Conical Correlations in Heavy-Ion Collisions

44
Conical Correlations in Heavy-Ion Collisions Barbara Betz Thanks to: Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio Torrieri Phys. Rev. C 79, 034902 (2009), Phys. Lett. B 675, 340 (2009), Nucl. Phys. A 830, 777c (2009), arXiv:1005.5461

description

Conical Correlations in Heavy-Ion Collisions. Barbara Betz Thanks to: Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio Torrieri. Phys. Rev. C 79 , 034902 (2009), Phys. Lett. B 675 , 340 (2009), Nucl. Phys. A 830 , 777c (2009), arXiv:1005.5461. Conical Correlations in HIC. - PowerPoint PPT Presentation

Transcript of Conical Correlations in Heavy-Ion Collisions

Page 1: Conical Correlations in Heavy-Ion Collisions

Conical Correlations inHeavy-Ion Collisions

Barbara Betz

Thanks to: Miklos Gyulassy, Jorge Noronha, Dirk Rischke, Giorgio Torrieri

Phys. Rev. C 79, 034902 (2009), Phys. Lett. B 675, 340 (2009), Nucl. Phys. A 830, 777c (2009), arXiv:1005.5461

Page 2: Conical Correlations in Heavy-Ion Collisions

2 09/13/10 MIT Seminar, Boston Barbara Betz

Conical Correlations in HICWhat are „conical correlations in heavy-ion collisions“?

Correlations revealing the creation of Mach cones???

Experiment:Review on experimental studies

Conclusions and Outlook

Theoretical approaches:Jets & hydrodynamicsDifferent energy-loss mechanisms

What could they tell us about the medium created?

Fluctuating initial conditions, v3(carrying coals to Newcastle)

Why we need to study heavy-flavor tagged jetsDeflection of wakes due to transverse flow „Conical“

signal

Page 3: Conical Correlations in Heavy-Ion Collisions

3

HIC Facilities

initial state

pre-equilibrium

expanding fireball

hadronization

hadronic phaseand freeze-out

S. Bass, Talk Quark Matter 2001

RHIC

FAIR

LHC

09/13/10 MIT Seminar, Boston Barbara Betz

RHIC, BNL: 2000 – … p+p, d+Au, Cu+Cu,

Au+Au LHC, CERN: 2008/9 - … p+p, Pb+Pb FAIR, GSI: ~2016 - … accelerates ions from p

to U

Page 4: Conical Correlations in Heavy-Ion Collisions

4

2 Major RHIC Results

09/13/10 MIT Seminar, Boston Barbara Betz

Page 5: Conical Correlations in Heavy-Ion Collisions

5

Reproducing the elliptic flow v2

P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,172301 (2007)

Medium behaves like an almostideal fluid

/s

BNL press release, April 18 2005.

09/13/10 MIT Seminar, Boston Barbara Betz

Particles don‘t interact,

expansion independent

of initial shape

Particles interact,expansion

determined by density gradient

„dust“ fluid

Data can be described by hydrodynamics

with small

Fluid-like Medium

Page 6: Conical Correlations in Heavy-Ion Collisions

6

Jet Quenching• Like in medicine, hard probes can be

used to investigate the medium properties

• If created matter is opaque, a jet depositing its energy should eventually disappear jet suppression

STAR, Phys. Rev. Lett. 91 (2003) 072304

4 < pTtrigger < 6 GeV/c

pTassoc > 2 GeV/c

What can the energy lost tell us about the medium properties?

Trigger particle

University Wuppertal, “Schul-Vorlesungen zur Physik”

09/13/10 MIT Seminar, Boston Barbara Betz

Page 7: Conical Correlations in Heavy-Ion Collisions

7 09/13/10 MIT Seminar, Boston Barbara Betz

Jets in HIC I

By observation: Confirm fast

thermalization Study EoS of the fluid

Mach cone angle sensitive to EoS

Can energy lost by jets tell us something about medium properties?

IF the medium behaves like a fluid: Mach cones have to occur because

offluid dynamics

Page 8: Conical Correlations in Heavy-Ion Collisions

4 < pTtrigger < 6 GeV/c

0.15 < pTassoc < 4 GeV/cAu+Au / p+p

= 200 GeVs

PHENIX, Phys. Rev. C 77, 011901 (2008)

8

Jets in HIC II

STAR, Nucl. Phys. A 774, 129 (2006)

Reflect interaction of jet with medium

• Redistribution of energy to lower pT-particles

• Re-appearance of the away-side for low and intermediate pT

assoc

H. Stöcker, Nucl. Phys. A 750, 121 (2005), J. Casalderrey-Solana et al. Nucl. Phys. A 774, 577 (2006)

09/13/10 MIT Seminar, Boston Barbara Betz

Page 9: Conical Correlations in Heavy-Ion Collisions

9

Experimental Studies

09/13/10 MIT Seminar, Boston Barbara Betz

Page 10: Conical Correlations in Heavy-Ion Collisions

10

STAR, Phys. Rev. C 82, 024912 (2010)see also PHENIX, Phys. Rev. C 77, 011901 (2008)

Position of away-side

peaks does not change

strongly with pTassocNot due to

Cherenkov gluonradiation

What happens to larger pT

trigger?

Jet - Studies in HIC I

09/13/10 MIT Seminar, Boston Barbara Betz

Page 11: Conical Correlations in Heavy-Ion Collisions

11

Investigation of path length dependence:Double-peaked structure becomes

morepronounced out-of-plane

A. Sickeles [PHENIX], Eur. Phys. J. C 61, 583 (2009)

Jet - Studies in HIC II

09/13/10 MIT Seminar, Boston Barbara Betz

Could be due to deflection

Page 12: Conical Correlations in Heavy-Ion Collisions

12

Centrality dependence:

double-peaked structure for central collisions

one peak structure for very peripheral collisions

PHENIX, Phys. Rev. Lett. 97, 052301 (2006)

J. Jia, Eur. Phys. J. C 62, 255 (2009)

Jet - Studies in HIC III

Energy Scan:

double-peaked structure occurs at about the same angle for different collision energies Mach cone???09/13/10 MIT Seminar, Boston Barbara Betz

Page 13: Conical Correlations in Heavy-Ion Collisions

13

Some caveats

09/13/10 MIT Seminar, Boston Barbara Betz

Page 14: Conical Correlations in Heavy-Ion Collisions

14

Background Subtraction

How can one proof/disproof

the two-source model?J. Ulery [STAR], PoS LHC07, 036 (2007)

D. d’Enterria and BB., Springer Lecture Notes (2008)

09/13/10 MIT Seminar, Boston Barbara Betz

Assumption (Two-source model) :

No correlations between flow anisotropy

and jets ZYAM (Zero Yield At Minimum) Subtraction of:estimated elliptic flow modulatedbackground can leads to:double peaked structure

Background:Particle

correlation from elliptic flow

Page 15: Conical Correlations in Heavy-Ion Collisions

15

3-Particle Correlations

J. Ulery [STAR], Int. J. Mod. Phys. E 16, 2005 (2007)

ptrigT=3 – 4 GeV, passoc

T=1 – 2 GeV Three-particle correlations

seem to corroborate Mach cone idea

- What’s the effect of ZYAM?- No agreement with 3-particle

cumulant methodC. Pruneau, Phys. Rev. C 79, 044907 (2009)

09/13/10 MIT Seminar, Boston Barbara Betz

Deflected jet

Mach Cone

ptrigT>3 GeV, passoc

T=1 – 2 GeV

C. Pruneau, Talk at the Workshop on ‘Critical Asessment of Theory and Experiment on Correlations at RHIC’, BNL, February 2009

Page 16: Conical Correlations in Heavy-Ion Collisions

16

Theoretical Approach

09/13/10 MIT Seminar, Boston Barbara Betz

Page 17: Conical Correlations in Heavy-Ion Collisions

17

Modelling of Jets

STAR, Phys. Rev. Lett. 95, 152301 (2005)

residue of energy and momentum given by the jet

• Assumption of isochronous/isothermal freeze-

out • No interaction afterwards

mainly flow driven

Conversion into particles Freeze-out:

Jets can be modelled using (ideal) hydrodynamics:

e+p v.

Medium created in a HIC can be described using hydrodynamics

09/13/10 MIT Seminar, Boston Barbara Betz

Page 18: Conical Correlations in Heavy-Ion Collisions

18

The Static Medium

09/13/10 MIT Seminar, Boston Barbara Betz

Page 19: Conical Correlations in Heavy-Ion Collisions

19

Stopped Jet IApplying a static medium and an ideal Gas EoS for massless

gluons Assume: Near-side jet is not modified by medium

Maximal fluid response

Jet decelerating from v=0.999according to Bethe-Bloch

formalism a=-1.36

GeV/fm

Simplest back-reaction from the medium

Bragg Peak

adjusts path length

BB et al., Phys. Rev. C 79, 034902 (2009)

09/13/10 MIT Seminar, Boston Barbara Betz

Page 20: Conical Correlations in Heavy-Ion Collisions

20

Stopped Jet II

Mach cone forsound waves Diffusion

wake

dE dM GeV(0) v (0) 1.5dt dt fm= = t=4.5/v

fmdE GeV dM GeV(0) 1.5 (0) 0dt fm dt fm= =

BB et al., Phys. Rev. C 79, 034902 (2009)

09/13/10 MIT Seminar, Boston Barbara Betz

Page 21: Conical Correlations in Heavy-Ion Collisions

21

Stopped Jet III

Diffusion wake causes peak in jet direction

Normalized, background-subtracted isochronous Cooper-Frye at mid-rapidity

Energy Flow Distribution

Assuming: Particles in subvolume will be emitted into the same direction

pT = 5 GeV

BB et al., Phys. Rev. C 79, 034902 (2009)

Any conclusions about deposition mechanism???09/13/10 MIT Seminar, Boston Barbara Betz

Page 22: Conical Correlations in Heavy-Ion Collisions

22

Stopped Jet IV• Jet stops after t=4.5/v

fm

dE GeV(0) 1.5dt fmdM GeV(0) 0dt fm

=

=

dE GeV(0) 1.5dt fmdM GeVv (0) 1.5dt fm

=

=

Vorticity conservation

tFO=4.5/v fm

tFO=6.5/v fm

tFO=8.5/v fmDiffusion wake still

present

BB et al., Phys. Rev. C 79, 034902 (2009)

09/13/10 MIT Seminar, Boston Barbara Betz

Page 23: Conical Correlations in Heavy-Ion Collisions

23

Stopped Jet V

tFO=4.5/v fm

tFO=6.5/v fm

tFO=8.5/v fm

Diffusion wake causes peak in jet direction

Larger impact of thermal smearing

BB et al., Phys. Rev. C 79, 034902 (2009)

09/13/10 MIT Seminar, Boston Barbara Betz

Page 24: Conical Correlations in Heavy-Ion Collisions

24

A Comparison

09/13/10 MIT Seminar, Boston Barbara Betz

Page 25: Conical Correlations in Heavy-Ion Collisions

25

BAMPS: Boltzmann Approach of MultiParton ScatteringsA transport algorithm solving the Boltzmann equations for

on-shellpartons with pQCD interactions

C. Greiner, Talk at the Opening Symposium of the JET Collaboration, Berkeley, June 2010

Box scenario, no expansion, massless Boltzmann gas interactions, 2 -> 2

The shock front (Mach front) gets broader and vanish with more dissipation09/13/10 MIT Seminar, Boston Barbara Betz

Mach Cones in Transport

Page 26: Conical Correlations in Heavy-Ion Collisions

26 09/13/10 MIT Seminar, Boston Barbara Betz

Different Jet-Energy Loss Modells

Page 27: Conical Correlations in Heavy-Ion Collisions

27 09/13/10 MIT Seminar, Boston Barbara Betz

Modelling Jets using …

Conclusion about Mach cones?

pQCD

AdS/CFT

P. Chesler and L. Yaffe, Phys. Rev. D 78, 045013 (2008)

R. Neufeld et al, Phys. Rev. C 78, 041901 (2008)

Strongly-coupled theory

Pointing vector perturbation

Momentum density perturbation

Energy density perturbation

Energy density perturbation

Weakly-coupled theory

v=0.75

v=0.99955

Page 28: Conical Correlations in Heavy-Ion Collisions

28 09/13/10 MIT Seminar, Boston Barbara Betz

Non-Mach correlations caused by Neck region

Jets in AdS/CFT

J. Noronha et al., Phys. Rev. Lett. 102, 102301 (2009)

Page 29: Conical Correlations in Heavy-Ion Collisions

29 09/13/10 MIT Seminar, Boston Barbara Betz

Heavy Quark Jets

Page 30: Conical Correlations in Heavy-Ion Collisions

30 09/13/10 MIT Seminar, Boston Barbara Betz

Heavy Quark JetsCompare weakly and strongly coupled models using heavy punch-

through jetpQCD: Neufeld et al. source for a heavy quark

AdS/CFT: Stress tables with/s=1/(4 ) R. Neufeld et al, Phys. Rev. C 78, 041901 (2008)

pT = 3.14 GeV

BB et al., Phys. Lett. B 675, 340 (2009)

No Mach-like peaks:AdS/CFT: Strong influence of the Neck region

Static medium and isochronous freeze-out needed for comparison

t=4.5/v fmS. Gubser et al, Phys. Rev. Lett. 100, 012301 (2008)

BB et al., Phys. Lett. B 675, 340 (2009)

J. Noronha et al., Phys. Rev. Lett. 102, 102301 (2009)

Page 31: Conical Correlations in Heavy-Ion Collisions

31 09/13/10 MIT Seminar, Boston Barbara Betz

The Expanding Medium

Page 32: Conical Correlations in Heavy-Ion Collisions

32

Expanding Medium I

Consider different jet paths

b=0

• Apply Glauber initial conditions and an ideal Gas EoS for massless gluons• Focus on radial flow contribution

Experimental results based

on many eventsA. K. Chaudhuri, Phys. Rev. C 75, 057902

(2007) ,A. K. Chaudhuri, Phys. Rev. C 77, 027901

(2008)

• Two-particle correlation (Tfreeze-out < Tcrit = 130

MeV):

near-side jet

dE/dt = 1 GeV/fm

Jet 150

Etot = 5 GeV

09/13/10 MIT Seminar, Boston Barbara Betz

Page 33: Conical Correlations in Heavy-Ion Collisions

33

Expanding Medium IIEtot = 5 GeV

broad away-side peak double peaked structure

due to non-central jets

pTtrig = 3.5

GeV

PHENIX, Phys. Rev. C 77, 011901 (2008)

vjet =0.999

BB et al., arXiv: 1005.5461

09/13/10 MIT Seminar, Boston Barbara Betz

Page 34: Conical Correlations in Heavy-Ion Collisions

34

Expanding Medium IIIEtot = 10

GeV

Strong impact of the Diffusion wake

broad away-side peak double peaked structure

Causes smaller dip for pT=2 GeV

pTtrig = 7.5

GeV

6 < pTtrigger < 10

1.5 < pTassoc < 2.5

f

Yiel

dPath length dependence Centrality

dependence09/13/10 MIT Seminar, Boston Barbara Betz

STAR, Phys. Rev. C 82, 024912 (2010)

Page 35: Conical Correlations in Heavy-Ion Collisions

35

Expanding Medium IVComparing different deposition scenarios, one

sees that„cone“ angle approximately the same for different deposition scenarios

pTassoc = 2.0 GeV: No double-peaked structure for pure energy

deposition scenario due to thermal smearking

pTtrig = 3.5

GeV pTassoc = 3.0

GeVpT

assoc = 2.0 GeV

vjet =0.999

BB et al., arXiv: 1005.5461

09/13/10 MIT Seminar, Boston Barbara Betz

Page 36: Conical Correlations in Heavy-Ion Collisions

36

Expanding Medium V

Conical emission angle also appears for subsonic jets

Not a Mach cone

Considering a bottom quark (M=4.5 GeV), propagating at vjet < cs

(on-shell energy-momentum deposition scenario) pTassoc = 2.0

GeV

Cu+Cu: Similar away-side shoulder width, double-peak structure reappars for pT

assoc = 3 GeV

BB et al., arXiv: 1005.5461

PHENIX, PRL98, 232302 (2007)

09/13/10 MIT Seminar, Boston Barbara Betz

Page 37: Conical Correlations in Heavy-Ion Collisions

37

Some more caveats

09/13/10 MIT Seminar, Boston Barbara Betz

Page 38: Conical Correlations in Heavy-Ion Collisions

38

Hot Spots ICan fluctuating initial condition explain the 2+3-particle

correlations?Takahashi et al, PRL 103, 242301 (2009)

F. Grassi, Talk at the Glasma Workshop, BNL, May 2010

R. Andrade et al., arXiv: 0912.0803

09/13/10 MIT Seminar, Boston Barbara Betz

Page 39: Conical Correlations in Heavy-Ion Collisions

39

Hot Spots IICheck with one single hot

spot

Heavy quark jets are not affected 09/13/10 MIT Seminar, Boston Barbara Betz

Au, De/e0=0.2

Page 40: Conical Correlations in Heavy-Ion Collisions

40

Fluctuating Initial Conditions

09/13/10 MIT Seminar, Boston Barbara Betz

Page 41: Conical Correlations in Heavy-Ion Collisions

41

Initial Fluctuations IP. Sorensen J. Phys. G 37, 094011 (2010), B. Alver et al., Phys. Rev. C 81, 054905 (2010)

Glauber initial conditions:

due to symmetry, odd Fourier components vanish

higher Fourier components may occur

Fluctuating initial conditions: B. Alver, Talk at the Glasma Workshop, BNL, May 2010

09/13/10 MIT Seminar, Boston Barbara Betz

Page 42: Conical Correlations in Heavy-Ion Collisions

42

Initial Fluctuations II

B. Alver et al., arXiv: 1007.5469

B. Alver et al., Phys. Rev. C 81, 054905 (2010), B. Alver et al., arXiv: 1007.5469H. Petersen et al., arXiv: 1008.0625

v3 not negligable small

• v3 is extensively studied

Calculating v3 using a viscous hydro model with initial conditions deformed

according to the eccentricities from a Glauber and a KLM (CGC) model

09/13/10 MIT Seminar, Boston Barbara Betz

Page 43: Conical Correlations in Heavy-Ion Collisions

43

Why v3 deformations cannot be the whole story

ptrigT=3 – 4 GeV, passoc

T=1 – 2 GeV

What are the consequences of triangular flow?

Do we only see fluctuating initial conditions?What is the difference of v3 and the impact of hot spots?

Study of heavy quark jets needed

120°

09/13/10 MIT Seminar, Boston Barbara Betz

- Correlation in Df1-Df2

Df1/2 120°- No correlation in D1-

D2B. Alver et al., Phys. Rev. C 81, 054905 (2010)

Shock front??

~ 120J. Ulery [STAR], Int. J. Mod. Phys. E 16, 2005 (2007)

Page 44: Conical Correlations in Heavy-Ion Collisions

Summary „Conical“ signal can be created (general effect):

by averaging over wakes created by jets in different events.There is a deflection of particles emitted due to collective

transverse flow.

Structure cannot directly be related to EoS, but is a measure for the flow

Quite insensitive to deposition mechanism, jet velocity (even

for subsonic jets), and system size

Necessary to study heavy-flavor tagged jets.

44

„Conical“ correlations could arise from multiple non-Mach sourcesMach cones have to occur in heavy-ion collisions if there is a

fluid

09/13/10 MIT Seminar, Boston Barbara Betz