Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · •...

49
1 Confidence indicators for ADAS functions Ph. Bonnifait, V. Cherfaoui, G. Dherbomez, M. Doumiati, F. Fayad, M. Jabbour, J. Laneurit, S. Rodriguez, A. Victorino Speaker: Ph. Bonnifait Lab Heudiasyc CNRS, Université de Technologie de Compiègne FRANCE

Transcript of Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · •...

Page 1: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

1

Confidence indicators for ADAS functions

Ph. Bonnifait, V. Cherfaoui, G. Dherbomez, M. Doumiati, F. Fayad, M. Jabbour, J. Laneurit, S. Rodriguez, A. Victorino

Speaker: Ph. Bonnifait

Lab Heudiasyc CNRS, Université de Technologie de Compiègne

FRANCE

Page 2: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

2

Demos

1. Pedestrian detection – in car, real time

2. Map-matching integrity monitoring – in car, real time

3. Automatic detecting risk rollover situations– On table, real data replay

Page 3: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

3

Outline of this presentation

• Motivation and scientific Interests• The demos at a glance

– Our experimental car: Carmen– What you can see on board the vehicles

• Key technologies demonstrated – Lidar detection, pedestrian recognition and

tracking – Calibration of the extrinsic transformation

between the lidar frame and a camera frame– Map-Matching integrity monitoring– Load Transfer Ratio

Page 4: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

4

Scientific interests

• ADAS - Advanced Driver Assistance Systems– Techniques for Man-Machine cooperation

assessment• Perception

– State Observation of dynamic systems– Multi-sensor fusion in a dynamic context– Ego-localization using on-board sensors and GNSS

associated with GIS information– Dynamic behaviour (tire/road contact

characterisation)

Page 5: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

5

Intelligent Vehicles• An IV is a vehicle able to perform

– driving assistance tasks – autonomous navigation

in the presence of uncertainty and variability in its environment

• Artificial Perception and Contextual Information analysis are key issues

• Managing uncertainty in fusion processes is crucial for reliable perception

Page 6: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

6

Confidence indicators

• IV embedded systems need to– Fuse redundant information– Estimate unobserved parameters– Monitor themselves

Fault detection and isolationDiagnosisIntegrity tests

• Confidence indicators are useful for – The fusion processes (Input)– The use of the provided information (since often no

high enough reliability can be reached) (Output)

Page 7: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

7

Outline of this presentation

• Motivation and scientific Interests• The demos at a glance

– Our experimental car: Carmen– What you can see on board the vehicles

• Key technologies demonstrated – Lidar detection, pedestrian recognition and

tracking – Calibration of the extrinsic transformation

between the lidar frame and a camera frame– Map-Matching integrity monitoring– Load Transfer Ratio

Page 8: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

8

CARMEN

CAN bus

• Wheel Speed Sensors

•Yaw rate gyro 4-layer Lidar

(IBEO Alaska XT)

Front scene camera

(Sony camera)

GPS receiver

(PolarX Septentrio)

Page 9: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

9

Demo 1: Pedestrian detection/recognition using lidar-only

Page 10: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

10

Projection on the image of the 4 scanning layers of a Lidar

If the recognition confidence of the lidar-only-track > threshold

• Projection of a corresponding rectangle (2 meters high)

• Plot of “ lateral bars” to represent the confidences

What you can see during the demo

Page 11: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

11

Lidar-only pedestrian detection/recognition on-board display

(no gate on the confidence treshold)

Page 12: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

12

Lidar-only pedestrian detection/recognition on-board display (confidence treshold=95%)

Page 13: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

13

Architecture

IBEO Alasca XT (12.5 Hz)

Sony CCD Camera (15Hz)

Dat

a ac

quis

ition

Obstacle detection

Pedestrian recognition

Tracking objects

Confidence indicators computation

ROI projection into image

Win32

Calibrated parameters

Selected pedestrian list

Display

Page 14: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

14

Demo 2 : characterization of the confidence in the map matching process

of a localization system

Page 15: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

15

What you can see during the demo

Most probable hypothesis

3 other hypotheses

Map display

-The yellow square and the arrow are the position and the heading of the car

-The 4 red triangles correspond to the hypotheses

-The brackets represent the confidence interval of the track

Safety level of the output : the lower the PFA (Probability of False Alarm), the more reliable the hypothesis

Reliable

Unsafe

ConfidentAmbiguous Historic of the most probable hypothesis

Page 16: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

16

MM demo overview

Page 17: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

17

Architecture

Septentrio GPS 10Hz

CAN gateway

Odometry (25Hz) & gyrometer (100Hz)

Data acquisition

Positioning EKF

Map matching +Integrity Indicators Particle filter

Map server (TCP/IP)

Display

Win32

Linux

Two Map servers

-NavTeQ

-TeleAtlas

Page 18: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

18

Outline of this presentation

• Motivation and scientific Interests• The demos at a glance

– Our experimental car: Carmen– What you can see on board the vehicles

• Key technologies demonstrated – Lidar detection, pedestrian recognition and

tracking – Calibration of the extrinsic transformation

between the lidar frame and a camera frame– Map-Matching integrity monitoring– Load Transfer Ratio

Page 19: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

19

Perception objectives

• Obstacles detection and tracking in driving situation• Pedestrians recognition• Confidence indicators management

– Detection– Recognition– Tracking

Page 20: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

20

Object level fusion moduleSensor used in the demo

Page 21: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

21

Object detection

• Four plane laser sensor• Detecting ground• Clustering

Page 22: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

22

z

xy

zmin

Layer 1

Layer 2

Layer 3

Layer 4

zmax

ω1234

ω123

ω234

ω23

ω2

ω3

0

1

0

1

0

1

0

1

0

1

0

1

(a)

(b)

(c)

Object Detection Confidence

More details in paper WeBT.27

25 50 75 100

L(cm)

0

Pr

0.5

1

125

Pedestrian Recognition Confidence

Width based Recognition function

NNNNNNNPd

/)(

33222323

23423412312312341234

ωωωωωω

+++++=

For each detected object

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠⎞

⎜⎝⎛×

=DLRoundN

2arctan2180

πα

Page 23: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

23

Track’s updating

Page 24: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

24

Confidences management

Method: belief functions • To combine tracks • To manage objects detection and

recognition confidences

Algorithm• transform the detection and recognition

probabilities into believe functions : basic believe assignment (bbas)

• Combine these dependent bbas with a cautious rule.

• Combine conjunctively with the associated track’s confidence

• Calculate track’s detection and recognition confidencesMore details in paper WeBT.27

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31

time

Object Detection

Object Recognition

Track Detection

Track Recognition

Page 25: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

25

cX

cY

cZ

lX

lY

lZ

tX

tY

tZ

CCcl ,

ijlP

Extrinsic Calibration between a Multi-layer Lidar and a Camera

• 3D pose estimation of the calibration target from each sensor data.– 3D scan data (4 layers)– Images

• Estimation of the relative sensor position – 3D Robust Registration of

different poses of the target • Calibration accuracy estimation

based on registration residuals

Page 26: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

26

Demo 2 : characterization of the confidence in the map matching process

of a localization system

Page 27: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

27

Map Matching - Definition

map

« map-matching » : determining the vehicle’s position % a digital road database

Page 28: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

28

GNSS-basedPositioning

MapDatabase

EGNOSReceiver

GNSSReceiver

InfrastructurePositioning

Module

HybridPositioning

MapMatching

DRSensors

HybridSolution

MapMatchedSolution

UpdateService

Main functions of the position calculation process in POMA

Page 29: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

29

Modern Map-Matching Outputs

• MM outputs : up to 10 matched candidates• Each candidate (Map-Matched hypothesis)

– Probability with respect to the others– NIS – Normalized Innovation Squared

• Very often it is the hypothesis with the maximum probability that is used: for navigation tasks or fleet management applications it is acceptable. But for many other applications, like eCall or “Pay as you drive”, it is important to manage all the hypotheses.

Page 30: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

30

Integrity and Localization Systems

• Integrity of a localization system: the measure of confidence that can be accorded to the exactitude of the positioning delivered by this system.

• Usual scheme– apply successive checks to ensure that the input

information is valid detect and eliminate aberrant measurements

“internal reliability”– estimate a positioning with a quantified

inaccuracy. “external reliability”

Page 31: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

31

xPL – Protection LevelsMaximum error due to an undetected fault

Approximate Radius of Protection (ARP)

Page 32: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

32

Integrity of a map-matching system• Map-Matching Integrity definition (proposal)

– A multi-hypothesis map-matching process is reliable (or safe) if the ground truth matched location is within the hypotheses zones provided by the system.

Real unknown matched position Candidate matched zones

Real unknown matched position Candidate matched zones

Safe Unsafe

Page 33: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

33

How to characterize the localization system integrity in real-time?

• The Real Map-Matched position is Unknown!• Our proposal

– Multi-Hypothesis Map-Matching (MHMM)– Estimate the probability of each hypothesis with

respect to the others– Compute Normalized Residuals for each

hypothesis – Apply a decision rule (depending on the

application)

Page 34: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

34

Monitoring integrity using MHMM outputs Estimated position

Candidate matched position Most likely candidate

Estimated position Candidate matched position Most likely candidate

Case 1 : confident MM Case 2 : ambiguous MM

Estimated position Candidate matched position Most likely candidate

Case 3: inconsistent candidates

Page 35: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

35

Bayesian MHMM using Road Tracking

Page 36: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

36

MOMKFMultiple Observation Models Kalman Filter

⎩⎨⎧

+=+= −

ttt

ttt

)x(oz)x(fx

βα1

Multi-hypothesisMap-matching

GPS

Proprioceptivesensors

Roads

HypothesesEstimation/Selection

Selected

Hypotheses

Map observations are fused with the states

Page 37: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

37

MOMKF Illustration

Δ

Δ : threshold for safe duplication

More details in paper WeBT.24

Page 38: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

38

False Alarms and Missed detectionsEstimated position Real unknown position Candidate matched position Most likely candidate

Estimated position Real unknown position Candidate matched position Most likely candidate

Example of false alarm. The matched point is good but it is declared unsafe by the system

Example of missed detection. The most likely matched point is bad and the system is

confident in its map-matching

Page 39: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

39

Managing the NIS of MHMM• Criterion: heading + distance (for each hypothesis)

2 degrees of freedom• Gaussian hypothesis

NIS should follow a Chi Squared distribution • Decision rule: compare each NIS with a Threshold• Decision threshold depends on the probability of False

Alarm • Decision rule: accept hypothesis “i” if NIS(i)<Th(PFA)

– PFA = 10% Th = 4.6– PFA = 1% Th = 9.2– PFA = 0.1% Th = 13.8– PFA = 0.01% Th = 18.4

Page 40: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

40

Managing the probabilities of MHMM

• It depends on the application!• Navigation typical rule

– Take the most likely hypothesis if Pi>0.5• Intelligent Speed Adaptation

– If Pi<0.8 then confirm the extracted speed limit with the one detect by the on board camera

• Road charging – Charge the use of the road if the less likely

hypothesis j is such that Pj<0.1

Page 41: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

41

Demo 3 : An estimation methodology for vehicle wheel-ground contact normal forces: Automatic

detecting risk rollover situations

Page 42: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

42

Problem

• Usual measurements: accelerations, roll rates, suspensions deflection,…

• Missing important information– Dynamic variables: roll angle, tire-road forces

high costs sensors-> estimation

Page 43: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

43

Objective

• Replace wheels transducers by virtual sensors (observers)

+

accelerometer, gyrometer, …+ModellingObserver

kkkpk XdtUXfX∧∧

+∧

+⎟⎠⎞⎜

⎝⎛= ,,1

( )kcpkk YYKXX −−= +∧

+∧

,11

+Tire-road forces

Page 44: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

44

Why we need to estimate normal tire forces?• As a result of longitudinal and lateral accelerations,

the load distribution in a vehicle changes during a journey.

• Normal tire-road forces:– Improvement of safety systems (ABS, ESP)– Influence steering behavior, vehicle stability and cornering

stiffness– Better calculation of the LTR (Load Transfer Ratio) rollover

index parameter

Force Fz

roll pitch

Page 45: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

45

LTR parameter definition

• LTR:– LTR=(Fzr-Fzl)/(ΣFz)– Convenient method for supervising the vehicle’s

dynamic roll behavior- LTR

Lift-off of the right wheels

No load transfer

Lift-off of the left wheels

1 0 -1

Page 46: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

46

Estimation process

Observer 1 (LKF)Roll plane vehicle model

Measurements

Lateral load transfer

Observer 2 (EKF)Nonlinear wheel ground

vertical contact force model

Vertical forces, LTR

Page 47: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

47

Some experimental results

0 5 10 15 20 25

2000

3000

4000

5000

6000

Front left vertical tire force Fz fl (N )

6000

7000

Front right vertical tire force Fz fr (N )

measuredestimated

Page 48: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

48

This is the end

Have a look at our demos!

Page 49: Confidence indicators for ADAS functionsbonnif/talks/demos_IV_UTC.pdf · 2008. 10. 30. · • Intelligent Speed Adaptation – If P i

49

Demos

1. Pedestrian detection – in car, real time

2. Map-matching integrity monitoring – in car, real time

3. Automatic detecting risk rollover situations– On table, real data replay