhouse  gas  is  produced  

Local  materials,  material  efficiency,  thermal  mass,  night  air  purging,  solar  energy,  wind  energy,  cross  ventilation,  smart  sun  design,  insulation,  water  harvesting.    Structural  joints:  

-­‐ Roller  joints  -­‐ Pin  joints  -­‐ Fixed  joints  

Page 5: Constructing Log Book

     

Three  different  joints:     Roller  Joint       Pin  Joint       Fixed  Joint                  

-­‐ Pin  joints  and  fixed  joints  are  more  common  -­‐ Fixed  joints  are  the  strongest  as  they  resist  rotation,  vertical  and  horizontal  forces.  

 The  more  joints  that  are  present  in  a  structure  the  more  unstable  it  will  be.  Triangles  as  a  shape  resist  rotation,  vertical  and  horizontal  forces  so  they  are  commonly  used  to  create  a  stable  structure.  

Tutorial  14-­‐03-­‐2014  

Squares  can  be  easily  deformed  when  undergoing  forces  

By  bracing  the  structure  and  creating  two  triangles,  it  will  be  a  lot  stronger    

Page 6: Constructing Log Book

During  this  activity  we  were  asked  to  construct  the  tallest  tower  out  of  one  piece  of  balsa  wood.  Our  group  began  disadvantaged  as  our  balsa  wood  was  cut  too  small  so  we  were  required  to  join  three  small  pieces  into  one  larger  piece.  Due  to  our  added  joints  our  structure  became  unstable  and  was  not  able  to  support  itself.    

When  forces  are  applied  (even  self  weight)  it  causes  the  structure  to  deform  and  is  unable  to  support  itself.