Constraint Diagrams

18
 Creating Constraint Diagrams 04A_constraint-diagram.ppt  D. Edberg ! #$%& 2013/Oct/08 ! #$%& Embraer ERJ-145 Regional Jet Overview  What are constraint diagrams?  Constraints for takeoff  Constraints for cruise  Landing constraints  Acceleration  The constraint diagram  Concluding remarks ' 2013/Oct/08

Transcript of Constraint Diagrams

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 1/18

 

Creating Constraint Diagrams

04A_constraint-diagram.ppt 

D. Edberg 

!#$%&2013/Oct/08 !

#$%&

Embraer ERJ-145 Regional Jet

Overview

•  What are constraint diagrams?

•  Constraints for takeoff

•  Constraints for cruise

•  Landing constraints

•  Acceleration

• 

The constraint diagram

•  Concluding remarks

'2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 2/18

#$%&

• Display what an airplane can and cannot do

• 

Used for design optimization• Choose a design point based on

• Design point must lie within the constraint

 boundaries

• Designs are often “optimum” near the

constraint lines

T SL

W TO

 andW 

TO

 

What are Constraint Diagrams? 

(2013/Oct/08

#$%&

Example Constraint Diagram

$

Courtesy W. Mason, Va. Tech

2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 3/18

#$%&

Constraint Diagram

)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 20 40 60 80 100

 W/S

      T       /      W

Cruise Out

Combat Turn Ma=0.9Combat Turn Ma=1.2

 Max Mach Heavy=2.2

Landing 4k

Takeoff 4kLoiter SL

 Mach 1.2 SL

Design Point

2013/Oct/08

#$%&

JSF Constraint Diagram

*

0.0 0.2 0.4 0.6 

0.8 1.0 1.2 1.4 

20  30  40  50  60  70  80  90  100 

Wing Loading W / S  (psf) 

Thrust /

Weight

RatioT /W  

Sustained G 

5 4

Instantaneous G  9 8 7

Mach 1.4 1.5 1.6

Courtesy Paul Bevilaqua, Lockheed Martin

2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 4/18

#$%&

•  Derived from the equation for specific excess

 power (§ 5.15, Introduction to Aeronautics: A

Design Perspective, Brandt, Stiles, Bertin, andWhitford, AIAA. PDF file in notes.)

•  Thrust-to-weight vs. wing loading:

The Governing Equation

SL" T TOW = # " 

q

C  D

W TO  S 

+k 1

n# 

q

% & 

( ) 

2

W TO

$ % & 

' ( ) 

, , , 

/ / / +1

dh

dt 

% & 

( ) +

1

g

dv

dt 

% & 

( ) 

1 2 2 

3 2 2 

5 2 2 

6 2 2 

+2013/Oct/08

#$%&

Variables in Constraint Equation

!  = T /T TO = ratio of actual thrust to takeoff thrust(accounts for thrust loss due to altitude, V )

"  = W /W TO = weight fraction (fuel use, stores drop)

k 1 = induced drag term

k 2 = drag term (Brandt, p. 134)

h = altitude

n = load factor

q = !# V 2 = dynamic pressure

v = velocity

! = turn rate (rad/s)

2

1 2O

 D L L DC k C k C C  = + +

2

0

1  V 

n g 

! "#= + $ %

& '

,2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 5/18

#$%&

Values for Constants K 1 & C D0

(Mattingly et al, Aircraft Engine Design) 

-2013/Oct/08

#$%&

Flight Path Considerations

If level flight, dh/dt  = 0

If no turns or loads, n = 1

!  If no acceleration, dv/dt  = 0

!  Usually take off at 1.2 " stall speed

(apply a factor of 1.44 to v2 with takeoff assumed

using max lift coefficient C  L max)! 

Landing at 1.3 " stall speed (factor of 1.69 for

landing)

!#2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 6/18

 

Governing Equation:

 Name Sample Value 

"  (fully fueled) 1

#  (sea level) 0.002378 slugs/ft3 

!   (from v at 0.7 liftoff speed)  0.84

C  L max (estimated, similar aircraft) 2.2

 g 32.2 ft/s2

 S TO (requirement) 2500 ft

 gsC W 

T  TO

TO LTO

SL

 MAX !" 

# 244.1=

Example Constraints for Takeoff(“High” Thrust, Neglect Runway Friction) 

!!#$%&2013/Oct/08

T TO

TO

SL004.=

20 0.82

40 0.16

60 0.25

80 0.33

100 0.41120 0.49

140 0.57

160 0.65

180 0.74

200 0.82

W TO

TO

SL

!!"

#$$%

&2 ft 

lb

Resulting Takeoff Constraint Equation 

!'#$%&2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 7/18

Governing Eqn:

 Name Value

"  (fuel lost during climb) 0.818

!   (thrust at cruise speed)  0.93

q 200 lb/ft2 

C  L  0.575

k 1  0.03

C  D 0  0.03

!!"

!!#

$

!!%

!!&

'

++

(((

)

*

+++

,

-

./

012

3../

0112

3+=

dt 

dV 

 g dt 

dh

V S 

q

nk 

C q

T  TO

TO

 D

TO

SL   o  11

2

1

4 5 

Constraints for Cruise 

!(#$%&2013/Oct/08

!!!

"

#

$$$

%

&

+=

W W 

T TO

TOTO

SL003.

46.6

20 0.38

40 0.28

60 0.29

80 0.32

100 0.36

120 0.41

140 0.46

160 0.52

180 0.57

200 0.63

W TO

TO

SL

T !!"#

$$%&

2  ft lb

Final Cruise Constraint Equation 

!$#$%&2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 8/18

Governing Equation:

 Name Value

#   0.00238 slugs/ft3

2.6 (Schaufele)

µ  (friction coefficient) 0.3 (www.asft.se)

" 0.65S L (landing distance)  3000 ft

µ " 

69.1

 g C S 

W  MAX  L LTO

=

 MAX  LC 

Example Constraints for Landing 

!)#$%&2013/Oct/08

W TO

S =163

lbf 

ft2

163 0.1

163 0.2

163 0.3

… …

163 1.0

W TO

TO

SL

 

lbf 

ft2

$ % 

Final Landing Constraint Equation

!*#$%&2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 9/18

#$%&

Non-Fighters Must Consider Runway

Friction!  Use “effective” acceleration at 70% of takeoff or

landing speed

Landing assumes no thrust

 ! = runway friction

W TO, W  L = takeoff and landing weights

sTO =1.44W TO

2

" SC  Lmax

g0  T  # D#µ   W TO  # L( )[ ]

0.7V TO

 

s L =

1.69W  L

2

" SC  Lmaxg0  D+ µ   W  L  # L( )[ ]

0.7V  L

!+2013/Oct/08

#$%&

 Acceleration Constraint(Level, Unbanked Flight)

!  The governing equation is

What is used for q? Start, finish, or mean?

!,

SL" T TOW = # " 

q

C  D

W TO  S ( )

+k 1

q

% & 

( ) 

2

W TO

$ % & 

' ( ) 

, , , 

/ / / +1

g

dv

dt 

% & 

( ) 

1 2 2 

3 2 2 

5 2 2 

6 2 2 

2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 10/18

#$%&

Construction of Constraint Diagram

!  Plot all curves on a single graph

!  Wing loading horizontal

Thrust-to-weight vertical

!  Identify which side of each curve is OK

!  Make sure the constraint curves make sense!

!  Choose and identify design point

!-2013/Oct/08

Constraint Diagram for Regional Jet Mission

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

Wing Loading (lb/ft^2)

   T

  s   l   /   W   t  o

Takeoff 

Cruise

Landing

Sample Constraint Diagram —Regional

JetDesign point

(W /S  = 50 psf,

T /W  = 0.33)

Solution Space

'##$%&2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 11/18

#$%&

Example Constraint Diagram

(Black lines, Cartoon box, Design point)

2013/Oct/08

0.0

0.5

1.0

1.5

2.0

2.5

3.0

20 40 60 80 100 120

   T             /   W

W / S (lbf /ft2)

Fighter Constraint Diagram

Turn

Horiz Accel

Takeoff

Braking

Design Point

W / S  = 38 psf

T /W  = 1.7

Solution Space

'!

#$%&

Design Point

104 ft2, 45 hp

0

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140 160

Wing Area (ft2)

   E  n  g   i  n  e   H  o  r  s  e  p  o  w  e  r

Ceres UAV Constraint Diagram

F e r r y  

                   L             a             n                  d

                   i             n             g      

T ak eof f  

Courtesy Nathan Olson, CPP ‘08

                M           a           n

           u               f           a           c              t           u

           r                i           n           g                     C

           o           s              t

''2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 12/18

#$%&

Comments on Design Point

• 

Must fit in allowable areas of all constraints

• 

Allow some margin (“wiggle room”) so

design changes don’t move it out• 

Lowest-weight aircraft meeting constraints isoften cheapest

• 

Less thrust = less engine required = lessengine cost, usually

• 

Existing engine thrust may not match what’sneeded

• 

Constraint diagram does not know how manyengines. (Multi-engines provide nT  of thrust)

'(2013/Oct/08

#$%&

Summary of Constraint Diagrams•  Select design point•  Must satisfy all constraint curves•  Must fit all constraints and/or missions (for

multiple-mission aircraft)•  SHOW SIMILAR AIRCRAFT on your plot!•  Be sure to include off-nominal conditions i.e.

•  Phoenix Sky Harbor Airport  @ 120° F

• 

Denver @ 100°F •  Go back and re-do constraint diagram when

parameters or design changes•   Do not  put tables of constraint curve data in your

slides! I WILL take off points. 

'$2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 13/18

#$%&

Comments on

Thrust-to-Weight (T /W )

and Wing Loading (W /S )

 

(Based on Chapter 5 of Raymer’s

Aircraft Design: A Conceptual Approach)

')2013/Oct/08

#$%&

Thrust-To-Weight RatioT 

/W 

 (Raymer Tables 5.1, 5.3)

Typical Installed T /W Jet trainer 0.4

Jet fighter (dogfighter) 0.9

Jet fighter (other) 0.6

Military cargo/bomber 0.25

Jet transport 0.25 – 0.4

Statistical T /W o Estimation (vs. max Mach M max)T /W o = aM max

c a  c

Jet trainer 0.488 0.728

Jet fighter (dogfighter) 0.648 0.594

Jet fighter (other) 0.514 0.141

Military cargo/bomber 0.244 0.341

Jet transport 0.267 0.363

'*2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 14/18

#$%&

Power-To-Weight Ratio P /W  (Raymer Tables 5.2, 5.4)

Typical Installed W / P  Powered Sailplane 25

Homebuilt 12

GA-Single engine 14

GA-Twin engine 6Agricultural 11

Twin turboprop 5

Flying boat 10

Statistical P /W o Estimation (vs. vmax in kt) P /W o = avmaxc

 a  c

Powered Sailplane 0.043 0.0

Homebuilt 0.005 0.57

GA-Single engine 0.004 0.57

GA-Twin engine 0.025 0.22Agricultural 0.009 0.50

Twin turboprop 0.013 0.50

Flying boat 0.030 0.23'+2013/Oct/08

#$%&

Power Loading &Horsepower-to-Weight Ratio

!  Propeller-Powered Aircraft:

!  T  = %  p P  /v = 550 %  pHP/v 

!  so, T /W  = (%  p/v)( P /W )

= (550 %  p/v)(HP/W ) using fps units. (R5.1)

!  Define “Power Loading” W o/HP = 1/(HP/Wo)

!  Note: reversed meaning compared to T /W !

!  C  = C  pv/(%  p) = C bhpV /(550%  p) 

',2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 15/18

#$%&

Power-to-Weight Ratio (Raymer Tables 5.2, 5.4)

TYPICAL

INSTALLED

 P /W :

STATISTICAL

 P /W  

ESTIMATION

(vs. vmax)

'-2013/Oct/08

#$%&

Thrust Matching(T  & W  are actual values, NOT takeoff values)

In cruise: T  = D, L = W , so:

(T /W )cruise = ( D/ L)cruise = 1/( L/ D)cruise 

In climb: T  = D + W sin & , L = W  cos & , so:

(T /W )climb = 1/( L/ D)climb + sin &  

= 1/( L/ D)climb + vvert /vhoriz   (R5.4)

 Must ratio results back to takeoff values for comparison

# $ 

& ' takeoff 

=

# $ 

& ' cruise

W cruise

W takeoff 

# $ $ 

& ' ' T takeoff 

T cruise

# $ 

& ' 

(#2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 16/18

#$%&

Wing Loading (W /S ) Comments

Higher W /S  

Smaller Wing

!  Higher stall speed

!  Longer takeoff and landing distances

!  Poorer maneuvering performance

 But benefits are:!  Reduced friction drag and weight

(!2013/Oct/08

#$%&

Stall Speed

W  = L = qstallSC  Lmax = 1/2 #  v stall  2SC  Lmax 

W /S  = q stall C  Lmax = 1/2 #  v stall  2C  Lmax 

#   = 0.002378 slugs/ft3 @ sea level

#  = 0.00189 slugs/ft3 @ 5000 ft, hot day (Denver)

v stall  defined by FAR, MIL SPEC, or design reqts

v stall  

= 61 kt (FAR-23: Single engine, W o< 12,500 lb)

v stall   may be set by vapproach 

Civil: vapproach  = 1.3 v stall  

Military: vapproach = 1.2 v stall  

Carrier-Based: vapproach = 1.15 v stall  

('2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 17/18

#$%&

Maximum Lift Coefficient(Raymer Fig. 5.3)

WINGS OF MODERATE ASPECT RATIO (4-8)

C  Lmax

Quarter-Chord Sweep((2013/Oct/08

#$%&

Takeoff Distance Estimation (Raymer Fig. 5.4) 

Takeoff

Distance

(x 1000 ft)

 NUMBEROF JET

ENGINES

BALANCED

FIELD

LENGTH

Jet

Prop

TAKEOFF PARAMETER: W /S   or W /S  

#C  LTOT /W   #C  LTO

HP/W  ($2013/Oct/08

7/23/2019 Constraint Diagrams

http://slidepdf.com/reader/full/constraint-diagrams 18/18

#$%&

Introduction to Aeronautics: A Design

Perspective, Brandt, Stiles, Bertin, and

Whitford, AIAA. PDF file in notes. Aircraft Engine Design, Mattingly, Heiser, and

Daley, AIAA

 Aviation Week & Space Technology Source Book,

information on currently available engines and

aircraft:

www.avweek.com/aw/sourcebook/index.jsp

References

()2013/Oct/08

#$%&

FARs (Federal Aviation Regulations)& Other Regulation Information

!""#$%%&'()*++)',-%

./'0(+",&12+3425064+37/2869&+&1%

&':;.)3<*%=+63:&+>/?@#/3:&+>/A/"

!""#$%%CCC)+6&C/9)*++)',-%

./'0(+",&12+3425064+37/2869&+&1%&':;.)3<*%

(*2013/Oct/08