Công thức khai triển TAYLOR - GONTCHAROV vá áp dụng

download Công thức khai triển TAYLOR - GONTCHAROV vá áp dụng

of 63

Transcript of Công thức khai triển TAYLOR - GONTCHAROV vá áp dụng

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    1/63

    I HC QUC GIA H NITRNG I HC KHOA HC T NHIN

    TRN VN LONG

    CNG THC KHAI TRINTAYLOR - GONTCHAROV

    V P DNG

    LUN VN THC S TON HC

    H NI, NM 2009

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    2/63

    I HC QUC GIA H NITRNG I HC KHOA HC T NHIN

    TRN VN LONG

    CNG THC KHAI TRINTAYLOR - GONTCHAROVV P DNG

    Chuyn ngnh : GII TCH

    M s : 60 46 01

    LUN VN THC S TON HC

    Ngi hng dn khoa hc:GS.TSKH. NGUYN VN MU

    H NI - NM 2009

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    3/63

    MC LC

    M u 3

    1 Khai trin Taylor 61.1 Mt s kin thc chun b . . . . . . . . . . . . . . . . . . . 6

    1.1.1 Mt s tnh cht ca a thc . . . . . . . . . . . . . . 61.1.2 Mt s nh l c bn ca gii tch c in . . . . . . 71.2 Khai trin Taylor i vi a thc . . . . . . . . . . . . . . . . 81.3 Khai trin Taylor vi cc phn d khc nhau . . . . . . . . . 12

    2 Cng thc khai trin Taylor - Gontcharov 182.1 Bi ton ni suy Newton v cng thc khai trin Taylor -

    Gontcharov . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.1.1 Bi ton ni suy Newton . . . . . . . . . . . . . . . . 182.1.2 Cng thc khai trin Taylor - Gontcharov . . . . . . . 20

    2.2 Khai trin Taylor - Gontcharov vi cc phn d khc nhau . . 242.2.1 Khai trin Taylor - Gontcharov vi phn d dng La-

    grange . . . . . . . . . . . . . . . . . . . . . . . . . . 282.2.2 Khai trin Taylor - Gontcharov vi phn d dng Cauchy 29

    2.3 S hi t trong khai trin Taylor v khai trin Taylor- Gontcharov 312.4 Bi ton ni suy Newton i vi hm a thc nhiu bin. . . 38

    2.4.1 Bi ton ni suy Taylor i vi hm a thc nhiu bin 382.4.2 Bi ton ni suy Newton i vi hm a thc nhiu bin. 39

    3 Mt s bi ton p dng 433.1 Khai trin Taylor ca mt s hm s cp v ng dng . . . . 433.1.1 c lng v nh gi sai s . . . . . . . . . . . . . . 433.1.2 Tnh gii hn hm s. . . . . . . . . . . . . . . . . . . 49

    3.2 Khai trin Taylor- Gontcharov vi bi ton c lng hm s 54

    Kt lun 61

    Ti liu tham kho 62

    2

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    4/63

    M U

    Khai trin a thc ni ring v khai trin hm s ni chung cng nhng

    vn lin quan n n l mt phn quan trng ca i s v gii tch ton

    hc. Cng vi cc bi ton ni suy, cc bi ton v khai trin hm s c v tr

    c bit trong ton hc khng ch nh l nhng i tng nghin cu m

    cn ng vai tr nh l mt trong nhng cng c c lc ca cc m hnh

    lin tc cng nh cc m hnh ri rc ca gii tch trong l thuyt phng

    trnh vi phn, l thuyt xp x, l thuyt biu din,....

    L thuyt khai trin hm s cng cc bi ton ni suy lin quan ra i

    rt sm vi cc cng trnh ca Taylor, Lagrange, Newton... Tuy nhin, vic

    xy dng bi ton khai trin hm s tha mn nhng yu cu khc nhau

    cng nh vic xy dng l thuyt hon thin v khai trin hm s ni chung

    n nay vn ang c nhiu nh ton hc tip tc nghin cu v pht trin

    theo nhiu hng.

    L thuyt cc bi ton v khai trin hm s cng nh cc bi ton ni

    suy c in c lin quan cht ch n cc c trng c bn ca hm s nh

    tnh n iu, tnh li lm, tnh tun hon,... l nhng mng kin thc quan

    trng trong chng trnh gii tch.

    Trong cc gio trnh gii tch i hc ta bit bi ton ni suy Taylor

    Gi s hm f xc nh trn tp hp R, trong l hp ca cckhong m trn trc thc. Gi s f kh vi cp n ti im a . Hy xcnh cc a thc Pn(x) c bc deg Pn(x)

    n sao cho

    P(k)n (a) = f(k)(a), k = 0, 1, . . . , n .

    3

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    5/63

    T ta c khai trin Taylor ca hm f(x) ti im a

    f(x) = f(a)+1

    1!f(a)(xa)+ 1

    2!f(a)(xa)2+...+ 1

    n!f(n)(a)(xa)n+Rn(f; x)

    vi cc phn d dng Lagrange v Cauchy.

    Trong khai trin Taylor, khi xt b im M(a, P(k)n (a)), k = 0, 1,...,n ta

    thy chng cng nm trn ng thng x = a. Khi cho a thay i v nhn

    gi tr ph thuc vo k th ta c mt b im mi dng

    Mk(xk, P(k)n (xk)), k = 0, 1,...,n

    Khi , ta thu c bi ton ni suy Newton v dn n khai trin Taylor-Gontcharov l mt m rng t nhin ca khai trin Taylor.

    Lun vn tp trung i gii quyt vn xy dng cng thc nghim ca

    bi ton ni suy Newton, a ra biu din hm s f(x) theo cng thc khai

    trin Taylor- Gontcharov v c bit a ra cc nh gi phn d ca khai

    trin Taylor - Gontcharov ca hm f(x) di hai dng Lagrange v Cauchy

    cng nh m rng bi ton i vi hm a thc nhiu bin.

    Lun vn gm phn m u v c chia thnh ba chng

    Chng 1: Nhc li cc kin thc c bn v a thc v mt s nh l c

    bn ca gii tch c in s dng trong lun vn. Tip theo tc gi trnh by

    bi ton ni suy Taylor, khai trin Taylor v cc nh gi phn d ca khai

    trin Taylor.

    Chng 2: L phn chnh ca lun vn. Bt u bng vic kho st bi

    ton ni suy Newton, a ra cng thc nghim ca bi ton ni suy New-

    ton. T dn n khai trin Taylor- Gontcharov ca hm f(x) theo cc

    mc ni suy x0, x1,...,xn v c bit a ra cc nh gi c lng phn d

    ca khai trin Taylor- Gontcharov di dng Lagrange v Cauchy. Phn tip

    theo, tc gi nh gi s hi t trong khai trin Taylor v khai trin Taylor- Gontcharov. Cui cng l m rng ca khai trin Taylor - Gontcharov cho

    4

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    6/63

    hm a thc nhiu bin.

    Chng 3: cp n mt s ng dng ca khai trin Taylor v khai

    trin Taylor - Gontcharov cng nh ca bi ton ni suy Newton trong clng v nh gi sai s, tm gii hn hm s.

    Lun vn c hon thnh di s hng dn khoa hc ca NGND.GS.

    TSKH Nguyn Vn Mu, trng i hc Khoa hc T nhin, i hc Quc

    gia H ni, ngi Thy tn tnh hng dn, gip tc gi trong sut

    qu trnh hon thnh bn lun vn ny. Tc gi xin by t lng bit n chn

    thnh v knh trng su sc i vi Gio s.

    Tc gi xin by t lng cm n ti cc thy c gio, cc thnh vin, cc

    anh ch ng nghip trong Seminare Gii tch trng i hc Khoa hc T

    nhin, i hc Quc gia H ni v nhng kin ng gp qu bu, s gip

    tn tnh v s c v ht sc to ln trong sut thi gian qua.

    Tc gi xin chn thnh cm n Ban gim hiu, phng sau i hc, khoaTon - C - Tin hc trng i hc Khoa hc T nhin, i hc Quc gia

    H ni to iu kin thun li cho tc gi trong sut qu trnh hc tp

    ti trng. Tc gi cng xin chn thnh cm n S Gio dc - o to Nam

    nh, trng THPT M Tho v gia nh ng vin, to iu kin thun

    li cho tc gi trong sut kha hc.

    H ni, thng 12 nm 2009Tc gi

    Trn Vn Long

    5

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    7/63

    CHNG 1

    KHAI TRIN TAYLOR

    1.1 Mt s kin thc chun b

    1.1.1 Mt s tnh cht ca a thcCc nh ngha, tnh cht trong mc ny c trch t [2].

    nh ngha 1.1. Cho vnh A l mt vnh giao hon c n v. Ta gi athc bc n bin x l biu thc c dng

    Pn(x) = anxn + an1xn1 + ... + a1x + a0.(an = 0)

    trong cc s ai A

    c gi l cc h s, an gi l h s bc cao nht v

    a0 gi l h s t do ca a thc.

    Tp hp tt c cc a thc vi h s ly trong vnh A c k hiu lA[x]. KhiA l mt trng th vnhA[x] l mt vnh giao hon c n v.Cc vnh a thc thng gp lZ[x],Q[x],R[x],C[x].

    nh ngha 1.2. Cho hai a thc

    P(x) = anxn + an1xn1 + ... + a1x + a0

    Q(x) = bnxn + bn1xn1 + ... + b1x + b0

    Ta nh ngha cc php ton sau

    P(x) + Q(x) = (an + bn)xn + (an1 + bn1)xn1 + ... + (a1 + b1)x + a0 + b0

    P(x) Q(x) = (an bn)xn + (an1 bn1)xn1 + ... + (a1 b1)x + a0 b0P(x).Q(x) = c2nx

    2n + c2n1x2n1 + ... + c1x + c0

    trong ck = a0bk + a1bk1 + ... + akb0, k = 0, 1,...,n.

    6

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    8/63

    nh l 1.1. Gi sA l mt trng, f(x), g(x) l hai a thc khc 0 cavnh A[x]. Khi , tn ti duy nht cp a thc q(x), r(x) thuc A[x] saocho

    f(x) = g(x).q(x) + r(x)vi deg(r(x)) < deg(g(x)). Khi r(x) = 0, ta nif(x) chia ht cho g(x).

    Nuf(a) = 0 th ta ni a l nghim ca f(x). Bi ton tm cc nghim ca

    f(x) trongA c gi l gii phng trnh i s bc n

    anxn + an1xn1 + ... + a1x + a0 = 0(an = 0)

    trong A.nh l 1.2. Gi sA l mt trng, a A v f(x) A[x]. Khi , dca php chia f(x) cho x a chnh l f(a).nh l 1.3. Mi a thc bc n u c khng qu n nghim thc.

    nh l 1.4. a thc c v s nghim l a thc khng.

    1.1.2 Mt s nh l c bn ca gii tch c in

    Sau y, ta nhc li mt s nh l c bn s dng trong cc phn sau.

    Cc nh l ny c trch t [3].

    nh l 1.5 (Rolle). Gi s f : [a, b] R lin tc trn on [a; b] v co hm trn khong (a, b) . Nu f(a) = f(b) th tn ti t nht mt im

    c (a; b) sao cho f(c) = 0.nh l 1.6 (Lagrange). Nu hm sf lin tc trn on[a; b] v c o hmtrn khong(a, b) th tn ti t nht mt imc (a; b) sao cho f(b)f(a) =f(c)(b a).nh l 1.7 (nh l v gi tr trung bnh ca tch phn). Nu hm s fkh tch trn on [a; b] v m f(x) M vix [a; b] th tn ti mt s [m; M] sao cho

    ba

    f(x)dx = (b a).

    7

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    9/63

    H qu 1.1. Nu f l hm s lin tc trn on [a; b] th tn ti t nhtmt im c (a; b) sao cho

    b

    a

    f(x)dx = f(c)(b a).

    nh l 1.8 (nh l v gi tr trung bnh m rng ca tch phn). Gi shai hm sf v g kh tch trn on [a; b] v tha mn:

    a) m f(x) M vix [a; b]b) g(x) khng i du trn [a; b].

    Khi , tn ti t nht mt s thc [m; M] sao chob

    a

    f(x).g(x)dx =

    ba

    g(x)dx.

    H qu 1.2. Gi s f l hm s lin tc trn [a; b] v g l hm s kh tchtrn on [a; b]. Nu g(x) khng i du trn [a; b] th tn ti t nht mt s

    thc c [a; b] sao chob

    a

    f(x).g(x)dx = f(c)

    ba

    g(x)dx.

    nh l 1.9 (Bolzano - Cauchy). Gi sf l mt hm s lin tc trn on[a; b] v l mt s nm giaf(a) vf(b). Khi , tn ti t nht mt im

    c [a, b] sao cho f(c) = . Ni mt cch khc, f ly mi gi tr trung giangia f(a) v f(b).

    1.2 Khai trin Taylor i vi a thc

    Cc nh l, nh ngha v bi ton trong mc ny ch yu c trch t

    [1].

    Ta thng thy trong cc sch gio khoa hin hnh, dng chnh tc ca mt

    a thc i s P(x) bc n, n N, (thng c k hiu deg(P(x)) = n)c dng:

    P(x) = p0xn + p1x

    n1 + ... + pn, p0 = 0.8

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    10/63

    a thc dng chnh tc l a thc c vit theo th t gim dn ca ly

    tha.Tuy nhin, khi kho st cc a thc, ngi ta thng quan tm n c

    mt lp cc a thc bc khng qu mt s nguyn dng n cho trc no .

    V th, v sau, ngi ta thng s dng cch vit a thc P(x) di dngtng dn ca bc ly tha

    P(x) = b0 + b1x + b2x2 + + bnxn. (1.1)

    Nhn xt rng a thc (1.1) c tnh cht

    P(k)(0) = k!bk, k = 0, 1, . . . , n

    vP(k)(0) = 0, k = n + 1, n + 2, . . .

    V th a thc (1.1) thng c vit di dng cng thc (ng nht thc)

    Taylor

    P(x) = a0 +a1

    1!x +

    a2

    2!x2 + + an

    n!xn. (1.2)

    Vi cch vit (1.2) ta thu c cng thc tnh h s ak(k = 0, 1, . . . , n) ca

    a thc P(x), chnh l gi tr ca o hm cp k ca a thc ti x = 0:

    ak = P(k)(0), k = 0, 1, . . . , n .

    T y ta thu c ng nht thc Taylor ti x = 0

    P(x) = P(0)+P(0)

    1!x +

    P(2)(0)

    2!x2 + + P

    (n)(0)

    n!xn. (1.3)

    V d 1.1. Vit biu thc

    Q(x) = (x2 2x 2)5 + (2x3 + 3x2 x 1)2.di dng (chnh tc) cng thc Taylor ti

    Q(x) = a0 +a1

    1!x +

    a2

    2!x2 + + a10

    10!x10.

    Tnh gi tr ca a8?

    9

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    11/63

    Theo cng thc (1.3) th ta c ngay h thc a8 = Q(8)(0)

    Dng (1.2) cho ta mi lin h trc tip gia cc h s ca mt a thc chnh

    tc vi cc gi tr o hm ca a thc ti x = 0. Trong trng hp tng

    qut, cng thc Taylor ti x = x0 c dng:

    P(x) = P(x0)+P(x0)

    1!(xx0) + P

    (2)(x0)

    2!(xx0)2 + + P

    (n)(x0)

    n!(xx0)n.

    (1.4)

    V d 1.2. Vit biu thc:

    Q(x) = (x

    1)(x

    2)...(x

    9)

    di dng (chnh tc) cng thc Taylor ti im x = 10:

    Q(x) = a0 +a1

    1!(x 10)x + a2

    2!(x 10)2 + + a9

    9!(x 10)9.

    Tnh gi tr ca a7?

    Cng thc (1.4) cho ta h thc a7 = Q(7)(10).

    Trong trng hp a thc bc ty , ta c cc kt qu hon ton tng t.

    V d 1.3. Chng minh rng nu a thc P(x) tha mn iu kin deg P(x) n v P(k)() = qk, k {0, 1, . . . , n}, trong , qk l cc s cho trc;P(0)(x) P(x) th P(x) c dng:

    P(x) =n

    k=0qk

    k!(x )k.

    ng thc trn c chng minh bng cch ly o hm lin tip hai v

    v s dng gi thit v cc gi tr ban u P(k)() = qk, k {0, 1, . . . , n}..Vic chng minh tnh duy nht c suy ra t tnh cht ca cc a thc

    (khc 0) bc khng vt qu n l n c khng qu n nghim (k c bi).

    By gi, ta chuyn sang bi ton ni suy Taylor.

    Bi ton 1.1 (Bi ton ni suy Taylor). Cho x0, akR vi k = 0, 1, . . . , N

    1. Hy xc nh a thc T(x) c bc khng qu N 1 v tha mn cc iu

    10

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    12/63

    kin:

    T(k)(x0) = ak, k = 0, 1, . . . , N 1. (1.5)

    Gii. Trc ht, d thy rng a thc

    T(x) =N1k=0

    k(x x0)k.

    c bc deg T(x) N 1. Tip theo, ta cn xc nh cc h s k R saocho T(x) tha mn iu kin

    T(k)(x0) = ak,

    k = 0, 1, . . . , N

    1.

    Ln lt ly o hm T(x) n cp th k, k = 0, 1, . . . , N 1 ti x = x0 vs dng gi thit

    T(k)(x0) = ak, k = 0, 1, . . . , N 1.

    Ta suy ra

    k =ak

    k!, k = 0, 1, . . . , N 1.

    Thay gi tr ca k vo biu thc ca T(x), ta thu c

    T(x) =N1k=0

    ak

    k!(x x0)k. (1.6)

    Vi mi k = 0,1,...,N-1, ta c

    T(k)(x) = ak +N1

    j=k+1

    aj

    (j

    k)!

    (x x0)jk.

    Do vy a thc T(x) tha mn iu kin

    T(k)(x0) = ak, k = 0, 1, . . . , N 1.

    Cui cng, ta chng minh rng a thc T(x) nhn c t (1.6) l a thc

    duy nht tha mn iu kin ca bi ton ni suy Taylor .

    Tht vy, nu c a thc T(x), c bc deg T(x) N 1 cng tha mn

    iu kin ca bi ton (1.5) th khi , a thc

    P(x) = T(x) T(x)11

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    13/63

    cng c bc deg P(x) N 1 v ng thi tha mn iu kinP(k)(x0) = 0, k = 0, 1, . . . , N 1.

    Tc l, a thc P(x) l a thc c bc khng qu N

    1 m li nhn x0 lm

    nghim vi bi khng nh thua N, nn P(x) 0, v do T(x) = T(x).nh ngha 1.3. a thc

    T(x) =N1k=0

    ak

    k!(x x0)k

    c gi l a thc ni suy Taylor.

    Nhn xt 1.1. Ch rng a thc ni suy Taylor T(x) c xc nh t(1.6) chnh l khai trin Taylor n cp th N 1 ca hm s T(x) ti imx = x0.

    1.3 Khai trin Taylor vi cc phn d khc nhau

    Cc nh l, nh ngha v bi ton trong mc ny ch yu c trch t

    [1].

    Ta xt cng thc khai trin Taylor i vi a thc. Tip theo, trong mc

    ny, ta s xc lp cng thc Taylor vi cc phn d khc nhau. Ta nhc li,

    khi hm f kh vi ti im x = a th theo nh ngha, ta c

    f(a + h) f(a) = f(a)h + o(h).Nu t a + h = x th h = x a v

    f(x) f(a) = f(a)(x a) + o(x a).Ni mt cch khc, tn ti hm tuyn tnh

    P1(x) = f(a) + f(a)(x a)

    sao cho

    f(x) = P1(x) + o(x a)trong

    P1(a) = f(a), P1(a) = f(a).

    Ta pht biu mt s bi ton sau y.

    12

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    14/63

    Bi ton 1.2. Gi s hm f xc nh trn tp hp R, trong lhp ca cc khong m trn trc thc. Gi s f kh vi cp n ti im a .Hy xc nh cc a thc Pn(x) c bc deg Pn(x) n sao cho

    P(k)n (a) = f(k)(a), k = 0, 1, . . . , n .

    Gi s P(x) l a thc (bc n) ty . Ta vit

    P(x) =n

    k=0

    ak

    k!(x a)k.

    Khi

    P()(a) =a

    !

    ! = a.

    Nu by gi ta t

    a = f()(a), = 0, 1, . . . , n .

    th

    f()(a) = P()(a).

    Nh vy bi ton c gii xong.

    Tip theo, ta xt bi ton c lng hiu f(x)

    Pn(x).

    nh ngha 1.4. a thc

    Tn(f; x) =n

    k=0

    f(k)(x0)

    k!(x a)k

    c gi l a thc Taylor bc n vi tm a ca hm f, kh vi cp n ti im

    a.

    Ta t

    f(x) = Tn(f; x)+Rn(f; x) = f(a)+f(a)(xa)+...+ 1

    n!f(n)(a)(xa)n+Rn(f; x).

    (1.7)

    Cng thc (1.7) c gi l cng thc Taylor (dng y ) ca hm f(x).

    Nu a = 0 th (1.7) c gi l cng thc Maclaurin.

    Biu thc Rn(f; x) c gi l phn d ca cng thc Taylor. Vi nhng

    iu kin khc nhau t ra i vi hm f, phn d s c biu din bi cc

    cng thc khc nhau. Li gii ca bi ton c lng hiu f(x)Pn(x) cngchnh l c lng cc biu thc phn d ny.

    13

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    15/63

    B 1.1. Nu hm c o hm n cp n ti im a v

    (a) = (a) = ... = (n)(a) = 0,

    th (x) = o((x a)n

    ) khi x a, tc l(x)

    (x a)n 0(x a).

    Chng minh. Ta chng minh bng phng php qui np. Vi n = 1 ta c(a) = (a) v

    (x)

    x

    a

    =(x) (a)

    x

    a

    (a) = 0(x a)

    tc l (x) = o((x a)). Gi s b ng vi n no , tc l vi iukin

    (a) = (a) = ... = (n)(a) = 0,

    th

    (x) = o((x a)n).Ta cn chng minh rng vi (n+1)(a) = o th

    (x) = o((x a)(n+1)), x a.

    Ta xt hm (x) = (x). Ta c

    (a) = (a) = ... = (n)(a) = 0.

    v do (x) = o((x a)n), tc l(x)

    (x a)n =(x)

    (x a)n 0(x a).Theo nh l Lagrange, ta c

    (x)

    (x a)n+1 =(x) (a)(x a)n+1 =

    ()(x a)(x a)n+1 =

    ()( a)n

    ax a

    n.

    trong , nm xen gia a v x. T ta thu c

    ()

    ( a)n 0(x

    a), 0 0. (1.11)

    15

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    17/63

    Cng thc (1.10) c gi l cng thc Taylor i vi hm f vi phn d

    Rn+1 di dng Schlomilch-Roche.

    Chng minh. Khng gim tnh tng qut, ta xt x > x0. Xt hm s

    h(t) = f(x) n

    k=0

    f(k)(t)k!

    (x t)k (x t)pn!p

    , x0 t x, (1.12)

    trong p R, p > 0, l tham s.Hm h(t) lin tc trn on [x0, x], h(x) = 0 v o hm h(t) tn ti t (x0; x). Ta chn s sao cho

    h(x0) = f(x)

    n

    k=0

    f(k)(x0)

    k!

    (x

    x0)

    k

    (x x0)p

    n!p

    = 0. (1.13)

    Vi cch chn , hm h(t) tha mn mi iu kin ca nh l Rolle trn

    on [x0, x]. Do , tn ti [x0, x], sao cho

    h() = f(n+1)()

    n!(x )n + (x )

    p1

    n! = 0. (1.14)

    Tht vy, t h thc (1.11), ta c

    h(t) = f(t) + f(t)1!

    f(t)1!

    (xt)+ f(t)2!

    2(xt) ...+ f(n)(t)n!

    (xt)n1

    f(n+1)(t)

    n!(x t)n + (x t)

    p1

    n!. (1.15)

    D dng thy rng mi s hng v phi ca (1.15) tr hai s hng cui

    cng u kh nhau ht. T bng cch thay t = ta thu c (1.14). T

    (1.14) ta c

    = f(n+1)()(x )np+1. (1.16)Thay t (1.16) vo (1.11) ta thu c iu phi chng minh.

    Bng cch chn cc gi tr p > 0 hon ton xc nh, ta thu c nhng

    trng hp ring i vi phn d Rn+1(f; x). Ta xt nhng trng hp quan

    trng nht khi p = n + 1 v p = 1.

    Khi p = n + 1 th t (1.11) ta thu c phn d ca cng thc Taylor di

    dng Lagrange

    Rn+1(f; x) =f(n+1)()

    (n + 1)!(x x0)n+1, = x0 + (x x0), 0 < < 1. (1.17)

    16

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    18/63

    Khi p = 1 th t (1.11) ta thu c phn d ca cng thc Taylor di dng

    Cauchy

    Rn+1(f; x) =f(n+1)(x0 + (x x0))

    n!(x

    x0)

    n+1(1

    )n, 0 < < 1 (1.18)

    trong = x0 + (x x0).

    Nhn xt 1.2. Cng thc Maclaurin vi cc phn d (1.17) v (1.18) cdng tng ng

    Rn+1(f; x) =f(n+1)(x)(n+1)!

    xn+1, 0 < < 1 (dng Lagrange).

    Rn+1(

    f;

    x) =

    f(n+1)(x)

    (n+1)! (1

    )

    nxn+1,0

    < 1 v f(x) = x x

    2

    2+ + (1)n x

    n1

    n 1 + Rn(x). Trong trnghp ny ta vit hai cng tc phn d

    Rn(x) =(1)n+1xnn(1 + x)n

    , 0 < < 1

    (dng Lagrange);

    Rn(x) = (1)n+1 xn

    (1 + x)

    1

    1 + x

    n1, 0 < < 1

    44

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    46/63

    (dng Cauchy).

    Gi s 0 x 1. Khi , p dng cng thc phn d dng Lagrange ta c

    |Rn(x)| 1

    n|x|n

    0(n ).Trong trng hp 1 < x < 0, cng thc phn d dng Lagrange khng

    cho ta kt lun v dng iu ca Rn (v y ch bit 0 < < 1 v

    = (x, n)). S dng cng thc phn d dng Cauchy ta c

    |Rn(x)| < |x|n

    1 |x| 0(n ), 0 < |x| < 1,

    v rng 0 1, Rn(x) 0 khi n . thy r iu ny ta t

    S(x) = x x2

    2+ (1)n x

    n1

    n 1.

    Khi

    Sn(x) + Rn(x) = Sn+1(x) + Rn+1(x)

    vRn(x) Rn+1(x) = (1)n+1x

    n

    n.

    Vi x > 1 v n v phi ca ng thc trn khng dn n 0. Do, Rn(x) khng dn n 0 khi n v khng tha mn tiu chun tnti gii hn Cauchy.

    Nh vy phn d Rn(x) ca cng thc Taylor i vi hm ln(1 + x) ch

    dn n 0 vi

    1 < x < 1.

    Xt hm f(x) = (1 + x)m. i vi hm ny ta ch cn xt m R\N. Tac

    f(n)(x) = m(m 1)...(m n + 1)(1 + x)mn,f(n)(0) = m(m 1)...(m n + 1).

    Cng thc Taylor theo cc ly tha ca x c dng

    (1+x)m = 1+mx+m(m

    1)

    2!x2+

    +

    m(m

    1)...(m

    n + 1)

    (n 1)!xn

    1+R

    n(x).

    45

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    47/63

    Khi , phn d di dng Lagrange c dng

    Rn =m(m 1)...(m n + 1)

    n!xn(1 + x)mn.

    V di dng Cauchy

    Rn =m(m 1)...(m n + 1)

    (n 1)! xn(1 + x)m1

    1

    1 + x

    n1.

    Vi 0 x < 1, th theo trn ta c vi n > m

    |Rn| |m(m 1)...(m n + 1)|n!

    |x|n 0(n ).

    Tht vy, ta tUn =

    m(m 1)...(m n + 1)(n 1)! x

    n.

    Khi ,|Un+1||Un| =

    |m n|n + 1

    |x|.Suy ra

    |Un+1

    |=

    |m n|n + 1 |

    x

    ||Un

    |.

    Vi n ln, v phi nh hn 1 v|m n|

    n + 1 1 khi n v 0 x < 1.

    Do dy (Un) c gii hn u no . Chuyn qua gii hn ng thc trn

    khi n , ta thu c |u| = |x|.|u| hay u = 0. Do Rn 0(n )vi 0 x < 1.Vi 1 < x < 0 th t cng thc phn d di dng Cauchy ta c

    |Rn| C|m(m 1)...(m n + 1)|(n 1)! |x|n. (3.2)

    Trong , C l s ph thuc x nhng khng ph thuc n.

    Tht vy, c lng |Rn(x)|, ta xt1

    1 + x

    n1

    1 1

    n1= 1

    v vi m 1 > 0 th (1 + x)m1 2m1.

    46

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    48/63

    Khi m 1 < 0(1 + x)m1 0, b > 0).

    Gii. Gii hn cho c dng 0.. Ta a v dng 00

    bng php

    i bin.

    t

    x = t th t2 = x v khi x

    0+ th t

    0+. Ta c

    limx0+

    1

    x

    x

    a arctan

    x

    a

    b arctan

    x

    b

    52

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    54/63

    = limt0

    a arctan

    ta b arctan

    tb

    t3.

    V mu s l a thc bc ba nn ta cn khai trin Taylor t s chnh xc

    n 0(t3). Khi t 0+ th

    a arctan

    t

    a=

    a

    ta

    + t33

    a3

    + o(t3

    3

    a3 )

    = t +

    t3

    3a+ o(t3), t 0+,

    b arctan

    t

    b=

    b

    t

    b+ t33

    b3

    + o(t3

    3

    b3)

    = t +

    t3

    3b+ o(t3), t 0+.

    Khi

    limx0+

    1x

    x

    a arctanxa

    b arctan

    xb

    = limt0

    t + t

    3

    3a+ o(t3)

    t + t3

    3b+ o(t3)

    t3

    = limt0

    ab3a

    t3 + o(t3)

    t3=

    a b3ab

    .

    Vy

    limx0+

    1x

    x

    a arctanxa

    b arctan

    xb

    = a b

    3ab.

    V d 3.14. Tnh gii hn

    limx0

    (cos(x.ex) ln(1 x) x)cotx3.

    Gii. Gii hn cn tm c dng 1. Ta c

    limx0(cos(x.e

    x) ln(1 x) x)cotx3

    = e limx0 cotx3

    ln f(x)

    vi

    f(x) = cos(x.ex) ln(1 x) x.Ta cn tnh

    limx0

    cot x3 ln[cos(x.ex) ln(1 x) x]. rng

    cot x3 = 1tan x3

    = 1x3 + o(x3)

    , x 0.

    53

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    55/63

    Do ta cn phi khai trin hm [f(x) 1] theo cng thc Taylor tngng vi o(x3) bng cch s dng cc khai trin sau

    xex = x + x2 + o(x2), x 0.

    cos t = 1 t2

    2!+ o(t3), t 0.

    Suy ra

    cos xex = 1 x2

    2 x3 + o(x3), x 0.

    ln(1 x) = x + x2

    2+

    x3

    3+ o(x3), x 0.

    Ta thu c

    f(x) 1 = 23

    x3 + o(x3), x 0v

    limx0

    23x

    3 + o(x3)

    x3 + o(x3)= 2

    3

    Vy

    limx0

    (cos(x.ex) ln(1 x) x)cotx3 = e 23 .

    3.2 Khai trin Taylor- Gontcharov vi bi ton clng hm s

    Trong mc ny, ta s xt khai trin Taylor - Gontcharov ca mt s hm c

    th cng nh nh gi c lng phn d ca khai trin Taylor - Gontcharov.

    V d 3.15. Xc nh cc tam thc bc hai f(x) tha mn iu kin

    f(0) = 1; f(3) = 0; f(5) = 5.Gii. Theo cng thc ni suy Newton trong trng hp n = 2 ta c

    f(x) = f(0) + f(3)(x 0) + f(5)

    (x 3)22

    (0 3)2

    2

    = 1 + 5

    (x 3)22

    92

    .

    Hayf(x) =

    5

    2x2 15x 1.

    54

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    56/63

    V d 3.16. Xc nh a thc bc ba f(x) tha mn cc iu kin

    f(n)(3n + 1) = n3 3n2 + n + 1, n = 0, 1, 2, 3.

    Gii. a thc f(x) cn tm phi tha mn cc iu kin sauf(1) = 1; f(4) = 0; f(7) = 1; f(3)(10) = 4.

    Theo cng thc ni suy Newton trong trng hp n = 3, ta nhn c a

    thc cn tm c dng

    f(x) =2

    3x3 87

    6x2 + 84x 1135

    6.

    V d 3.17. Vi hm f(x) = ex

    , x R ta c f(n)

    (x) = ex

    , x R vi ccmc ni suy x0 = 0; x1 = 1; x2 = 2 ta c

    f(0) = 1; f(0) = e; f(2) = e2.

    Do , a thc ni suy Newton bc 2 ca f(x) c dng

    P2(x) = 1 + e

    x

    0

    dt1 + e2

    x

    0

    t1

    1

    dt2dt1 = 1 + ex + e2

    (x 1)22

    12 .

    T , khai trin Taylor-Gontcharov ca hm s f(x) = ex vi cc mc ni

    suy trn c dng

    ex = 1 + ex + e2

    (x 1)22

    12

    + R3(f; x).

    Trong , phn d R3(f; x) c xc nh bi

    R3(f; x) = f(3)()

    3!(x x0)3 f(3)(1)

    2!R1(x0, x)(x1 x0)2

    f(3)(2)

    1!R2(x0, x1, x)(x2 x0) = e

    6x3 e

    1

    2x e2 (x 1)2 1 .

    Trong , nm gia x v 0; 1 (0; 1), 2 (0;2).V d 3.18. Xt hm f(x) = sin x vi cc mc ni suy x0 =

    6; x1 =

    4; x2 =

    3; x3 =

    2. Ta c

    f(n)(x) = sin(x + n

    2), n = 0, 1, 2, . . . .

    55

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    57/63

    Mt khc

    f(

    6) =

    1

    2; f(

    4) =

    2

    2; f(

    3) =

    3

    2; f(

    2) = 0.

    Do , phn d trong khai trin Taylor-Gontcharov n bc 3 ca hm sf(x) = sin x l

    R4(f; x) =f(4)()

    4!(x

    6)4 f

    (4)(1)

    3!

    3

    1728

    x

    6

    dt f(4)(2)

    2!.2

    36

    x

    6

    t1

    4

    dt2dt1

    f(4)(3)

    1!.

    3

    x

    6

    t1

    4

    t2

    3

    dt3

    .dt2

    .dt1

    =sin

    4!(x

    6)4 sin 1

    3!

    3

    1728(x

    6) sin 2

    2!.2

    72

    (x

    4)2

    2

    144

    sin 31!

    .

    3

    1

    6(x

    3)3

    2

    288(x

    4)

    3

    1296

    .

    Trong , nm gia x v

    6; 1 (

    6;

    4), 2 (

    6;

    3); 3 (

    6;

    2).

    V d 3.19. Cho N(x) l a thc c bc deg N(x) 3 v tho mn cciu kin

    |N(k)(k)| 1 , k = 0, 1, 2, 3.Chng minh rng

    |N(x)| 112

    x [0, 3].

    Gii. p dng cng thc ni suy Newton ti cc nt ni suy xi = i 1,i = 1, 2, 3, 4 , ta c

    N(x) = N(0) + N(1)R(0, x) + N(2)R2(0, 1, x) + N(3)(3)R3(0, 1, 2, x),

    trong

    R(0, x) =

    x0

    dt = x,

    R2(0, 1, x) =x0

    t11

    dtdt1 = x2!

    (x 2),

    56

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    58/63

    R3(0, 1, 2, x) =

    x0

    t11

    t22

    dtdt2dt1 =x

    3!(x 3)2.

    Khi

    N(x) = N(0) + N(1)x + N(2)x

    2!(x 2) + N(3)(3)x

    3!(x 3)2.T gi thit bi ton ta suy ra

    |N(x)| 1 + |x| + x

    2!(x 2)

    + x3!

    (x 3)2

    1 + x + x2!

    (x 2) + x3!

    (x 3)2.

    t

    f(x) = 1 + x + x2!(x 2) + x3!(x 3)2

    =1

    6x3 1

    2x2 +

    3

    2x + 1.

    Kho st hm s f(x) trn [0, 3] ta c

    f(x) f(3) = 112

    .

    Vy

    |N(x)| 112

    .

    V d 3.20. Cho N(x) l a thc c bc deg N(x) 5 c dngN(x) = a5x

    5 + a4x4 + a3x

    3 + a2x2 + a1x + a0

    v tho mn cc iu kin

    |N(4)(4)| 1 , |N(5)(5)| 1.Tm gi tr ln nht ca |N(4)(x)| trn [1, 6].

    Gii. Ta nhn thy N(4)(x) l hm s bc nht nn gi tr ln nht caN(x) trn [1, 6] s t c ti x = 1 hoc x = 6.

    Do vy |N(4)(x)| cng s t gi tr ln nht trn [1, 6] ti mt tronghai u mt x = 1 hoc x = 6.

    p dng cng thc ni suy Newton ti cc nt ni suy xi = i 1 ,i = 1, 2, 3, 4, 5, 6 , ta c

    N(x) = N(0) + N(1)R(0, x) + N(2)R2(0, 1, x) + N(3)(3)R3(0, 1, 2, x)

    57

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    59/63

    +N(4)(4)R4(0, 1, 2, 3, x) + N(5)(5)R5(0, 1, 2, 3, 4, x),

    trong

    R4(0, 1, 2, 3, x) =

    x0

    t11

    t22

    t33

    dtdt3dt2dt1 = x4!

    (x 4)3,

    R5(0, 1, 2, 3, 4, x) =

    x0

    t11

    t22

    t33

    t44

    dtdt4dt3dt2dt1 =x

    5!(x 5)4.

    Suy ra

    N(4)(x) = N(4)(4) + N(5)(5)(x

    4).

    Khi

    N(4)(1) = N(4)(4) 5N(5)(5),N(4)(6) = N(4)(4) + 2N(5)(5).

    T gi thit bi ton, ta suy ra

    |N(4)(1)| = |N(4)(4) 5N(5)(5)| 6,

    |N(4)(6)| = |N(4)(4) + 2N(5)(5)| 3.Vy gi tr ln nht ca |N(4)(x)| bng 6 ti x = 1.

    Tng t nh vi khai trin Taylor, vi khai trin Taylor- Gontcharov ta

    cng c nhn xt sau

    Nhn xt 3.1. Vn mu cht trong vic tm cng thc nh gi phnd ca cng thc khai trin Taylor - Gontcharov i vi hm f cng vi cc

    mc ni suy xi cho trc l vic tnh o hm cp cao ca hm f v biu

    thc Rk(x0, x1, . . . , xk1, x). Tuy nhin, vic tnh o hm cp cao ca mthm s nhiu khi khng n gin. Bn cnh , khi mc ni suy tng ln th

    vic tnh ton biu thc Rk(x0, x1, . . . , xk1, x) kh phc tp. Do , trongcc v d trn, v gi tr ca mc ni suy nh nn ta mi a ra c biu

    thc nh gi phn d ca f(x) mt cch chnh xc. Cn trong trng hp

    tng qut, ta ch c th a ra nh gi di dng Lagrange v Cauchy

    nh trong (2.12) v (2.14).

    58

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    60/63

    Tuy nhin, trong trng hp hm f(x) c o hm gii ni

    |f(n)(x)| M, x [a; b], n = 0, 1, 2, . . .

    ta c kt qu sauBi ton 3.1. Gi s hm s f(x) lin tc trn [a; b], c o hm mi cptrn [a; b] v xi [a; b], i = 0, 1, 2, . . . , n. Khi , nu M > 0 sao cho

    |f(n)(x)| M, x [a; b], n = 0, 1, 2, . . .

    th Rn+1(f; x) 0 khi n .Gii. Theo cng thc xc nh ca R

    n+1(f; x) ta c

    Rn+1(f; x) =f(n+1)()

    (n + 1)!(x x0)n+1

    n

    k=1

    f(n+1)(k)

    (n k + 1)!Rk(x0, x1, . . . , xk1, x)(x x0)nk+1.

    Mt khc:

    Rk(x0, x1, . . . , xk1, x) = x

    x0

    t1x1

    ...

    tk1xk1

    dtkdtk1...dt1

    ba

    t1a

    ...

    tk1a

    dtkdtk1...dt1 = 1

    k!(b a)k.

    Do

    Rn+1(f; x) M(b a)(n+1)(n + 1)!

    +n

    k=1

    M(n k + 1)! . 1k!(b a)

    k(b a)nk+1

    = M(b a)(n+1)

    1

    (n + 1)!+

    nk=1

    1

    k!(n k + 1)!

    M(b a)(n+1)

    1

    (n + 1)!+

    nk=1

    1

    n2! n

    n2 + 1!

    = M(b a)(n+1)

    1

    (n + 1)!+

    nn2

    !

    n n2

    + 1

    !

    .

    59

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    61/63

    V n Z nn n = 2p + i, (i = 0, 1). Khi ta cRn+1(f; x)

    M(b a)2p+i+1

    1(2p + i + 1)!

    +2p + i

    p!(p + i + 1)!

    .

    Trng hp 1. Nu i = 0, ta cRn+1(f; x) M(b a)2p+1(2p + 1)!

    +(b a)p

    p!

    2.(b a)2p

    (p + 1)

    0(p ).

    Trng hp 2. Nu i = 1, ta cRn+1(f; x)

    M

    (b a)2p+2

    (2p + 2)!+

    (b a)p

    p! 2

    .(b a)2(2p + 1)

    (p + 1)(p + 2) 0(p ).

    Vy Rn+1(f; x) 0 khi n .

    60

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    62/63

    KT LUN

    Lun vn trnh by v thu c

    - Mt s kt qu c bn v bi ton ni suy Taylor, khai trin Taylor,

    nh gi cng thc phn d v s hi t ca khai trin Taylor.

    - a ra cng thc nghim ca bi ton ni suy Newton, biu din hm

    s f(x) theo cng thc khai trin Taylor- Gontcharov v c bit a ra cc

    nh gi phn d ca khai trin Taylor - Gontcharov ca hm f(x) di hai

    dng Lagrange v Cauchy. Bn cnh , lun vn nh gi s hi t ca

    khai trin Taylor - Gontcharov v khi qut ha bi ton ni suy Newton

    i vi hm a thc nhiu bin.

    - Mt s ng dng ca khai trin Taylor v khai trin Taylor - Gontcharov

    trong vic c lng v nh gi sai s, tnh gii hn hm s....

    - Mt s hng nghin cu c th pht trin t ti ny l

    1. Khai trin Taylor - Gontcharov i vi hm nhiu bin v nh gi phn

    d ca n.

    2. Cc ng dng ca khai trin Taylor - Gontcharov trong phng trnh vi

    phn, trong l thuyt cc bi ton bin....

    V thi gian v kin thc cn hn ch nn lun vn chc chn khng trnh

    khi nhng thiu st. Tc gi rt mong nhn c s quan tm, ng gp

    kin ca cc thy c v cc bn ng nghip bn lun vn c hon

    thin hn.

    Tc gi xin chn thnh cm n!

    61

  • 8/2/2019 Cng thc khai trin TAYLOR - GONTCHAROV v p dng

    63/63

    TI LIU THAM KHO

    [1] Nguyn Vn Mu, Cc bi ton ni suy v p dng, NXBGD, 2007.

    [2] Nguyn Vn Mu, a thc i s v phn thc hu t, NXBGD,2004.

    [3] Nguyn Xun Lim, Gii tch, tp I, NXB Gio dc 1998.

    [4] Nguyn Duy Tin, Trn c Long, Bi ging gii tch, NXB ihc Quc gia H ni 2004.

    [5] Nguyen Van Mau, Algebraic Elements and Boundary Value Problemsin Linear Spaces, VNU Publishers, Hanoi 2005.

    [6] Przeworska-Rolewicz, D. Equations with Transformed Argument. AnAlgebraic Approach, Amsterdam-Warsaw 1973.

    [7] Przeworska-Rolewicz, D. Algebraic Analysis, PWN - Polish Scien-tific Publishers and D. Reidel Publishing Company, Warszawa - Dor-

    drecht, 1988.