Condensation heat transfer and pressure drop coefficients ...

104
CONDENSATION HEAT TRANSFER AND PRESSURE DROP COEFFICIENTS OF R22/R142b IN A WATER COOLED HELICALY COILED TUBE-IN-TUBE HEAT EXCHANGER by SHIKO A. KEBONTE Submitted in partial fulfillment of the requirement for the degree AIAGISTER INGENERIAE in MECHANICAL ENGINEERING in the FACULTY OF ENGINEERING of the RAND AFRIKAANS UNIVERSITY SUPERVISOR: PROF. J.P. MEYER NOVEMBER 1998

Transcript of Condensation heat transfer and pressure drop coefficients ...

Page 1: Condensation heat transfer and pressure drop coefficients ...

CONDENSATION HEAT TRANSFER AND PRESSURE DROP COEFFICIENTS OF R22/R142b IN A WATER

COOLED HELICALY COILED TUBE-IN-TUBE HEAT EXCHANGER

by

SHIKO A. KEBONTE

Submitted in partial fulfillment of the requirement for the degree

AIAGISTER INGENERIAE

in

MECHANICAL ENGINEERING

in the

FACULTY OF ENGINEERING

of the

RAND AFRIKAANS UNIVERSITY

SUPERVISOR: PROF. J.P. MEYER

NOVEMBER 1998

Page 2: Condensation heat transfer and pressure drop coefficients ...

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank The Almighty God for blessing me with

health, strength and knowledge to complete these studies.

Thanks to Professor J.P. Meyer for bringing me in RECOHET, fOr his patience; help,

guidance and advice.

I want to thank my one and only wife Irene Kebonte, for her love, patience, constant

support and encouragement.

Thanks to all my Recohet colleagues,.particularly K smit, C W Wood and J.P.

Bukasa, for their technical and moral support whenever I was in need.

Also, a word of thanks to my brother Titho Kabaute, for his financial and moral

supports.

Last, but not less important, thanks to the FRD and ESKOM who's financial support

made this study possible.

■■ A A A A A A® A A A A. A A A A

Page 3: Condensation heat transfer and pressure drop coefficients ...

ABSTRACT

Heat transfer and pressure drop .characteristics during in-tube condensation of non-

azeotropic mixtures of R22/R142b in a smooth helically coiled copper tube with an

inside diameter of 8.11 mm are investigated. The experimental results are compared

with prediction from correlation. The coefficient of performance of the heat pump

built and used for experiments has been studied. The mass flux of the refrigerant was

varied during the course of the experiments. At similar mass flow rate of fluids, the

average heat transfer coefficients for mixtures were lower than those for pure

refrigerant R22 used as reference for comparison. Also, the heat transfer coefficients

of all the refrigerants increased with increasing mass flux.

ii

Page 4: Condensation heat transfer and pressure drop coefficients ...

ABSTRACT

Heat transfer and pressure drop characteristics during in-tube condensation of non-

azeotropic mixtures of R22/R142b in a smooth helically coiled copper tube with an

inside diameter of 8.11 mm are investigated. The experimental results are compared

with prediction from correlation. The coefficient of performance of.the heat pump

built and used for experiments has been studied. The mass flux of the refrigerant was

varied during the course of the experiments. At similar mass flow rate of fluids, the

average heat transfer coefficients for mixtures were lower than those for pure

refrigerant R22 used as reference for comparison. Also, the heat transfer coefficients

of all the refrigerants increased with increasing mass flux.

ii

Page 5: Condensation heat transfer and pressure drop coefficients ...

TABLE OF CONTENTS

Acknowledgements

Abstract ii

Table of contents iii

Chapter 1: Introduction

1.1. Background

1

1.2. Research goal

3

1.3. Review of literature 3

Chapter 2: Experimental setup and Procedure

2.1. Introduction 6

2.2. The refrigerant loop 6

2.3. The water loop 8

2.4. Data acquisition and Experimental procedure 9

Chapter 3: Data reduction

3.1: Heat transfer coefficient 12

3.2. Pressure drop 15

Chapter 4: Analysis of data results

4.1. Introduction 19

4.2. Pure refrigerant 19

4.2.1. Heat transfer coefficient 20

4.2.2. Pressure drop 21

4.3. Refrigerant mixtures 22

4.3.1. Heat transfer coefficient 22

4.3.2. Pressure drop 25

iii

Page 6: Condensation heat transfer and pressure drop coefficients ...

4.4. Coefficient of performances 26

Chapter 5: Conclusion 29

5.1. Conclusions 29

5.2. Recommendations 30

References 31

Appendixes

Appendix A o A-1

Appendix B B-1

Appendix C C-1

iv

Page 7: Condensation heat transfer and pressure drop coefficients ...

CHAPTER I

INTRODUCTION

IA. BACKGROUND

Refrigeration systems, air-conditioners and heat pumps industries are currently in a state

of rapid change as most commonly used chlorofluorocarbons (CFC) and

hydrochlorofluorocarbons (HCFC) are phased out due to their environmental effects of

the depletion of stratospheric ozone layer, as it was decided by the Montreal protocol in

1987 and confirmed by Copenhagen and Vienna amendments, and most recently by

Kyoto agreement.

The focus is turning towards using mixtures of different fluids, as working fluids, in a bid

to find suitable substitutes. Non-azeotropiCbinary mixtures are being considered as

potential replacements for CFC and HCFC refrigerants. A non-azeotropic or zeotropic

refrigerant mixture is one for which the condensation or evaporation process is within a

temperature interval between the saturated liquid and saturated vapor states for any given

saturation pressure, instead of a constant temperature which is the case for pure

refrigerants (Figure 1.1).

Condensation is the process in which heat is rejected by a vapour to change phase to form

a liquid if an unlimited heat sink is assumed. Condensate may form from vapour in

several different ways: Film condensation (the condensate forms a continuous film on the

cooled surface, this is the most important mode of condensation occuring in industrial

equipment and occurs in most of the condensation process in the condenser of a heat

pump); Dropwise condensation (occurs when the condensate is formed as droplets on a

cooled surface instead of a continuous film) and Direct contact condensation (occurs

Page 8: Condensation heat transfer and pressure drop coefficients ...

when vapour is brought to in direct contact with a cold surface, whether it is the tube wall

or the condensate). Only mechanisms that are important for heat pump applications are

named. The two main mechanisms are dropwise and filmwise condensations.

Figure 1.1: Schematic representation of the vapour-compression cycle on a

temperature (T) — entropy (s) diagram with pure (1-7) and non-azeotropic

mixture (1 -7 ) refrigerants.

It has been shown in the literature, that mixtures have several advantages when used as

the working fluid. Most of them offer two characteristics not available from single-

component fluids: Gliding temperature phase-change processes, as explained above (with

reference to Figure 1.1), and variable composition with temperature ranges than pure

refrigerants. Characteristics that allow not only higher coefficient of performance values

(making the running cost as low as possible), but also higher hot water temperatures that

could have been obtained with only chlorodifluorocarbon R22. (Smit and Meyer, 1997).

2

Page 9: Condensation heat transfer and pressure drop coefficients ...

L2. RESEARCH GOAL

The aim of this study is to experimentally determine the average heat transfer and

pressure drop characteristics during condensation of pure R22 and two zeotropic mixtures

of R22 with R142b, 80% and 60% R22 (composition by mass), in a counter flow tube-in-

tube-heat exchanger with water flowing in the annulus and refrigerant in the -inner tube.

The heat transfer coefficients obtained are compared to four well-known correlations

from the literature: Akers et al. (1959); Azer et al. (1971); Traviss (1973) and, Cavallini

and Zecchin (1974).

1.3. REVIEW OF LITERATURE

Limited work on heat transfer and pressure drop has been reported for refrigerant mixture

condensation inside smooth tubes. The following is a summary of the main findings.

Stoecker and Kornota (1985) studied the condensation performance of binary mixtures of

R12/R114 and pointed out that it was in _the mid range of the condenser where the

influence of the mixture was -most dominant in reducing the heat transfer coefficients.

They proposed a solution to prevent the reduction of the heat transfer coefficients by

installing turbulence promoters or circuiting the condenser to generally higher velocities,

and also recommended that Tandon's correlations for pure component condensation

could be used to predict the heat transfer coefficient for condensation of R12/R114

mixtures.

Tandon et al. (1985) observed the flow patterns of the condensing binary mixture of

R22/R12 inside horizontal tube and found that Baker, Soliman, Azer and Breber failed to

correlate the wavy flow pattern data, which is an important flow pattern. Consequently

their maps do not satisfactorily characterize the flow patterns during condensation inside

an horizontal tube, but the flow pattern data for mixtures of R22 and R12 was best

3

Page 10: Condensation heat transfer and pressure drop coefficients ...

correlated on the authors' map (Tandon et al. (1985)) and the flow regimes for mixtures

were also found to be the same as proposed for pure refrigerants.

Koyama et al.(1988, 1990, 1991) investigated the condensation of refrigerant mixture

R22/R114 inside smooth and internally finned tubes and reported that the local heat

transfer coefficients for the mixtures inside both smooth and internally finned tubes were

less than those for the pure refrigerants. The heat transfer coefficients depended on the

composition and the mass flux.

The heat transfer coefficients for the ternary blend of R124/R22/R152a (40% /36% /24%)

condensing inside a horizontal smooth tube were 12% -'to 20% higher than those for pure

R12 at similar mass fluxes. (Eckels and Pate, 1991).

Johanssen (1992) carried out a theoretical investigation on the use of a wide range of

non-azeotropic refrigerant mixtures in water-heating heat heat pumps that led to the

selection of a mixture of R22 and R142b. He concluded that a promising non-azeotropic

mixture that meets the requirements of capability to produce high water temperature, high

heating capacity at low ambient temperature and compability with existing hardware and

lubricants, is a mixture of R22 and R142b at mass fractions of R22 above 60%.

Torikoshi and Ebisu (1993) obtained heat transfer and pressure drop data for R134a, R32

and their mixture (30/70% by mass) during in-tube two-phase flow. Their experimental

results indicated that the condensation heat transfer coefficients fall below the results for

R22 and the pressure drop is about 20% larger than those for pure R22.

Doerr et al. (1994) studied the in-tube condensation heat transfer of binary and tertiary

mixtures, with a baseline data for R22, and found that when compared on an equal mass

flux basis, R125(40%) / R32(60%) that of R22. All the refrigerants tested had lower heat

transfer coefficients than R22 when compared on an equal heating capacity basis.

4

Page 11: Condensation heat transfer and pressure drop coefficients ...

Berrada et al. (1995) showed that the mixture R23/R134a has higher heat transfer

coefficient and lower pressure drop than R22, and can be an excellent substitute for the

pure R22.

Chitti and Anand (1996) determined from experiments that the azeotropic mixture

R32/R125 (50% by mass ) had about 15 to 20% higher -regionally averaged heat transfer

coefficients when compared to R.22 at a given mass flux rate.

Specifically for the mixture R.22 with R142b; the only experimental work the author is

aware of by Shizuya et al. (1995) who tested the condensation of three binary mixrures

anddtheir pure components inside an horizontal tube. R22/R114 and R22/R123 (50% by.

mass) and R22/R142b at only one mole fraction ratio-namely 54% R22 and 46% R142b,

and they only measured the heat transfer coefficient and not the pressure drop. Their

research led to the following conclusion: Heat transfer is reduced when using refrigerant

mixtures in cases where the boiling temperatures of their components differ greatly. Heat

transfer appears to be improved for refrigerant mixtures by grooving the tube inner

surface, and it also compensates to a considerable degree for this performance reduction.

To date, no experimental data have been published on condensation of mixtures, of .R22

and R142b with the particular mass compositions of 80% and 60% R22.

5

Page 12: Condensation heat transfer and pressure drop coefficients ...

CHAPTER II

EXPERIMENTAL SETUP AND PROCEDURE

2.1. INTRODUCTION

In order to determine condensation heat transfer and pressure drop data in a tube-in-tube

heat exchanger, an experimental water cooled heat pump was designed and constructed.

A computer simulation model for the design and optimization of heat pumps and

refrigeration systems, HPSIM (Greyvenstein 1988) was used to obtain all the heat pump

sub-systems characteristics and the conditions. of the external fluids flowing through the

condenser and the evaporator.

A schematic diagram of the test setup is given in figure (2.1). The test facility was . the

well-instrumented heat pump including a refrigerant loop, a water loop and a data-

acquisition system. The setup is briefly described in the next section.

2.2. THE REFRIGERANT LOOP

The refrigerant loop consists mainly of the sub-systems of the heat pump that was built,

namely the compressor, the condenser, the expansion valve and the evaporator.

A COPELAND L5T low input power compressor was selected and used to increase the

pressure and temperature of the refrigerant.

6

Page 13: Condensation heat transfer and pressure drop coefficients ...

The compressor with a displacement rate of 0.3 litre per revolution, delivers about 1.5

kW at ARI conditions of 7.2 °C evaporating temperature and 54.4 °C condensing

temperature.

The experimental condenser is a 7.93 m long spiral soft drawn copper tube-in-tube heat

exchanger with the refrigerant flowing inside the inner tube with an inner diameter of

8.11 mm and an outer diameter of 9.53 mm; and water flowing countercurrently in the

annulus with 14.26 mm inner diameter. The condenser was coiled helically to a diameter

of 300mm and a height of 240mm. The condenser receives the superheated refrigerant

from the compressor and delivers heat to the water in the annulus, which enables the hot

vapor to be desuperheated, condensed and subcooled throughout the spiral test heat

exchanger.

The subcooled refrigerant leaving the condenser, passes through a filter drier before

entering a mechanical controlled expansion valve.

The 4.98 m long spiral evaporator is essentially the same as the condenser with diameters

of 14.26 mm and 15.88 mm respectively fgr..the inner and outer diameter of the inner

tube, while the outer tube has diameters of 20.23 mm and 22.23 mm respectively for

inner and outer diameter.

The refrigerant is heated through the evaporator before the return to the compressor; an

accumulator is set upstream the compressor to prevent the damage of the compressor by

the presence of liquid in the working fluid.

The refrigerant mass flow rate was measured by an highly accurate (± 0.2%) coriolis

flowmeter, set to allow readings of temperature, density and flow rate of the refrigerant

flowing inside the inner tube.

7

Page 14: Condensation heat transfer and pressure drop coefficients ...

The power input to the compressor (or to the heat pump system) was measured by a

wattmeter 120Q/V with an accuracy of ±1%. The wattmeter enabled direct readings of

power consumption.

The test system is instrumented in different points with temperature and pressure

measurement devices. In order to obtain an overview of the evolution of temperature and

pressure in the system and mostly in the experimental condenser, twenty-nine resistance

temperature detectors RTD or Pt-100 with an accuracy of ±0.05% were placed on the

system, while twelve are positioned around the circumference of the tulle surface of the

test condenser under adiabatic conditions. Four pressure gauges of ±0.1% accuracy were

used: Two low pressure gauges on the evaporator side, with a *range of 0 to 900 kPa and

two high pressure gauges with a range of 0 to 2400 kPa.

The exterior of the annulus of both heat exchangers and connection tubes of refrigerant

loop are insulated with a thick layer of insulation that ensures negligible energy loss from

the heat exchangers and connection tubes to the environment during experiments.

HI. THE WATER LOOP

The water loop was used to supply water at a specific temperature and flow rate to the

annulus side of the heat exchangers for the purpose of heating or cooling the refrigerant

flowing respectively in the condenser and the evaporator.

The water loop consisted of two lines: The first line with a 1000 litres water reservoir

with inside heater, coupled with a (20-901/min) pump, supplied the hot water to the test

condenser. The second line, supplied cold water to the evaporator, from a 1000 litres

water reservoir coupled with a chiller unit and a pump.

The water flow rates through heat exchangers were regulated by controlling valves.

8

Page 15: Condensation heat transfer and pressure drop coefficients ...

IV. DATA ACQUISITION AND EXPERIMENTAL PROCEDURE

The refrigerant is charged after the system has been evacuated, using the vacuum pump

to remove air and noncondensables.

The tests were conducted with one pure refrigerant R22 and two pre-mixed binary non- ... azeotropic mixtures of R22 and R142b containing 80 and 60% by mass of R22.

After setting the mass flow rates of both refrigerant and secondary fluid, and annulus

water temperatures, steady-state conditions were attained later in the system, which

enabled all temperature measurements to be acquired by a 60 channels data logger

(1{BM-UPM 60).

The refrigerant and water temperatures were measured at various locations: at the inlets

and outlets of the compressor and expansion valve, and through the condenser, to enable

the calculations of energy balances in heat exchangers for further data reductions. These

measurements were made using 29 high precision platinum RTDs.

Pressure measurements on refrigerant side, were taken by direct readings on pressure

gauges located at the inlet and outlet of the test condenser and the evaporator.

The power inputs to the system were known by direct readings on the wattmeter, as well

as from the refrigerant and water flow rates, the direct readings on the transmitters

coupled to the flowmeters yield the two flow rate values.

The refrigerant mass fluxes were varied within 180 to 452 kg/m 2s, for each working fluid

used. The heat transfer area was varied, depending of the calculated length of the two-

phase region.

9

Page 16: Condensation heat transfer and pressure drop coefficients ...

Figure 2.1: Schematic diagram of the experimental apparatus

1 0

Page 17: Condensation heat transfer and pressure drop coefficients ...

LEGEND

A Accumulator

C : Compressor

Chiller : Chiller unit

EV Expansion valve

FD Filter Drier

FMR Flowmeter for Refrigerant

FMw Flowmeter for water

Pi Pump

PG; Pressure gauge

SG Sight glass

THOT Reservoir for hot water

TCOLD Reservoir for cold water

V Valve

1 1

Page 18: Condensation heat transfer and pressure drop coefficients ...

CHAPTER III

DATA ANALYSES

Data obtained from the readings of all measuring devices (pressures -meters, mass

flowmeters and wattmeter) and the 60 channels data-logger were analyzed for each run to

determine the heat transfer coefficient and the pressure drop in the two-phase flow region

of the condenser.

3.1. HEAT TRANSFER COEFFICIENT

The starting point of the data-reduction procedure for the determination of heat transfer

coefficient is the computation of the length L-rp of the two-phase flow part of the heat

exchanger.

The condenser is subdivided into three parts: the superheat, two-phase and subcooled

regions. The total length of the heat exchanger is given by :

L = Lsu p + LTP Lsub (3.1)

Where L sup and L sub are the length of the superheat and subcooled regions respectively.

As the total length of the condenser is known (7.93 m), the two-phase length is thus:

LTp = 7.93- ( Lsup + Lsub )

(3.2)

The main equations used in processing the raw data in both superheat and subcooled

regions are based on energy balances: The energy transferred to water during

condensation in the superheat region is calculated using the energy balance on wafer side,

and is given by:

12

Page 19: Condensation heat transfer and pressure drop coefficients ...

Qwater = Mwater Cpwater (Tw2 Tw3)

(3.3)

The heat input to the refrigerant is similarly given by:

Qrefrig = Mrefrig CPrefrig (Tr2 —Tr3)

(3.4)

Where Tr2, saturation temperature is obtained from REFPROP program (8) as the

condensation pressure is known; and Tw2 calculated from equations (3.3) 'and (3.4).

The refrigerant side heat transfer coefficient hi is determined from the overall heat

transfer coefficient. The overall heat transfer coefficient is determined from the energy

balance on the condenser superheat region:

U = —Water

° A, • LMTD (3.5)

Where LMTD is the Logarithmic Mean Temperature Difference determined from the

inlet and exit temperatures of the water flowing through the annulus and from the inlet

and outlet temperatures of the refrigerant flowing in the inner tube.

LMTD = (Tr3 Tw3) r2 Tw2 (3.6) In

(Tr 3 — T

w3)

(Tr2 — Tw2 )

and A. is the surface area of the superheat region, calculated with an assumed length of

the superheat region.

A, = TC • d, • rsup (3.7)

The annulus-side heat transfer coefficient ho is determined by using a modified Wilson

plot technique for Sieder and Tate (5) correlation over the range of flow rates and

temperatures of condensation tests.

°

13

Page 20: Condensation heat transfer and pressure drop coefficients ...

The following equation was obtained for the Nusselt number on the annulus-side

(Appendix B): ( .•\ 0 14

Nu„,„,e, = 0.0213 • Re" • (3.8) ilw )

Consequently ho is computed with Nu water known.

The refrigerant-side heat transfer coefficient is then determined from:

= 1 (3.9)

1 1 1 + —

A • '

Uo r,,, 110 A,

Where r., is the thermal resistance of the copper tubing.

h, is an average value over the length of the superheat region.

With U. and LMTD known, 0: is computed using the assumed value of L, Esup :

0: =U, • LA/11'D • n- • d, • L:„, (3.10)

If 0:= Ow , rsup is correct and kept as L sup (the length of the superheat region).

Otherwise rsup is reassumed and the computation repeated until entire satifaction

between Q: and O w is reached.

The same procedure is repeated from equation (3.3) for the subcooled region, with the

same correlation obtained using the Wilson plot technique for Nusselt number on the

annulus-side (equation 3.8).

Once Lsub is known, the length of the two-phase region LTp for each run may be

computed:

Lrp = 7.93 — (Lsup + Lsub (3.11)

14

Page 21: Condensation heat transfer and pressure drop coefficients ...

AP = p•d

2 ffo • L • G 2

The average value of the refrigerant-side heat transfer coefficient over the length of the

two-phase region is calculated from the following correlation:

QTP hr, A • (Ts — Twall )

(3.12)

Where:

A. = 7C • d, • Lrp (3.13)

0, = m,.•(H3 — H 4 )

(3.14)

Where H3 and H4 are the enthalpy of vapor and liquid refrigerant at their saturation points

respectively, obtained from REFPROP program.

The final heat transfer coefficient h-rp is compared later with the heat transfer coefficient

obtained from the four correlations used, namely Azer et al.(1971); Traviss et al.(1973);

Akers et al.(1959) and, Cavallini and Zecchin (1974). (Appendix A).

3.2. PRESSURE DROP

Calculated pressure drop results of the pure and mixture refrigerant, are explained in this

section.

For both refrigerants (pure and mixtures), the Blasius type correlation suggested by

McAdams (14) was used for the superheated and subcooled regions:

(3.15)

Equation (3.15) is valid for a smooth tube in the range of 5000 < Re < 200 000.

15

Page 22: Condensation heat transfer and pressure drop coefficients ...

AP 2• ff„ • G 2 • L [1

xZ

di • pi 0TP 2 TP • dr]

xl

(3.17)

Where the friction facor is given by: fib = 0.046. Re -022 (3.16)

In the two-phase region, the pressure drop in the inner tube was calculated using the

Martinelli and his co-workers equation (Jung and Radermacher, 1993) for pure and

mixed refrigerants:

As the two-phase region starts from the saturated vapor state and extends to the saturated

liquid state, the two vapor qualities are respectively equal to 1 and 0, and the vapor

quality gradient is given by: Ax = x2 — x 1 = 0 —1 = —1 (3.18)

Thus:

2• ff„ • G 2 • L 6PTp

di • pi (3.19)

2• ff• G2• L

2 AP TP = d p Lf °TP 0 (3.20)

Where: 0227 = 12.82 • Xf-i l 42 • 1.8

(3.21)

ff„ = 0.046. Re-°. 2 (3.22)

(1— x)0 " ( /11 \01

x ■.P1

X„ (3.23)

All the properties of equations (3.20) and (3.23) are based on an average condensing

temperature.

16

Page 23: Condensation heat transfer and pressure drop coefficients ...

The total pressure drop in the test condenser is therefore known as the sum of all pressure

drops in superheat Ap sup , subcool Ap,„b and two-phase OPT, regions of the inner tube of

the condenser.

AP = APsup APTP APsub (3.24)

To determine pressure drop in the two-phase flow region, it was used the Moody (or

Darcy) friction factor(12), which is a dimensionless parameter defined as:

= – p I de) •d

p •u,27,12 (3.25)

From (3.25) equation, as the speci fic volume 1

v = — and the mass flow rate is given by

m = p • um • A, dP = fP. m2 .v dl (3.26) 2 A 2 .

AP – = f m 2

dl 2. A 2 d, v

(3.27)

Where vg and vi are respectively the specific volume at the vapor and liquid saturated

points.

After integration and development, f is finally given by:

f 4 AP• A 2 • d,

(3.28) m 2 • Lip • (V I + V g )

17

Page 24: Condensation heat transfer and pressure drop coefficients ...

The experimental and predicted values of the fricion factor will be known by using

respectively the experimental and predicted values of two-phase flow pressure drop in the

(3.28) equation.

18

Page 25: Condensation heat transfer and pressure drop coefficients ...

CHAPTER IV

ANALYSIS OF DATA RESULTS

4.1 INTRODUCTION

A series of tests have been conducted with both pure R22 and mixture refrigerants

R22/R142b (60/40% and 80/20%); all the results can be appreciated in appendix C.

For all three working fluids used, mixtures as well as pure refrigerant, it was found that

the average heat transfer coefficient increases with increasing mass flow rate of the

refrigerant, presented in Figure (4.1). Figures (4.10; 4.11 & 4.12) show that the local heat

transfer coefficients through the condenser, decrease as the vapor quality is decreasing.

This is because the convection is higher in vapor phase than in liquid phase.

4.2. PURE REFRIGERANT

It has been determined the heat transfer coefficients and pressure drops during

condensation of pure refrigerant R22 in experimental conditions given in the following

table.

Saturation Pressure (Condenser) 1770 - 2265 (kPa)

Saturation Temperature (Condenser) 45.97 — 56.80 (°C)

Refrigerant Mass flow rate 0.0096 — O. 0231(kg/s)

Water Mass flow rate (Condenser) 0.031 — 0.034 (kg/s)

Water Inlet Temperature (Condenser) 28.30 — 29.00 (°C)

Water Outlet Temperature (Condenser) 45.27 — 59.24 (°C)

Table 4.1: Experimental conditions for condensation of pure refrigerant R22.

19

Page 26: Condensation heat transfer and pressure drop coefficients ...

5000 Experimental 4000

? A —F21— Akers 3000

—6-- Cavallini 2000 —

; ow/

—X— Traviss 1000 Azer

0 CO

C■1 M en

Mass flux (kg/m2s)

Hea

t tra

nsfe

r coe

ffic

ient

4.2.1. Heat transfer coefficient

From Figure 4.1, the experimental heat transfer coefficients obtained from different mass

fluxes of pure refrigerant R22 used in the present investigation have been compared with

those obtained theoretically by using the proposed correlations of Akers et al. (1959),

Azer et al. (1971), Traviss et al.• (1973) and, Cavallini and Zecchin

It may be observed from Figure 4.1, that the predictions from Cavallini and Zecchin,

-Azer et al. And, Traviss et al: correlations overpredicted the heat transfer . coefficients.

within. 10 and 90%, .23 and 98%, and 1 to 68% respectively, over the values obtained

experimentally using the heat pump built for this purpose. The ,deviation of the

predictions from the experimental values increased with the mass flux increasing.

The experimental data agreed satisfactorily with the results from Akers and co-workers

correlation. The values obtained from their correlation were as much as 12% above the

experimental values, and the deviation of theoietical results from experimental values is

almost constant despite the variation of the mass flux.

Figure 4.1: Comparison of experimental data and four correlations used for

pure R22, based on equal mass flux.

20

Page 27: Condensation heat transfer and pressure drop coefficients ...

0 0

0.25000

0.20000

Z. 0.15000

0.10000

4. 0.05000

0.00000 r-- N— , Lc) co -1- o LID 7-- C \I CO r°

Mass flux (kg/m2s)

—0— Experimental

—10-- Predicted

4.2.2. Pressure Drop

In this study, the pressure drop during the complete condensation process all over the

condenser was computed, for both cases of pure and mixtures refrigerants, as stated

before in this investigation, by using the Blasius type correlation suggested by McAdams

for the single phase regions, superheated and subcooled..(Equation 3.15) 'and Martinelli

and his co-workers correlation for the two-phase region (Equation 3.20).

For the pure refrigerant case, the mean deviation was 14.61% for all the data taken.

Figure (4.2) presents the variation of experimental and predicted friction factors against

the mass flux of the pure refrigerant R22.

Figure (4.2): Experimental and predicted friction factor of R22 against

mass flux

It can be observed that the predicted friction factor is nearly constant with the

augmentation of the mass flux of the refrigerant; and the correlations used overestimated

the friction factors for the pure R22.

21

Page 28: Condensation heat transfer and pressure drop coefficients ...

4.3. REFRIGERANT MIXTURES

4.3.1. Heat transfer coefficient

Various studies named in review of literature section of this thesis have been conducted

on refrigerant mixtures, but unfortunately no accurate correlations have been published

for non-azeotropic mixtures.

It has been determined the heat transfer coefficients and pressure drops during

. condensation of refrigerant mixtures R22/R142b in two different mass compositions, in

experimental conditions given in the following table:

R22/R142b (80/20%) R22/R142b (60/40%)

Saturation Pressure (Condenser) 1535 — 2125 1560 - 1925 (kPa)

Saturation Temperature (Condenser) 50.89 - 64.75 61.62 — 70.04 ( °C)

Refrigerant Mass flow rate 0.0094 — 0.0233 0.0095 — 0.0228 (kg/s)

Water Mass flow rate (Condenser) 0.035 — 0.037 0.034 - 0.036 (kg/s)

Water Inlet Temperature (Condenser) 29.70 — 31.51 28.67 — 30.78 (°C)

Water Outlet Temperature (Condenser) 42.73 — 57.15 45.43 — 55.25 ( °C)

Table 4.2: Experimental conditions for condensation of refrigerant mixtures

R22/R142b (80/20%) and (60/40%).

In this study, it was used an approach which consisted to utilize the proposed correlations

for pure refrigerants without modification to include the mixture mass diffusion effect as

suggested by same investigators, in a bid to get the accuracy of the four chosen

correlations used for the prediction of the heat transfer coefficients of non-azeotropic

mixtures.

A comparison between the experimental data and the predicted results from the four

correlations used is demonstrated in Figure 4.3 for mixture R22/R142b (60/40%) and in

Figure 4.4 for mixture R22/R142b (80/20%).

22

Page 29: Condensation heat transfer and pressure drop coefficients ...

The conclusion is that, for equal mass flux of refrigerant, experimental values of heat

transfer coefficients are lower than all the predicted values from the four correlations

used (Figures 4.3 & 4.4).

Tables (C.14 & C.15) shows that the lowest disagreement between measurements and

predictions for equal mass flux of refrigerant mixture used was within 52% to 79% for

mixture of 60/40% and within 32% to 65% for mixture of 80/20% R221R142b from

Akers and co-workers correlation; While the highest disagreement was found from

Traviss and co-workers correlation, in the range of 78% to 184% for the first mixture and

78 8A to 136% for the second mixture, namely 80/20% R22/R142b.

The maximum water temperatures obtained at the condenser outlet were 75 °C and 82 °C

while using respectively R22/R142b (80/20%) and (60/40%) as working fluid of the heat

pump, fact that can attributed to the difference of saturation pressures during

condensation of both mixtures.

23

Page 30: Condensation heat transfer and pressure drop coefficients ...

Hea

t tra

nsfe

r coe

ffici

ent

4000

o'2 3000

2000

1000

0

111.1 111161111111"11111111K"nm.mm....1111111"1151.11111 —"""11111111111

.01 -1004s1"1°..111 111111ffli___.

Experimental

—II— Akers

--Traviss

—)K—Azer !-.

cr) 0

N CO CO

Mass flux (kg/m2s)

Figure 4.3: Graph of heat transfer coefficient vs. mass flux for R22/R142b (60/40%)

4000

r. 3000

"E 2000

1000 cs

Experimental

—U-- Akers

—A— Cavallini

Traviss

Azer

(.0 CO 0) U) N- •

-

N N CO

Mass flux (kg/m 2s)

Figure 4.4: Graph of heat transfer coefficient vs. mass flux for R22/R142b (80/20%).

24

Page 31: Condensation heat transfer and pressure drop coefficients ...

CO

0 0

ti

CT) CNJ

C0

0.07000 L., 0.06000

0.05000 0.04000

g 0. 03000 •; 0.02000 cz' 0.01000

—0— Experimental

—a— Predicted

Mass flux (kg/m2 s)

Mass flux (kg/m 2 s)

0.12000 0.10000 0.08000

0.06000

0.04000 0.02000 0.00000

Fri

ctio

n fa

ctor

—0— Experimental

—a— Predicted

i 1 i

CD N- CO

01 1.0 1—

C \I CO •cr

4.3.2. Pressure drop

The inspection of Figures (4.5) and (4.6) reveals that the prediction of the friction factors

for mixture refrigerants shows a linearity for all the mass fluxes used in both cases of

R22/R142b (80/20%) and (60/40%), while the experimental values are far less linear to

the mass fluxes. As it was the case for the pure R22, the predicted friction factor values

are nearly constant with the increased mass fluxes.

Figure 4.5: Friction factor against mass flux during condensation of

mixture ofR22/R142b (60/40%).

Figure 4.6: Friction factor against mass flux during condensation of

mixture of R22/R142b (80/20%).

25

Page 32: Condensation heat transfer and pressure drop coefficients ...

1700 - 1500 1300 1100 900

00 0) 0) CO CD r-- N-CO 'Cr (0 0) CV (0 v-- CV CV CV CV M M M "4* 'cr

Mass flux (kg/m2 s)

—*— R22

—10— R22/R1421) (80/20)

—,k— R22/R142b (60/40)

The mean deviation was -7.71% for R22/R142b (60/40%) mixture and -88.13% for

R22/R142b (80/20%) mixture.

4.4. COEFFICIENT OF PERFORMANCES

For the sake of completeness, the coefficient of performances (COP) of kre and mixture

refrigerants have been examined.

From Figure 4.7, it can be seen that the compressor electric input power decreases as the

concentration of R142b in the mixture is increasing, the reason for this is that the

enthalpy decreases with an increased concentration of R142b (Table C.25)

The COP is increasing with the mass flux for all the working fluids used (Table C.26). As

the concentration of R142b is increased in the mixture , the coefficient of performance is

increased, leading to the fact that the pure refrigerant R22 has the lowest COP for all the

range of mass flux used (Figure 4.8).

Figure 4.7: Power input to the compressor function of mass flux

26

Page 33: Condensation heat transfer and pressure drop coefficients ...

E 3.00

2.50

c.a.— 2.00

.4J 7.; -

1.50

t'7‘. 1.00 cr) co N-

CO •Cr 01 LO cq cn

Mass flux (kg/m2 S )

. • •

—0— R22

R22/R 142 b (80/20)

—A— R22/R142 b (60/40)

Figure 4.8: Coefficient of performance (COP) function of mass flux

27

Page 34: Condensation heat transfer and pressure drop coefficients ...

Mass flux =187 kg/m2 s

— 4000 c

" E 2000

0

Vapor quality

Akers et al.

0-- Caval. & Zecc

A— Traviss et al.

--x— Azer et al.

Akers et al.

—0— Caval. & Zecc

A— Traviss et al.

—X— Azer et al.

Mass flux = 241 kg/m2 s

Vapor quality

1.0 O

h O O

c.

4000 g 3000 E 2000

0 a). 0 0

Mass flux = 447 kg/m2 s

Hea

t tr

ansf

er —•—• Akers et al.

—0— Caval. & Zece

Traviss et al.

--X— Azer et al.

SC 6000 "E 4000

2000 t- 0 I I

ci Vapor quality

Figure 4.10: Theoretical local heat transfer coefficient vs. vapor 4zralityfor

mass flux of 187 kg/m 2s.

Figure 4.11: Theoretical local heat transfer coefficient vs. vapor quality for

mass flux of 241 A -g/m 2s.

Figure 4.12: Theoretical local heat transfer coefficient vs. vapor quality for

mass flux of 447 kg/m 2s.

28

Page 35: Condensation heat transfer and pressure drop coefficients ...

CHAPTER V

CONCLUSION

Experiments have been carried out on condensation of pure refrigerant R22 and mixture

refrigerants of R22 with R142b (80/20%) and (60/40%) in an helically coiled tube-in-

tube heat exchanger.

A water cooled heat pump was built for the purpose.

Correlation for predicting heat transfer coefficients and pressure drops have been used

and the results were compared to the experimental data. The performances of the water

cooled heat pump using pure and mixture refrigerants were investigated to exemplify the

advantages of blends on single fluid. The conclusions are as follows:

Average heat transfer coefficients for pure refrigerants can be predicted with 12%

accuracy using Akers et al. (1959) correlation.

For the case of mixture refrigerants, theoretical predictions have been different from

experimental data (at least 37% of deviation). The reason is that the four correlations

have been written for pure working fluid, and theoretical predictions have been done

without any modification, despite the fact that the addition of a second component

change many parameters such as local temperature differences and velocities of the

fluid, pressure drops, compressor performance.

For equal mass flux, the binary mixtures of R22/R142b (80/20%) and (60/40%) yield

heat transfer coefficients lower than those obtained from pure R22 in all the range of

mass fluxes used in this investigation.

The use of the mixture refrigerants leads to the advantage of producing' higher

maximum water temperature, increasing the coefficient of performance by 15.7% for

29

Page 36: Condensation heat transfer and pressure drop coefficients ...

the mixture of R22/R142b (80/20%) and 26% for R22/R142b (60/40%), as well as the

reduction of electric input power in order of 7.09% and 4.03% respectively for

R22/R142b (80/20%) and (60/40%), allowing the benefit of energy savings and

reduction of electrical cost.

Further studies should be done on the correlatibn of Akers et al. (1959) for pure

refrigerant to decrease the deviation of prediction from experiment; and to take into

account the mixture mass diffusion effects for the same purpose in the mixture

refrigerants case, using the same correlation given by Akei -s et al. (1959).

The sum of theoretical pressure drops in different three parts of the condenser compare to

the experimental data reveals the necessity of deeper investigation on that matter,

therefore more possibilities should be given to future investigations to compare

separately the theoretical pressure drops in single phases and two-phases flow with

experimental values of pressure drops in each region.

\\\\\ AAAAA

30

Page 37: Condensation heat transfer and pressure drop coefficients ...

REFERENCES

ASHRAE (1993), "Fundamentals handbook (SI)", American society of Heating,

Refrigeration and Air-conditioning Engineers, Atlanta, GA, USA.

ASHRAE (1994), "Refrigeration", American society of Heating, Refrigeration

and Air-conditioning Engineers, Atlanta, GA, USA.

Berrada N., Marvillet Ch., Bontemps A. and Daoudi S. (1996), "Heat transfer

in-tube condensation of a zeotropic mixture of HFC23/HFC134a in a horizontal smooth

tube", International Journal of Refrigeration, Vol. 19, No. 7, pp. 463-472.

Berntsson T and schnitzer H (1984), "Some technical aspects of NARA/I as

working fluids", 2 nd International Symposium on the Large Scale Applications of Heat

pumps, York, England, Paper 1, September, pp. 1-11.

Briggs D.E and Young E.H (1969), "Modified Wilson plot techniques for

obtaining heat transfer correlations for shell and tube heat exchangers", Chem. Eng.

Prog. Symp., Ser. 92, Vol. 65, pp. 35-45.

Chitti M.S and Anand N.K (1996), " Condensation heat transfer inside smooth

horizontal tubes for R22 and R32/ 125 mixture", HVAC & R Research, Vol.2, No. 1,

pp.79-101.

31

Page 38: Condensation heat transfer and pressure drop coefficients ...

Doerr T.M, Eckels S.J and Pate M.B (1994), " In-tube condensation heat

transfer of refrigerant mixtures", ASHRAE Transactions (1994), pp. 547-557.

Gallagher J, McLinden M, Morrison G and Huber M (1993), NIST

Thermodynamics Properties of Refrigerants and Refrigerant Mixtures Database

(REFPROP). National Institute of Standards and Technology.

Greyvenstein G.P (1988), "A computer simulation model for ,the design and

optimization of heat pumps and refrigeration systems", South African Journal of Science, •

Vol. 84, pp. 494-502.

Hogberg M., Vamling L. and Berntsson T. (1993), "Calculation methods for

compating the performance of pure and mixed working fluids in heat pump applications",

Revue International du Froid, Vol. 16, No. 6, pp. 403-413.

Holman J.P (1992), "Heat transfer", United Kingdom: McGraw-Hill

International.

Incropera F.P and Dewitt D.P (1996), "Fundamentals • of heat and mass

transfer", 4th Edition. -

Johannsen A and Kaiser G (1986), "Potential of electrically operated heat

pumps for heating water in South Africa", CSLR, Report number 615, Pretoria, August.

Jung D.S and Radermacher R (1989), "Prediction of pressure drop during

horizontal annular flow boiling of pure and mixed refrigerants", Int. Journal of Heat

Mass Transfer, Vol. 32, No. 12, pp. 2435-2446.

Jung D.S and Radermacher R (1993), "Prediction of evaporation heat transfer

coefficient and pressure drop of refrigerant mixtures in horizontal tube", International

Journal of Refrigeration, Vol. 16, No. 7, pp. 1039-1044.

32

Page 39: Condensation heat transfer and pressure drop coefficients ...

Kellenbenz J. and Hahne E. (1994), "Condensation of pure vapours and binary

vapour mixtures in forced flow", International Journal of Mass Transfer, Vol. 37, No. 8,

pp. 1269-1276.

Shao D.W. and Granry, d E. (1995), "Heat transfer and pressure drop of

HFC134a-oil mixtures in a horizontal condensing tube", International Journal of

Refrigeration, Vol. 18, No. 8, pp. 524-533.

Shizuya M, Itoh M and Hijikata K (1995), "Condensation of non-azeotropic

binary refrigerant mixtures including R22 as a more volatile component inside a

horizontal tube.", Journal of Heat Transfer, Vol. 117. pp. 538-543.

Stoecker W.F and Jones J.W (1982), "Refrigeration and Air Conditioning",

McGraw-Hill Inc., Singapore.

Tandon T.N, Varma H.K and 'Gupta C.P (1985), "An Experimental

Investigation of Forced Convection Condensation during Annular Flow Inside a

Horizontal Tube", ASHRAE Transactions (1985), pp. 343-354.

Tandon T.N, Varma H.K and Gupta C.P (1985), "Prediction of Flow Patterns

During Condensation of Binary Mixtures in a Horizontal Tube", ASME Transactions

(1985), Vol.107, pp. 424-430.

Tandon T.N, Varma H.K and Gupta C.P (1985), "Heat transfer during forced

convection condensation inside horizontal tube", International Journal of Refrigeration,

Vol. 18, No. 3, pp. 210-214.

Torikoshi K. and Ebisu T. (1994), " Heat transfer and pressure drop

characteristics of R-134a, R-32, and a mixture of R-32/R-134a inside a horizontal tube",

ASHRAE Transactions (1994), pp. 90-96.

33

Page 40: Condensation heat transfer and pressure drop coefficients ...

[24]. Wang S.P and Chato J.C. (1995), "Review of recent research on heal transfer

with mixtures-Part I: Condensation", ASHERAE Transactions, Vol. 101, No. 1, pp. 1376-

1386.

34

Page 41: Condensation heat transfer and pressure drop coefficients ...

APPENDIX

Page 42: Condensation heat transfer and pressure drop coefficients ...

Appendix A

HEAT TRANSFER COEFFICIENT CORRELATIONS

INTRODUCTION

In this appendix, a description of four semi-empirical correlations used for the

calculations of heat transfer coefficients and Nusselt numbers of refrigerant mixtures as

well as pure refrigerants are given. Four correlations from different researchers are used,

and they are the following: W. Akers et al. (1959), N.Z. Azer et al. (1971), D.P. Traviss

et al. (1973) and, A. Cavallini and R. Zecchin (1974).

The theoretical results obtained are given in tables (C.1 to C.15) for all different mass

fluxes of pure R22 and the non-azeotropic mixtures of R22/R142b, with a range of vapor

quality from 0.9 to 0.1.

PURE REFRIGERANT

The four correlations named in the introduction of this appendix are suitable for pure

refrigerants; and they were used for the determination of local heat transfer coefficients

of the pure refrigerant R.22.

2.1 Correlation 1: Akers, et al. (1959).

Akers, et al. (1959) suggest for the calculations of heat transfer, the following correlation:

Nu = C • Re'e'q • Pr: (A.1)

Where: Nu, Re and Pr are respectively Nusselt, Reynolds and Prandtl numbers, given by

A-1

Page 43: Condensation heat transfer and pressure drop coefficients ...

Nu = a • d • .1-, 1

4M e * Re„ _ 71" • d • /IL

2L

PrL = 1.1•CPL

M et! = MR1 X) + X

A.5) ( \ 5

pi '

Pv

Appendix A

With C=0.0265, n=0.8 and m=1/3 if Re„ 5 -10 4

C=5.03, n=1/3 and m=1/3 if Re„ < 5 • 10'

2.2 Correlation 2: Cavallini and Zecchin (1974)

Cavallini and Zecchin (1974) proposed the same correlation and coefficients than that of

Akers, et al., but with different constants, for the calculation of local heat transfer

coefficients for high fluid velocity.

C=0.05, n=0.8 and m=1/3 if Re„ 5.10 4

2.3 Correlation 3: Azer, et al. (1971)

Azer and co-workers suggest the following correlation for annular and semi-annular

flows using revised thermophysical properties values from ASHRAE.

A-2

Page 44: Condensation heat transfer and pressure drop coefficients ...

Appendix A

Ni, = 0 039 0.9 X 1 11 N"

Pr • • P ° "7 . Re" Ov (A 6) (4.67 —

Where

0„ = 1+1.09 • x- ;: 0399

\0.1 7- \0.5

11 / Pv xil

\ PI )

0 -A /9

(A.7)

(A.S)

2.4 Correlation 4: Traviss, et al. (1973)

Traviss et al., extending the work of Bae et al.(4), formulated the correlation below for

the prediction of local heat transfer coefficient values.

Pr • Re °I

9 F (X„ ) = F,

(A 9)

Where:

F, = 0.707. Pr,• if Re, < 50 (A.10)

F, = 5- Pr, + 5 .1n [1 + Pr, (0.09636 Re °, 1, if 50 < Re, < 1125 (A.11)

F, = 5. Pr, + 5.1nO + 5 PO+ 2.514.00313. Re °, ' 12 ), if Rei > 1125 (A.12)

F(x„). 0.15 (.x;' + 2.85x;; 0476 ) (A.13)

A-3

Page 45: Condensation heat transfer and pressure drop coefficients ...

Appendix A

11 1. MIXTURE REFRIGERANTS

Although the four correlations are suitable for pure refrigerants, they have .been -used to

predict the heat transfer coefficients for the two mixtures used. Tables of thecYretical

results are given in chapter IV of this thesis for the different mass fluxes and .vapor

quality from 0.9 to 0.1.

IV. NOMENCLATURE

C = Coefficient

CPL = Specific heat (J ktz -1 K-1 )

d = Tube inner diameter (m)

F(xn) = Defined by equation (A.13)

F2 = Defined by equations (A.10), (All) and (A.12)

M =. Mass flux (kg M-2 S -1 )

Meg = Equivalent Mass flux (kg m-2 s .1 )

m, n = Prandtl and Reynolds numbers exponents

x = Vapor quality

xt, = Lockhart-Martinelli parameter

Dimensionless numbers

Nu = Nusselt number

Re = Reynolds number

Pr = Prandtl number

A-4

Page 46: Condensation heat transfer and pressure drop coefficients ...

Appendix A

Greek symbols

a

Heat transfer coefficient (W/m21()

L Liquid thermal conductivity (W/m.°K)

PL Saturated liquid density (kg m3 )

Pv Saturated vapor density (kg/m3 )

Viscosity (kg/m.$)

,L1 L

Saturated liquid dynamic viscosity (kg/m.$)

Saturated vapor dynamic viscosity (kg/m.$)

A-5

Page 47: Condensation heat transfer and pressure drop coefficients ...

Appendix A

V. REFERENCES

Akers W.W, Beans H.A and Crosser 0.K (1959), "Condensation heat transfer

within horizontal tubes", Chem. Eng. Prog. Symp. Ser., Vol. 55, No. 29, pp. 171-176.

American Society of Heating, Refrigeration and Air-conditioning Engineers

( 1 977), " Fundamentals for condenser design", ASHRAE Hanbook-1977.

Azer N.Z, Abis L.V and Soliman H.M (1972), "Local heat transfer coefficient

during forced convection condensation inside horizontal tube", ASHRAE Transactions,

Vol. 77, Part 1, pp. 182-201.

Bae S., iVlaulbetsch J.S and Rohsenow W.M (1971), "Refrigerant forced

convection condensation inside horizontal tube", ASHRAE Transactions, Vol. 77, Part 2,

pp. 104-116.

• Traviss D.P, Rohsenow W.M and Baron A.B (1973), "Forced convection

condensation inside tubes: A heat transfer equation Jr condenser design", ASHRAE

Transactions, Vol. 79, Part 1, pp. 157-165.

Tandon T.N, Varma H.K and Gupta C.P (1985), "An investigation of forced

convection condensation during annular flow inside a horizontal tube", ASHRAE

Transactions, pp. 343-354.

A-6

Page 48: Condensation heat transfer and pressure drop coefficients ...

Appendix B

WILSON PLOT TECHNIQUE FOR THE DETERMINATION OF

HEAT TRANSFER COEFFICIENTS

I. INTRODUCTION

In this appendix, the method used for obtaining heat transfer coefficients for shell and

tube heat exchangers, is briefly described.

The technique for the test data analysis and determining individual resistances from an

overall resistance was devised by Wilson (1915), and modified in variety of ways later

for specific cases of determined parameters.

In order to calculate values of the inside and outside heat transfer correlation constants, it

was decided to apply the Wi!son plot method as modified by Briggs and Young (?).for

the data collected at various flow rates and temperatures in a spiral counter flow tube-in-

tube heat exchanger with water in the shell-and-tube sides.

11. THEORETICAL BACKGROUND

Briggs and Young offer an iterative method to determine both heat transfer coefficients

with one of the exponents at the Reynolds number, unknown.

The method consists in the use of the Sieder and Tate equation with the shell side

Reynolds number exponent as unknown, P, and the tube side Reynolds number assumed

equal to 0.8:

B-1

Page 49: Condensation heat transfer and pressure drop coefficients ...

Appendix 13=

Nut=h

`• D

i =C,• k,

and

.y0.14

w

Equations (B.1) and (B.2) are solved for h t and h s respectively, and substituted into the

following overall heat transfer relationship:

1= 1 1 A,

— — +r. +r h

f n mht A t

Where rti n is nil for non fins used.

The substitutions give:

( I j = U m

1

A, ( \014 ( \ 0 14

1 , u A, • C,

, Rer'• Pr,Y;

Deq \ AC i., D, `few i

(B 4)

0.14

Multiplying

form:

, the by (B.4) \ 'LC is

y=mx+b

Where: (

( )0.14

y= —r \Us s

(

equation becomes of the following mathematical

B-2

Page 50: Condensation heat transfer and pressure drop coefficients ...

Appendix B

1 In = —

C

x=

X014

At

u14, s

k, ( D •Goo,(

Cp. • 3

k j,

And the intercept b is given by:

b

(B 9)

Briggs and Young thought that the Reynolds number exponent 0.8 may not be a good

approximation in Sieder and Tate equation (B.2) for noncircular flow passages, and they

assumed it as an unknown P on the shell side, with the tube side Reynolds number equals

to 0.8, making the number of the unknown to three: Ci, C s and P in equation (B.4).

Tube side Wilson plot results are obtained by a linear regression of the function y on x.

The reciprocal of the slope of the least-squared deviation line through the data is equal to

the inside heat transfer coefficient correlation constant Ci. The value of the outside heat

transfer coefficient correlation constant C s can be calculated from equation (B.8).

(B. 7)

(B 8)

B-3

Page 51: Condensation heat transfer and pressure drop coefficients ...

0 = hi • • (Tb, —T,„,)

0 = id a\

2 -7r • k • L • (T,‘„ — T„, 0 )

In

Appendix B

III. PROCEDURE OUTLINE

The input data for this method are the physical parameters defining - the dimensions of the

heat exchanger, the fluids flowing in each circuit, the mass flow rates, and..the average

temperatures in the input and output of the heat exchangers.

The evaluation of the functions y and x in. equations (B.5) and (B.7) requires an initial

estimate of P and C. The constant C, is used to calculate an estimated value of the inside

heat transfer coefficient using Dittus and Boelter equation (J.P. Holman, 1992):

Nu = 0.023. Re"- PrY3 (B.10)

With h, known, the wall temperatures are calculated from the following equations

respectively:

and subsequently the viscosity ratio functions are found from an appropriate table.

The shell side coefficient for each run is calculated from the overall heat transfer

relationship (B.3), and the functions Yshell and )(shell calculated using the following

correlations:

B-4

Page 52: Condensation heat transfer and pressure drop coefficients ...

Appendix B

Y shell :- In

` shell = In

(

D eq

(B 13)

(B:14)

Cp-p \M

s

i LI

V1 4

s k

(Del • G

w

The difference between the first value of C s and the last value obtained after iterations

(Cs — Cs ) is calculated, as well as the difference 'between the assumed value of P s and the

new value obtained after iterations (Ps —Ps ).

The assumed value of C s must agree with the least squared deviation of the same

coefficient by same allowable error, otherwise the calculations are repeated until

satisfactory agreement both values (calculated and assumed) is attained.

The two differences (C, — C s ) and (P, —P s ) are plotted against the first assumed valued of

P.

The assumed value corresponding to the intercept of the two graphs is then used as the

correct assumed value, and used in a last iteration.

The last iteration yields the final and correct C s and P s values for equation (B.2), and the

heat transfer coefficient in the annulus is then known as:

hs =

k • C • Re P • (B 15)

While the heat tansfer coefficient in the inner tube is given by the Dittus-Boelter eqiiation

for heating:

B-5

Page 53: Condensation heat transfer and pressure drop coefficients ...

Assumed Reynolds number exponent (P)

0.004

0.003

0.002

0.001

0.000

-0.001 1 0.9 0.8 0./ 0.6 0.5 0.4

P -P 0

Dif

fere

nce

betw

eei

calc

ula

ted

valu

es

Appendix B

li = 0.023 • -k

• Re"• Pr' 4

[V. SUMMARY OF ITERATIONS

I . Summary of Iterations

P 1 Po C C' l P-Po C I -C , 1

1 . 11 1.000030 0.01980391 0.0198890 0.000030 -0.0000851

0.91 0.900019 0.02104001 0.0210899 0.000019 -0.0000499

0.81 0.800012 0.02278981 0.0227845 0.000012 0.0000053 0.71 0.700006 0.02544751 0.0253461 0.000006 0.0001014 0.61 0.600003 0.02994861 0.0296518 0.000003 0.0002968 0.51 0.500001 0.03918491 0.0383589' 0.000001 0.0008260 0.41 0.400000 0.0687114! 0.0650858 0.000000 0.0036256

Table B.1: Summary of Iterations

Final Reynolds number exponent P

Figure B.1: Final Reynolds number exponent

(B 16)

B-6

Page 54: Condensation heat transfer and pressure drop coefficients ...

Appendix B

V. NOMENCLATURE

A Area

b Constant

C Coefficient

Cp Specific heat (J/kg.K)

d Diameter (m)

Diameter (m)

Mass flux (kg/m2 .$)

h Heat transfer coefficient (W/m2 .K)

k Thermal conductivity (W/m.K)

Length (m)

m Slope

Q Heat flux (W)

rti „ Fins resistance

rn, Metallic resistance

T Temperature (°C)

Overall heat transfer coefficient (W/m2 .K)

Subscripts

b Bulk

eq Equivalent

Inside

o Outer

s Shell

shell Shell

t Tube

B-7

Page 55: Condensation heat transfer and pressure drop coefficients ...

Appendix B

w Water

wi Inside wall

wo Outside wall

x, y Variables

Dimensionless numbers

Nu • Nusselt number

Pr Prandtl number

Re Reynolds number

Greek letters

1-1 Viscosity (Pa.$)

Pi

B-8

Page 56: Condensation heat transfer and pressure drop coefficients ...

Appendix B

VI. REFERENCES

Briggs D.E and Young E.H (1969), " Modified Wilson plot techniqueS for

obtaining heat transfer correlations for shell and tube heat exchangers"; ' Chem. Eno- .

Prog. Symp., Ser.92, Vol. 65, pp. 33-45 .

Shah. R.K (1990), "Assessment of modified Wilson plot techniques for obtaining

heat exchangers design data", 9th Int.• Heat Transfer Conf. Jerusalem, August Paper 14-

Hx-9 51-56.

W6js K. and Tietze T. (1997), "Effects of the temperature interference on the

results obtained using the Wilson plot technique', Heat and Mass Transfer, Vol. 33, pp.

241-245.

B-9

Page 57: Condensation heat transfer and pressure drop coefficients ...

Too 0)

N— ri N

01

4 N

CO 0) 4 N 26

.411

,--

N. N 28

.371

30. 6

41

to ":1- N co

CT) LO ri el W

j

(0

0)

01 0)

CD 1.6

cn

CT) 01

CO .

01

CT) 01

acpaaacpcpcp CO

.

0)

0) 0)

CO

cr)

01 0)

Hi, CO

a) CT) 01

CO ui a) 01 01

CO .

a) 0) 01

CO CD .

a) N- 01 (7)

12.3

01

N. en r-- r-- N—

CO co N \ I

0) CO CV

01 1"-- N 12

.88

12

.70

..- ,- "0-

....6

= < -.32 <:('-' 1.

175

0921

1.

1750

921

1.17

50

92

1.

175

09

2

1.17

509

2 1.

175

09

2

NJ CV 0) C7) 0 0 LC) LO I,- N.N. .-- ..-- .-- ...--

1 1.

1750

92

O

co CO 0) H

a r-- LO CO a to N N

...- N 22

.371

23.

27

24.8

61

N-

N 26.

45

c

0 <0

E

CD 0) N

6

CO 01 N.

6

(0 0) N.

a

CO 0) N

a

CO .0) N

a

1 0.

1796

1 0.

179

6

0.17

96

,

CO 0) N.

. 0

CO NI CV to

01 N CD N- N Ch to to

0) CO cei to 52

. 18

P

52.4

3 N. N. N CO 53

. 32

52

.891

..---.

c'E .......

<

0) N.I in

- o

0) NI to

- o

01 CV in

o

01 CV 1.0

o

01 CV

c;

in

0) N

a 0.15

29

0.

152

9 0.

1529

Go

255

8.17

23

97.3

8

2141

.83

19

70. 2

2]

h. N. N.

..1- 162

7.9

5 N.

01

1372

.54

1201

.80

in c) 0"; N 0 "-• m

u_

o

0.00

10

54

2

o cc CO 0 ..- 0 0 O 0.

00

10

39

4

0.00

101

271

o 0 0

0 0 6 0.

0009

8341

0.

0009

55

6

0.0

00

93

71

o CO CO 01 0 CD CD a

Wils

on P

lot D

ata

Re

duct

ion

1 5.1

657

3E-0

51

) 8.8

378

3E-0

5

0.00

473

38

5

Ur 1484

.58

14

86.

86

1490

.01

14

87.3

6

1497

.69

1502

.45 co

..-- CO ..- 15

16.4

8

H

1483

.84

co 0 01 co a) 0) CO 6

.- -I- N N. a CD CO a

a) .,-- CI to C3 CD CO a 0.

602

09

31

0.

602

849

4 1 0

.60

3874

1

0.6

0563

94

0.

6068

63

1

0.60

700

28

Ai (

cro

ss s

ec

tio1

Ao

(cro

ss s

ec

ti

CT Cu

0 K (V

V/m

k)

1

O

0.22

6086

61

0.21

187

67

0.

1892

913

0.

1741

243

]

0.15

8884

0

0.14

3875

6 0.

1213

026

0.

1062

133

0) ..- 1"-- 0) O

a aa)

O _..

.0 H

a) N

N- -,-

CO '1"

'xi .,- 18.3

51

0)

0 ,:t i

C..) CT) 0)i ,--

CO LC1 6 (NI 21.7

6

22.5

8

22.6

7

0.0

7668

921

0.

0768

073

0.07

697

00

7.1.Cf

76T3

31T)

.

CD CO CO CO N N. 0 a 0.

0776

1231

0.

078

0869

0.

0783

371

1 0 1-- CO CO CD N- 0 cp

MU

_i

0.00

0706

6 1 0.

0007

036 LC)

N 0) CO 0 0 0 a

CO (0 CO CO 0 0 0 a

(c) H CD CO 0 CD CD a

1 0.

0006

845

1

CO N N— 1--- CO (0 CO CD 0 0 0 0 0 a a

0 N C.0 CO CD 0 cD a

0.00

8111

co to 01 0 0 a

co N V ., CD a 0.

0158

81

tv a 10

391

.16

101

29.7

6

1056

2.17

10

239

.57

1 96

05.

18

9414

.25

9053

.65

8826

. 941

83

88.

741

co 0 LC) a CO

co o

1 0.

6264

642

1

to 0 0) r-- N 6 c=i

1 0.

628

677

8 co CD CO 0 CO NCO a

1 0

.628

897

0.63

0280

3

0.63

151

35

0.63

1424

8

'Ou

tsid

e di

amet

er in

ner p

ipe

do(m

) 1

'In

side

dia

me

ter

oute

r pip

e D

i(m)

'Ou

tsid

e di

amet

er o

ute

r pip

e D

o(m) 1

,_, O

1038

9.82

10

119.

58

104

92.2

3 10

209

.91

957

4.09

1

9371

. 91

9001

.33 CI

to • to co r--- CO 83

07.5

71

_ =

13 I--

1 36

.05

36.2

91

37.1

9 37

.70

37.2

81

37.8

51

38.

81

39.7

4 1"-- co 0) co

'Insi

de d

iam

ete

r inn

er p

ipe

d

103

92.5

0 10

139

.95

1063

2.12

10

269

.23 r--

N CO co (0 0) 94

56.5

9 (0 0) CO a

8888

.38

8469

.92

LMTD

1 0) to

I-- N.

tri

In 0) cO

r'l N. CO

N. .1-- cci

'1" CO 6

-cr CD to CT) 6 (ci

0 01 6

1Len

gth(

m)

1

I- Cn ill 1—

cqco.i. La W N. W C)

I- cn W I—

N co at to co I's W 0)

Page 58: Condensation heat transfer and pressure drop coefficients ...

Co

o

4182

.961

4

182.

441

4182

.531

41

81.7

91

418

1.46

1 41

81.0

41

4180

.401

41

80.0

11

N-

C) 0) I's

YN a.

Co

O CO

ci CO

ci, CO

c; Co c:;

CO 6

CO ci

CO ci

CO ci

0 0 0

1 0.0

2132

047

51

I

I

I

_1

_- 0- 0

a) h-

-cr

a) r....

NI'

01 r--

Nr

CT) h..

'I'

0) N-

-cr

CT) N-

"cr

0) N-

Yt

C) N.

YN

01 N--

Yr 0 . - 0

0.02

3

0.02

31

0.0

23

(Y) N 0 C.1 0.

02

3

0.0

23

0.

02

3

0,02

3

0.02

3

0 7.- 0

0.02

2789

8

.

1 0 D 36

34. 7

91

3589

.40

a C) r--: CO v- co 34

07.5

31

3306

.211

32

08.2

21

304

7.42

1 2

908.

101

2763

.16

ko/D

eq

126.

78 a

a r-N- CV ,-

co cn 6 CV ..- 12

7.2

9 12

7.4

5

r.... (o. CV ....-- 12

8.04

12

8.30

12

8.33

h

I

Re

o

114

78.5

41

1094

5.38

1 97

47.

221

9202

.611

8

502.

791

783

0.24

1

.,- 1.0 r'i C) h CO

co Cf) I.tiCO 0 0 52

07. 0

41

ratio

mu_

o 1.

0281

1.

0271

01 N 0 ..-- 1.

028 r--

N CD .-- 1.

027

1.02

7

N- CA 0 .1- 1.

028

Y aV

Lin

ear

reg

ress

ion

:

'>••.

(J)

46.9

03

Pro

^0.3

33

M,- Yt a)

el 0)

c,) (-1 0)

Co ..- a)

CO c. a)

Nt CD Co

NI- N(0 CO

.--

CO

0) Co c0

a =

1 = E

CO el (I)

a a 6 0.

0008

550_

1 0.

0008

454

1 0.

000831

81

0.00

0828

91

CO cf) ,-.

a a O 0.

0007

7291

0.

000

769

91

! ..- ■ a) , NJ

I x Co

CO ..tt N.-

43.

879

ct

7.35

31

7.21

3 01 CO N

N:

7.03

31

r-.. CO 01

CO

0) CD CO

LO

CO 01 Co

(0 6.4

551

CA TO xt

(0 I ° rd 3

1-

c-O o CO N

CO (C)

cri N

CO .,— r-- N 2

8.01

• 2

8.2

0

29.

02

30.4

6

. ,-...

31.8

8

1 i

CO

1

Re

i^0

.8

242

7.39

1 24

38.8

31

2474

.151

24

88.5

5!

2487

211

25

14.0

31

256

1.99

1 26

03.9

51

255

6.39

1

_

-......

C7, -

N.: h

an N !- N-

N ' N.: N- 7

7.5

2

Y..N vr

N: N- 77

.551

N 1"-- N.: N-

N- CO r-.: h 77

.86

1 y

-ax

is

CO CO LO 0 Vr. 1'1 N CO N Y- N- 11

2.3

36

10

8.29

1

104.

306 N

CD "".. MCA

1 82

.97

5.

I

iae

I 1703

8.22

1 17

138.

661

17

44

9.5

21

(0 Lil (D N- LO

1756

4.7

2

1780

1.78

18

22

7.2

51

1860

1.23

1 18

177

.50

ratio

mu-

1

CO CO o C.0 CV

a)

O

0) N N- CO CO

0) O 0.

972

7578

1 0.

9737

3401

0.

9752

364

0.97

603

921

0.97

753

351

0.

9786

524

CO c,) CA

01 O

,., - X CI

}C

10 Cl N el• N: W. .1- 1-* 1.

487 N

0 .1t. 1- 1.

306 Co

0 N r

N LO R y- 0.

944

0.85

0

Pr,^

0.33

3 co N- CO

co 1`.- CO

el CO CO

co VI CO

N (0 CO

CO LO W

in yr

W

to 01

W

co co CO 3

=

. I E

N. (c) CO 0 a ? L., 0.

0008

532

0.00

0843

5 0.

0008

300

0.00

0827

2 0.

000

8139

0.

0007

911

0.00

077

141

1 0.

0007

6841

M .

c-

0

co 01 in

0 0) in

N CO (0

1.... I,- LO

.- CO Co

to N- 1.0

CO CO LO

N- Co Co

CO LO Co =

3

I--

YIN 1-

CO N

CO CO

6 N

T 2

7.2

8 TO

CO N 2

8.30

1

TO '- ai N

(C) Co

ci c')

0) N-

.,- CO

CO CT)

,-- VI

1 1/

Uo

,-- CO Co CO N- h CV CV c=) 0 C) 0 0 0 c:i O

1 0.0

002

884 U)

in CA CV 0 CO 0 C .7

1 0

.000

302

5

N- CO 0 CO 0 O 0.

0003

281

0.

0003

439

CO CO 0 CO 0 O

Pr;

N.

h

4

NI 0) CO

4

C) 0 CO

d'

N (.0 1.0

4

1- 0 CO

4

CO Yr Co

4

01 LO 'Yr

4

Co h CO

4 4.38

21

0.02

31

0 .-C 68

63. 6

41

CD N o c3) CO CO 69

68.0

21

N CO Co ol 0) CIO 70

02.7

51

h CO

ei CO 0 1--- 71

71.3

81

7261

.47

1 71

30.8

8

Reo

^P

1769

.74

1703

.67

1552

.76

1482

.96

1392

.03

130

3.23

11

63.2

6 10

62.4

8 94

0.31

TES

T

CV C') mi. 11) Co ts. CO a)

1- TE

ST

%-. N el et U) Co t •••• 03 0)

1 TE

ST

N v) di. 10 CD IN- CO 01

a)

Page 59: Condensation heat transfer and pressure drop coefficients ...

a

i co i .6

1 co O

co c:5

co O

1 co i O

co .6

co O

co O

co 6

I 00

0

0.02

130

841

Cr CD 0 0

-V

1 12

6.78

1 o o N': NJ 1....

(0 01 6 NI ,I.. 12

7.2

91

127.

41

127.

671

128.

041

128.

301

128.

331

o

C...)

rati

o m

u_.

1.02

87 ID

I,- C\I 0 ..--

r-. CT) C\I 0 ..- 1.

027

01

1.02

69

1.02

691

1.02

781

1.02

801

1-11U

_w

all

o

0.00

0861

31

0.0

0085

27

0.00

084

33

0.00

082

961

0.00

082

66

0.

000

8133

NI- 0 01

CD 0 0 6 0.

0007

70

7

0.0

007

67

6

o >, 10

3.57

5

iress

ion

:

Cf)'

32.6

106

092

-CD

146.

929

7756

O

.3

I-

N-

26

.711

2

7.30

1 in ,- CO N.1

I -4- co

;CO NI

r- co ,- CD O O N() 31

.831

32

.03

X a

v

,- 01 (-4 I■.

T -

0.74

302

1

E

43.8

8951

1

0-) - N.

'IC

O (.1

N- 77.4

21

NI "1- U) 'Cr

N- I N.

I

73

._

77.5

5

77.7

2 77

.87

77

.86

rati

o m

u-i

t

0 co Cr) O

N- co CD O 0.

9741

0.

97

56

et CI) co N-

Cr) C7) 6 6

,-- 01

01 6

CO 01

01 6

Ln X

97 >I 12

2.50

2 11

8.7

53

c.0 N col c.i ..- N..". 10

8.33

11

104.

3471

N cl C■1 6 0 N-.

93.4

991 t-)

CA 1... oi CO 83

.009

1

.... - 7. 3

7 I

E 0.00

0859

51

CO

In co 0 0 CD 6 0.

0008

4141

0.00

0824

91

0.00

0811

6

0.00

0788

8

.- 01 (CO r-- 0 0 0 6

.- CO CO I,. 0 0 0 6

CP x

141 CO N.1 I... CD 4.- T."

r-- CO et V-• 1.

4021

co 0 CI e-

co 0 N 1-

N 41 a N-

et .1" 01 0

0 in CO 0

- =

3

I-

26.2

81

26.8

21

27.

411 co

CN CO N

Lo -ct• CO N 2

9.27

L 30.

70 co

01 ..-- In

C \I .-- N CO

hi 1

0 0 C \i co 0') (10

.e- CO ri Ch

(.0

0 CO C.i (.0 CD N- 70

96.2

91

0 (C)

Ca .- .-- N- 71

81.2

71

7297

.491

73

92. 9

7

7265

.62

0 -)

..' .' .--

(f) 0) N. 1,- C \ I N 0 0 0 0 0 CD 6 6 0.

0002

88

0.00

029

3

0.00

0302

N r vo 0 0 0 6 0.

0003

28

0.00

0344

N (0 co 0 CD O

6

Ree

l'

176

9.74

17

03.6

7 CO N- N co LO

'."". 1482

.961

13

92.0

3

1303

.23 CO

(NI () co ,-- N-... 10

62.4

81

940.

31

TE

ST

r.. N CI .O. LO tO t.■ CO 01

TES

T

1 2 C) et 41 CO I'. CO 01

120 a.)

CO

Page 60: Condensation heat transfer and pressure drop coefficients ...

00

0 CO

0 co ci

co ci

co O 0.

81

1

0.81 C

00 0

0.02

1308

31

0...

co 0

co 0 0.

81

co 6

co 1 ci 1

co O

co 6

co ci 0.

81

*ko

/Deq

co N. (C) (N 12

7.00

1 (.0 0)

(0 (V .-- 12

7.29

12

7.4

5 12

7.67

12

8.04

12

8.3

01

128.

331

0.02

2784

5

IS a) 0

0 ...V

126.

7&

127.

00

CO 0)

( , (N1 .,.. 12

7.29

127.

45

127.

671

128.

041

128.

301

128.

331

rati

o m

u„1

r-- (0

N (..V 0 0

N.-

0.1 0

1.02

831

1.02

701 0)

CO C•1 0

1.02

691

1.02

781

1.

0280

1

ratio

mu,

1.02

87

1.02

761 N.

CT) CV 0

1.0

2831

1.02

701 0)

(D CV 0

Cr) CO eq 0

1.02

781

1.02

80

o

0.00

08613

0.0

008

527

0.00084

331

0(0

)

CO O O O 6 0.

0008

2651

N

\ I

0.00

081

331

0.0

00

79

04

0.0

00

7706

1 in N. CO N. a a o 6

Yav

103.

5751

Iress

ion

:

x

32.6

106

5711

_c

CO 01 CO 0 c' co a) 6 -4-

0.00

0861

3 r-- (N In CO o o o 6 0.

0008

433

1

0(.0

1 (N.I CO o 0 o 6

1

111 (C) C \ I CO o 0 a 6 0.

000813

-Tr 0 01 N. o o o 6 0.

0007

7061

LX1 N. (D N. a o 0 6

0

— ° 3

I—

r-- — .- N.-

6 6 C \ I C \ I 27

.30

28

.151

2

8.34

1 r--- T

oi (NI

CD (D ci CO 31

.831

32

. 031

xa

v

,-- Cr) cv

.

0.74

3021

43.

889

581

0 = ;

I-

26.1

7 2

6.71

1

27.3

01

28.1

51

28.3

4 29

.171

0 CO ci C.1 31

.841

32

.03

1

...... Y

77.1

9 7

7.2

5 (N -ct N. N.

CA (0 N. N.

71.4

4

1.0 Lc) N. N.

Izta

N. co N. N.

(D co r.-..: N.

ki/d

i

-0)

N-

r.. :- .

Iszu ,

04 .1- N- N. 7

T52 1717'LL

cr) in r--..: N. 77

.72

N- co N. N.

(C) co N. N.

rati

o m

u-1 0 N.

CO el N. N. 0) 0')

6 6 0.9731

.— -cr N. 0)

0

CO 1.11 N. 01 0

`cr CO N. CS) 0

01 N. N. 01 0

1-

0) 0

CO 0) N. CD 0

. - X ca

122.

503

118.

7541

11

2.37

71

108.

331

10

4.34

71

100.

2321

93

.500

89.1

241

83.0

101

0.97

30

1 0.

9_737

1

'— ...zr N. CI 6

CO cr) 1--- Cr) 6

`ch CC) N. 0') 6

01 N. N. 01 0

-s- 01 N. 0) 0

CO 0) N. cm 0

- =

= E 0.

000

8595

0.0

00

85

09

-4- 1— -0' CO O 0 o 6 0.

00

08

27

8

0.0

00

824

8

0.00

0811

6

co CO CO N. 0 0 a 6

— 0 CO N. 0 0 cp 6

— (0 (C) I. 0 0 o 6

. - X

13 x 1.

724

683

1.64

3466

1 1.

4872

781 'I'm

0 c- Cs/ CD mi. .-- 1.

3063

621

1.20

6429

1 1.

0516

14

0.94

3942

T.. (0 N. 0) et co c;

_ - To 3

=I

E

to 0 In CO 0 o 0 6 0.

000

8414

1 0.

00

08

27

81

0.00

0824

8

,-. CO 0 o co 6

1 0

.0

00

788

81

c- 0) co N. 0 a 0 6

,-- CD co N- 0 a 0 6

;

I—

26.2

8

26.8

2

27.4

1

CO 0.1

C N. I 28.4

5

29.2

7

0 1*---

el

co 0)

Cl 32.1

21

T wa

ll

CO N

(V 26.8

2

27.

411

28.

26

28.

45

29.

271 0

N. 6 C•1

1 31

.93 (N.I

.-

csi ("1

hi

1 6

96

2.91

6

99

4.30

70

64

.47

70

97

.24

71

17.

62

71

82.4

3

72

98

.75

7

39

4.2

9

7266

.95

0

.---. '... 1

if) N. C \I 0 0 0 ci 0.

0002

791

0.

0002

88

0.0

00

29

3

(N1 0

0 0 0 0 0.

0003

121

0.00

03

28

0.

000344

0.0

003

621

hi el

6962

.94

6994

. 32

70

64

.50

I,- 0.1

N.

0 I. 71

17.6

41,

7182

.46

CO N.

CO

CV N.

1 739

4.32

1

CO 473)

ca (C) (N N.

Reo

^P cl•

r~ cri CO I,- ,--

Ps co. co 0 N. ,-- 15

52.7

6 14

82.9

6 13

92.0

3 13

03.2

3 11

63.2

6 10

62.4

8 94

0.31

TEST

1

Cs.1 co .t to co r.- co co

I TE

ST

r (..4 co -cr. so CD Ps. 00 (73

1 TE

ST

w 04 rl et LO CO 1,.. CO al

03

fD

Page 61: Condensation heat transfer and pressure drop coefficients ...

0 o U

0.02

130

831

a

0.81

0.

81

0.81

co O

co 6

co 6

co 6

.co 6

co 6

.-

0.02

2784

4

IS w C1 0

-1C 12

6.7

81

O 0

r''' N 1-

(D. (1)

ai 0.1 1- 12

7.29

1 12

7.4

51

r... (D r•-: (N ..,- 12

8.30

1 12

8.3

3

rati

o m

u_ol

1.02

871

(D h. (N 0

1.02

971

1.02

831

1.02

70

0) (D h.I 0 ..--

1.

026

9

1.02

78

1.0280

Y av

103.

575

ress

ion:

1

32.6

106

5941

46.

9300

7491

o =

3 1 =

E 0.00

0861

3

0.00

0852

71

0.0

0084

331 CO

C) (N1 CO o; o o 6 0.

00082

651

0.00

081

331

0.00

079

04

0.00077

06

0007

6751

X av

01

3)

0.74

3021

43.8

895

81

(.

0

T wa

il° h.

CO

26.

71

27.

30

28.

15j

28.3

4

("-- 1 ,- CI) (N1

0 i (.) CD ' CO 6 — OM , c') , co

1

01 C:) CV co

1.1.

cn ,- N: 1"--

ir) (N N r's

iN -,:r (--: I"-

(NJ It)

N- r's

..1" V' r--: r■

In hi i r-- in Ir-.- ! co N-. N , r--: h.. 1 1"--. i h.

I !

i

(so co r--: r■

C41

NO

._, )11

,.,,X CV 7 hi >, ,-.

.ct LI, h: CO .r." .(.-

1`■ h. C.') CV I-- -. 10

8.33

11

104.

3471

93.5

001 et

CNI T..

Cf; CO 83

.01

01

rati

o m

ull

0.97

301 Iss

(7 r's 0') 6

',- C") h. 0) 6

',- .0- r■ 0) 6

CO cf) r■ 0) 6

.0- (.0 N. CO 6

a) . --- r■ 1 0)

h... I (--- 01 CO 6 16

1 I

co 01 1,- 01 6

x-ax

is

1.72

5 C.7 ct

CD

N. CO Ct:

Csi 0 'CI:

CO 0 C.)

0 0 hi

CN 14 0

.(1' CD "Ce LO CO CO OO

- -

7 I

E 0.00

0859

5

0.0

0085

09i

0.00

084

141

0.00

0827

81

0.0

0082

481

0.00

0811

61

0.00

0788

81

CI

ICDs■ o o o O

CO r--CD

o g oo

c=i

I-

26.2

8 26

.82 T--

NI' r`■ C \ I

co 0.1 06 N 28

.45

29.2

7 o r■

O el

co 01 — V,

(N1 N'• c.; CO

1/U

o

0.00

0275

01 l'■ c . 0

1 0 0 O 0.

0002

881 1£6Z

000.0

0.00

0302

1 0.

0003

121

0.

0003

281

0.0

00

34

4

0.00

0362

hi

,- 01 CN1 CO CO CO 69

94.2

91

7064

.471

70

97.

24

711

7.61

71

82.4

31

7298

.751

7

394.

291

CO 01 CD (D C•1 l's

Reo

^P

1769

.74 rs

(D ri (o l'..- .-. 15

52.7

6 CD 0) (N co ..(1. „... 13

92.0

3 13

03.

23

116

3.26

1 10

62.4

8 94

0.3

1

TE

ST

1 CNI CI wr in (D l'... CO Cr)

1 T

ES

T

-• CNI CI ••(1' in CD h■ CO a)

03 a) tB

..sa

Page 62: Condensation heat transfer and pressure drop coefficients ...

Co.

0.02

1308

3 cr

.

O

0.80

001

21

C4 N-• 0 0 0 03 0 0.

8000

121

0.8

0001

21

0.8

0001

21

esi V.• 0 0 0 cO. o

1 0.8

0001

21

0.80

001

2

0 0 0 co cl

Y av

10

3.57

51

ress

ion:

1

S y

x I

32.6

10

654

7!

..c

46.

93

00

72

31

a

> m

x

rnI

.,-

0.74302

CN •

rn

1

43.

8895

81

1 0.8

0028

11

0 r- 0 0 cO. 0 0.

799

6051

0.

80

03

201

0.

799

8091

co ge" 01 01 is:

0 0

cncn

1-", 0-• 13.

7981

461

1 0.8

0306

81

0.80

0012

0.02

130

83!

0.0

21

30

83

0.

021

3083

! 0.

0213

083

!

rn CO 0 01 I-- C‘i o O 0.

0213

08.3

1 0.

021

3083

! 0.

0213

083

0.02

1308

3!

x

13 >1 12

2.50

3 11

8.7

54

r.-. r- M Csi .l. 'l 10

8.3

311

104.

347

100

. 232

1 9

3.50

01

89.1

231 0

1- 0 04 CO

0 = Z 7

5.58

1

72.5

08!

65.6

24

62.

398

C\1 CO cn r•••: LC) 53

.614

4

7.290

42.6

03

in -,-- (0 c) Cn

x-a

xis

in cs4 NI

C.) .1.

RD

N- c0 .t

Csi 0 el"

c0 0 cl

1.206

NI in 0.

..7 et. cn

O

0 in co ci

ho

958

2.55

! 92

08.7

0 8

331.

76

794

2.84

738

7.34

! 6

844.

86

60

55.1

3

546

5.96

1 5

045.

32!

0

--E ,-

..t. ..cr et 'Tr 0000 L

WI IL III LI

<2, 0) cD W 0 0 C\I CV ,- ,- ••-• •,- 1.

35E

- 04

0 di

CO et ,--

0 1.6

in CO ,- 1.

83E

-04

1.98

E-0

4

1/U

o

0.00

0275

0.

000

279

1 0.

000288 C

6Z000

.0 1

0.0

00

302

1

0.0

00

312

c0 CV el 0 0 0 o 1.0

. 000

3441

CV CO () 0 0 0 o

et r- 01

0 CO NN r- cc 1-

N. c0 co 0 r- ,-

15

52.7

6

1482

.96

139

2.0

3 1

303.

23

CO CV () CD

1- 1062

.48

94

0.3

1

.

TES

T 1 NI cl wet in co N., co o)

Page 63: Condensation heat transfer and pressure drop coefficients ...

Appendix C

Sample calculations

Page 64: Condensation heat transfer and pressure drop coefficients ...

Re

eq

9.01

E+04

1 v-

+ 1.11 If) co CO

000 ..::-

+ L.LJ oi (f) N-

-.4-

+ LL1 en c) N- 6.

37E+

041 -cr

+ W +- r- tr)

0000 ,cr

+ 1.11 Lo o Lri

-1-

+ LLJ c)

4

cr

+ 11.1 co

ri •

Pry 1

2.59

E+01

1 2.

59E+

001

2.59

E+00

2.

59E+

00_1

O O + ill 0) In CV 2.

59E+

001 o

a +

L1.1

LC) CV 2.

59E+

901

2.59

E+00

_1

a

Me,

O 1---. r-- CO 0 ci 0.

0627

44

co 1--- N- In CD a 0.

0528

221

0.04

7861

1 0.

0429

1

co Cr) N-(,) 0 ci 0.

032

9781

0.

0280

171

.

> N

a) 0

105.

11

.r- tri a +-

<- tri o r

,-. tri o r 10

5.11

N- tri o r

‘-• Lri c) .- 10

5.11

10

5.11

c 1

_1

1=1

1044

1 10

44

1044

10

441

1044

1 vr •••zr o <-

..cr

.4- o '- 10

441

1044

1

.

'-

E II E

-1 C.

-4- tri 1-- 15

46

1546

15

46

co V' Lo r

co L'cl-n

1---

co LA I--

up 1.1,

1---

1546

1

7.04

E-02

1 7.

04E

-02

1 7.

04E

-02

7.

04 E

-02

7.04

E-0

2 7.

04E-

02

7.04

E-02

E-

021

C I I C n

=1/3

.Cor

rela

tion

.. = I

a ill 00

.

cDoo o 000 o di IL u lj di Lit, ill IL LI

00 CO CO CO CO 00 c0 CO . . . .

R22

pur

e I

CD 4.47

E+02

4.

47E

+02

4.

47E+

02

4.47

E+02

4.

47E+

02

4.47

E+

02

4.47

E+02

4.

47E

+02

4.

47E

+02

C=

0.02

65

en CD Lei

It U

Ake

rs e

t a

l

::I

U) Ln U) U) U) U) in U) tn acpcg000cDoci IL ulj u j IL Li Li IL u j IL

CO CO CO CO CO CO (10 CO CO N-- N-- 1.- 1- T... r I'''. l'•-' 1-

U) U) 141 LI) U) Lri tri to U)

cn lo +

LL.1 e- 0)

1 2.

74E

+03

cn 0 +

111 (0 In (NI 2.

38E

+03

cn 0 +

L1.1 CD CV c\i

co 0 +

L1.1 C \ I 0 c\i 1.

83E+

03

2.12

E+

03

I 2.

00E

+03

2.

31E

+03

e

co 111 CD co (V 0 ci 0.

0230

56

0.02

3056

0.

0230

56

0.02

305

6

0.02

3056

0.

0230

56

0.02

305

6

0.02

3056

If R

eeq

>=

5E04

If R

eeq

< 5

E04 Z

1 3.

35E

+0

21

CV CD +

LU U) r- C')

1 2.9

5E+

02

(N.1 CD +

U) r--- cNi

1 2.

54E

+02

U-I L U L U

1 2.

33E

+02

C N. 1 CV 0 0 + +

r- -ct- .-- -cr- cNi c\i

1 2.

31E

+02

1..

co O o 6

x

0.) a 0.

8

0.7

0.6

0.51

0.4

0.3

0.2

0.1

.

6.0

CO

6

E0

(0 . a

LO

a. 0.

4 0.

3 0.

2

IAve

rag

e

a)

Page 65: Condensation heat transfer and pressure drop coefficients ...

Re

eq I

9.01

E+

041

8.

35E

+04

1 4 a +

LLI CD CO N

o + W c,) 0 h 6.

37E

+04

1 4 c) +

LU 1.- N. 1.6 5.

05E

+04

1 4.

39E

+04

1 .4 a +

LU (,) N M 0 • .

Pry

2.59

E+

001

2.59

E+

00

2.

59E

+00

1 2.

59E

+00

1 2.

59E

+00

0 0 + LU C1) Ln CV 2.

59E

+00

1 0 0 +

LL.1 CI) In CV 2.

59E

+00

1

t.

Me,

a U) 0 r's r CO 0 O 0.

062

744

() CO 1".-- r-- U) o O 0.

052

822

1 0.

047

861

0.04

29

0.

037

9391

0.

0329

78

0.

0280

17

De

ns

e 1

105.

11

+- U) O 10

5.11

1 0

5.11

r tri o +-

r L.ri o r 10

5.1

r 6 o r

r Lri c) l'-'

...1 0 C (1) 0

N:1" azt 0 r 10

44

10

44

`Cr ci• 0 t.... 10

441

10

441

10

44

NI• ..ct 0 1-

'cr V 0 1".'.

m=

1/3 C..)

I I

E

CP

L. 1

CO ..zr t.!) 1-

CO 'at U) 1--

CO `or U) V"'

CO 'I" LA r

CO azr U) r

QD art U) r

CO act U) r 15

461

CO 'V- in 1- .

7.04

E-0

2

7.04

E-0

2

7.04

E-0

2

7.04

E-0

2

CV CV CV CV N 00000 LI j Lb IL ii IL

occ000 N.: N: N.: N: N:

r.1-= 0

.8

el i- II C

Ca

va

llin

i a

nd

Ze

cc

hin

cr LT co 5

oac000aoc) 1.6 Li Li Ili IL Li IL di ili

co co co co co CO co co co . . . .

R22 p

ure I

4.4

7E+

02

4.47

E+

02

4.4

7E+

02

4.4

7E+

02

4.4

7E+

02

4.47

E+

02

4.47

E+

02

4.47

E+

02

4.4

7E

+0

2

C=

0.0

5

C=

5.0

3

U) U) U) U) U) U) CO U) U) 000000000 IL Li j 13 j a j II i L6 ili di d j

CO CO CD CO CO CO (0 CD CO

tr)v)intr)Lr)tr)u-)Lrit.r)

15.4

8E+

03

c.) 0 + LU CD

L()

I 4.

83E+

03

14.5

0E+

03

("1 CD + LU CO 1..

.4 -

3.81

E+

03

I 3.

45E+

03

2.12

E+03

I 2.

00E

+03

cn 0 + LU U) C)

ri

0.02

30

56

0.

023

056

0.

023

056

0.

023

05

6

0.0

230

56

0.02

3056

0.

023056

0.02

305

6

0.02

3056

0 4

W U) V

CUw

Nu 6.32

E+

02

CV CD +

111 U) 0) Lri

C‘I 0 +

UJ N- C.0 6

CV 0 +

CLL1O

1- Lri

I 4.7

9E+

02

CV 0 +

LL1

4

0)

M

I 3.9

8E+

02

I 2.4

4E

+02

I 2.

31E

+02

.1... co O a O

o

0.9

0.

8 0.

7 0.

6 0.

5 0.

4 0.

3 0.

2 0.

1

If R

eeq

>=

16.0

CO O

N a

CO ci

U) ci 0.

4 M

° 0.

2

Av

era

ge

Page 66: Condensation heat transfer and pressure drop coefficients ...

LL 4.51

321

61

2.56

146

51

1.79

3432

1 1.

355

139

1 1.

057

5841

0.

8323

851

(0 0 r-.. 4 0 0 0.

481

511

0.31

526

51

0.0

5369

8

0.11

14

09

0.

181

0

0.269334

0.38

794

8 o m r-- co 6 6 C 0.

831

6731

1.

3 50

9141

2.

8027

981

Den

se

......

666666 000000 ...... 10

5 T- •r•

66 00 ,-.-

-J 0 C w 0

1044

104

4

1044

1044

10

44

104

4 10

44

104

4

10

44

-J = 0

154

6

1546

15

46

154

6 15

46

154

6

1

154

6

154

6

15

46

7.0E

-02

7.

0E

-02

7.0E

-02

7.

0E-0

2 7.

0E-0

2 7.

0E-0

2

7.0

E-0

2

NN 00

WILL 00 P--.:1"--:

Re

L>11

251

F2 1

29.4

307

11

30.8

378

1 31

.290

781 M

CD 0 0 1-- M

31 9

738

21

32.2

4489

32

.483

99

Vis

cnq

1.2

E-0

4

1.2E

-04

1.

2E-0

4

1.2E

-04

1.2E

-04

1.2E

-04

1.

2E-0

4

1.2

E-0

41

I 1

m

U

IA

5

MOLDIJILD CO0000000

LIII W IL LL IL IL IL IL WW WW WWWW

IL W.

U) c.11 ,...-

0

4.5E

+01

8.

9E

+01

1.3E

+02

1.8E

+02

2.

2E+

02

2.7E

+0

2

3.1E

+0

2

3.6E

+02

N 0

W o 4

l"• A ...1W W v 0 m

I N LL

29.

2098

1 31

. 339

2 32

. 567

51

33. 4

334

34.1

023

CO r.-.

0

n 35. 1

071

35.

504

81

35.

8552

R22

pur

e 1

Tra

vis

s e

t al.

4.0E

+02

3.6E

+02

3.1E

+02

2.7E

+02

2.

2E+

02

1.8E

+02

1.

3E+

02

8.9E

+01

4.

5E+

011

4.47

E+

02

4.47

E+

02

4.

47E

+0

2

4.47

E+

02

4.47

E+

02

4.4

7E+

02

4.

47E

+02

4.47

E+

02

4.47

E+

02

If R

eL

< 50

101.

5236

81

143.

5761

7 17

5.84

418

203.

047

37

1 22

7.01

386

24

8.68

12

2

268

.606

42

1 28

7.1

5234

1 1 3

04

. 571

05;

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

r

o 0.00

811

Lmr

0.02

30

56

0.

023

056

0.

0230

56

0.

023

05

6

0.02

3056

0.02

305

6

0.02

30

56

0.

0230

56

u w cc

3.1E

+0

3

6.1E

+03

9.

2E

+03

1.2

E+

04

1.5E

+04

1.8E

+04

NtNr Oa + W + W .o..-(41 c‘i c.i 2.

8E+

04,

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

D.

000000 000000 + + + + + + wwwwww cm wwwqw N N N N N N 2.

6E+

00

2.6E

+0

0

+

0

CD

Page 67: Condensation heat transfer and pressure drop coefficients ...

_

1

_c

498

1.30

1 50

23.3

8 49

28.

27

4732

.99

4449

.92

4078

.67

1 36

06.7

8 30

01.

28

2168

.73

4.10

8E+

03

= Z

574.

0032

57

8.85

16 O

co O co N- co tr) 54

5.38

99

512.

771

5 46

9.99

12

415

.614

7 34

5.84

19

249.

9066

1

16.0

co O 0.

7 9.0 1-

to ci

nr c;

1 0.

3 N ci

e-

d

Ave

rag

e

Page 68: Condensation heat transfer and pressure drop coefficients ...

Re

L

0 o + W 0) N

N 2.29

E+

051

2.

29E

+051

2.

29E

+05

1 2.

29E

+0

5

2.29

E+

051

V) 0 + W 0) N

N 2.29

E+

051

2.29

E+

051

2.59

E+

00

2.59

E+

00

+

2.59

E+

001

2.

59E

+00

1 2.

59E

+0

0

0 0 + W M V)

N 2.59

E+

001 0

0

111 M 0

N

0

00 0e-M0 M0 OM MM - 2.

01

81

33

2.

0344

16

2.04

9587

2.

0649

81

2.0

8201

3

2.10

316

2.13

5757

0.0

53

69

8

0.11

140

9

0.2

693

34

0.

387

948

0.55

8799

0.

831

67

3

1.3

50

91

4

2.80

279

8 .

> cn G w 0

105.

1

105.

1

6666666 ooco 0 0 0 ot

De

nsL

I

10

44

10

44

1044

1044

10

44

1044

10

44

10

44

1044

. . ,

1546

154

6

1546

154

6

1546

1546

1546

1546

154

6

kL 7.

04E

-02

7.

04E

-02

7.04

E-0

2

7.04

E-0

2

7.04

E-0

2 7.

04E

-02

7.04

E-0

2

7.04

E-0

2

7.04

E<O

2

.

624

2.53

1 55

49.

15

484

3.6

7

414

5.8

0'

1 34

59.6

4 1 27

84.6

4 21

17.

57

1451

.PA M

r-- (\i r■

r-

1 3.4

9E+

03

= 0 III

1-..4-st-a-mr-clm 000000000

W W W W W W W W W W C,0

W co(0 W W W

.. ... .

Nu 71

9.33

64

63

9.4

37

6

558

.144

0

477

.72

74

39

8.6

595

1 32

0.87

88

244.

0113

167.

297

9

89.0

501

R22

pur

e

0.

> c.) tn 1.

58E

-05

1.58

E-0

5 1.

58E

-05

1.

58E

-05

1.

58E

-05

1.58

E-0

5

1.58

E-0

5

1.58

E-0

5

1.58

E-0

5 MW

66

L.0

00 66 0.

4 0.

3 0.

2 0.

1 'A

vera

ge

Aze

r et a

l. I

4.47

E+

02

4.

47E

+0

2

4.47

E+

02

4.4

7E+

02

4.47

E+

02

4.47

E+02

4.47

E+

02

4.

47

E+

02

4.47

E+

02

4

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

T..

CO 0 C O 0.

0230

56

0.02

3056

0.02

3056

0.02

3056

0.

023

056

0.

023

056

0.02

305

6

0.02

305

6

0.02

3056

MWT■ 00 ,7-MNA- 666666666

0 a)

Page 69: Condensation heat transfer and pressure drop coefficients ...

Re

eq

4.2

8E+0

41

3.94

E+0

41

3.59

E+0

41

3.2

5E+

041 'cl-

0 + W 1--- CY) N 2.

56E

+04

1 2.

22E

+04

1 -.4- 0 + W T-- 03 1- 1.

53E

+04

1

I-

PrL

2.91

E+

001

2.91

E+

00

2.91

E+

001

2.91

E+

00

2.

91E

+00

1 2.

91E

+001

2.

91E

+00

2.

91E

+00

2.91

E+

001

0.03

874

3

0.03

5631

1

0.03

251

8 CID 0 'TT C) N CD

C 0.02

6294

0.02

318

2

0 CD N 0

6 0.01

6958

0.

0138

46

0 T--

I I

' i'

> N

a) t=1

C\1 LO

C) co

Cs1 LO

oi (0

TV LO C) (0

C\I LC) 6 co

N LO

C) co 69

. 52

69.5

21

69.5

2]

69. 5

2

.

_I

C CU 0

r- LO 0 1- 10

571

1057

N- LC) 0 1- 10

571 r--

LT) 0 i- 10

571 (`--

LT) 0 1-

is-- LO C N-

m=

1/3

I I

VI

CPL.

142

7

14

27

T--- N

.,-. 142

7

142

7

142

7

14

27

1427

_142

71

CV C\1 Cs.1 N N N N C\1 CNI 000000000

o di 1.6 ulj IL ulj

CO CO 03 CO 03 03 CO 03 co O a) CI CT) 01 a) 01 01 CD CO CO CO 6 xi 6 6 (0 6 _ i't

= 0.8

I

c)

!I c

I 1 i

I

1.Corr

ela

tio

n

1

.N 1.4

2E

-04

1.

42E

-04

1.

42E

-04

1.

42E

-04

1.42

E-0

4

1.4

2E-0

4

1.42

E-0

4

1.42

E-0

4

1.42

E-0

4 ,

R2

2/R

142b

(60

/40)

1

(..9 2.08

E+

02

2.

08E

+02

2.08

E+

02

2.

08E

+02

2.08

E+

02

2.

08E

+02

2.

08E

+0

2

2.0

8E+

02

2.08

E+

02

C=

0.02

65

C=

5.03

Ake

rs e

t a

l

<

LID 1.0 LO LID LO LO LO LO LC) 000000000 IL u: j Ili "Li 1.6 iii 1.6 Lb IL (0 CO (13 CO CO CO CO CO CO

3-. r '1.. tri 6 cri tri cri (0 6 t.ri ui

CD CD

W (t) 'T -

c.i 2.10

E+

03

+

1.97

E+

03

1.9

0E+

03

1 1.

82E

+03

1

1.74

E+0

3 CD 0

III 4:1- CO ,-

1 1.

53E

+03

1

1.88

E+

03

0.010734

0.01

07

34

0.

010

73

4

0.01

07

34

0.

0107

34

0.01

0734

0.

0107

34

0.

0107

34

0.1 0.

0107

34

If R

eeq

>=

5E

04

If R

eeq

< 5E

04

2.51

E+

02

1 2.

44E

+02

1

2.3

7E+

02

1 2.

29E

+02

N 0 + W 1- N

1 2.

12E

+02

1

2.02

E+

02

TNJ 0 ÷ W

CT) ,--

1 1.

78E

+02

0.00

811

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 CT)

6 CO ci

Ts- c5

CO a 0.

5

1 0.

4 1

. 0

.3 (NI

O ',. d

'Ave

rag

e

u)

a)

Page 70: Condensation heat transfer and pressure drop coefficients ...

cr Clr W 1

4.28

E+0

41

"cr CO 4- W d- 0) C6

NI- CD + LLJ a) 1.0

3.25

E+0

41

C•6

2.91

E+

041

2.56

E+0

41

2.22

E+

041 -I-

CD + UJ r-- CO ,-- 1.

53E

+041

I

1 • .

L. _1 CL 2.

91E

+001

2.

91E+

001

2.91

E+0

01

2.9

1E+0

01

2.91

E+0

01

2.91

E+

00

2.91

E+

00

CD + LU ,- 0)

2.91

E+

001 CD

(Ni

i 1

cr

24'

0.03

874

31

0.03

563

1

1 0.

032

5181

Co 0 d- O) C \I CD 0 0.

0262

94

0.02

3182

0:

0200

70

0.01

695

8

0.0

138

461

Den

se

69

521 CV

10

oi co 69

.521

NN IS) Lc" oi oi co co

CV V) oi co

N C \J V) Lc) oi cri co co

C \I in cri CO

Den

sL

N- I-0 C) 1- 10

57

h-- In 0 T.-.

r-- N- (C) L() 0 0 r 1"... 10

571

10

57

1057

r--- 1.0 0 N....

m=

1/3 C.,

I I E

_1 a. 0

.4- 1- 14

271

14

271

1427

14

27

1427

14

27

1

427

142

7

N C \I

04 O

1

aD 0) Co

NNNNNNN 0000000

ell djuiji W

i IL w w u j

CO 00 CO CO CO CO 0:1 0) 0') 0') 01 0) 0) 0) Co Co CO Co CO CO Co

Co•C01' II

.0

V) 1- II C

Cav

alli

ni a

nd

Zec

chin

ViS

Cii

q 1

1.42

E-0

1.

42E

-041

1.

42E

-04

1.42

E-0

4

1.42

E-0

4

1.42

E-0

4

1.42

E-0

4

1.42

E-0

4 1.

42E

-04

• --

R22

/R1

42b

(60

/40)

1

Ue 2.08

E+

02

2.08

E+

02

2.08

E+0

2 2.

08E

+02

2.08

E+0

2 2.

08E

+02

2.

08E

+02

2.

08E

+02

2.

08E

+02

C=

0.05

IC=

5.03

LooulLooLoululin 00000000a ILILL6thiLdi u j, IL ill

Co CO (..0 Co CO CO Co Co Co

U) to Lt) LO IC) 6 cri 6 cri

I mm oo + + W W CO 0 ,-- -,- c\i c\i

I 2.0

4E

+03 mm

oo + + LU W r-- 0 a) a) ..,- ,

I 1.

82E

+03

1.

74E

+03

1.64

E+0

3

I 1.

53E

+03

1.

88E

+03

0.01

0734

0.01

0734

0.

010734

0.01

07

34

0.

0107

34

0.01

07

34

0.

010734

0.01

0734

0.01

0734

.1. 0 W LO II A

al CU

If R

eeq

< 5E

04 Z 2.51

E+

021

2.44

E+

02

2.37

E+

02

2.

29E

+02

2.2

1E+0

2 I 2

.12E

+02

I 2

.02

E+

02

cvcv aa ++ ww 1-.. CO 0) r-- ,-.- T.-

e- ,t-co O O 0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 0) CO

OO N- CO Lt) OOO 0.

41

0.3

0.2

0.1

Av

erag

e

(SD

a)

ca

Page 71: Condensation heat transfer and pressure drop coefficients ...

1F(X

tt)

5.2

3494

1 f---.

'cr 'Tr CT) N

(D

0) ,1- CO

c.i

1 1

.54

0711

0

N-.. CP

r 0.93

8231

0.

726

211 1.0

1.--- C•1 CO c; 0.

350

031

1

0.04

46

7

0.) co N 0) 0 ci 0.

150

55

L

O 2

240

7

LO

322

75

1 0.

4 64

891

CT)

0) CO ci 1.

1238

8

1 2

.331

76

V/ C CU in

N In ai CO

N VI csi CO 69

. 52

N CO ai CO

N LO cri COI 6

9.52

'

N CC) cri CO

C \I In ai CO 69

.521

-I tf/ C CU

13 10

571

105

7 T--. U) CD .-

1

1057

1

1057

N-U) CD ."--

1 1

057

1 1

057

Cp

L

N Cl• 14

27

1427

1 14

271

142

71

142

7

1427

'

N- N 'cl-

o

-J

N N

di CO CO 01 CY) 6 6

0000 N N

II j IL CO CO 01 CS) 6 6 6.

98E

- 02

N N 0 0 Lb di CO CO (3) 0)

O 6

N 0 1.6 CO cr) CO R

eL>

112

5'

F2

N (D CO CT) .s- 6 N

,- Ts- 01 CD CO cri N

30.4

268

31.0

108

31.4

637

8

31.8

3389

32

.146

821

32A

1788

1 CO 0) CO IS) CO c.i C.)

.0*

CO CD

W W N N . . 1.

42E

- 04

1.

42E

-04

1.42

E-0

41

0CO

WI 1

N N

1.4

2 E-

041

Vis

cva

p

1.4

3E-0

5

1.4

3E-0

5 1.

43E

-05

1.

43E

-05

1.4

3E

-05

1.

43E

-05

1.4

3E-0

5

1.4

3E-0

5

1.4

3E-0

5

N

, .

2.08

E+

01

4.16

E+

01

6.24

E+

01

8.

32E

+01

NNNN CD CD CO CD -4- -1- + -1- in LLI W LEI nr o o co O cv -4- o

1.87

E+0

21

5O<

Re

L>11

LNL

28.2

9772

1 30

.52

3541

3

1.79

0981

32

.678

991

33. 3

6252

1 33

.91

8061

34

.385

93]

34

.789

991

35.1

455

31

R22

/R14

2b

(60

/40)

Tra

viss

et

al.

NNNN N CI CO CD CD 0 + -4- + -I- + W W W LU UJ N (.0 (0 4) NI' CO (.0 ,c1- (N1 CD

8.32

E+

01

6.

24E

+0

1

4.16

E+

01

2.

08E

+0

1

2.08

E+

02

2.

08E

+0

2

2.08

E+

02

2.08

E+0

2 2.

08E

+02

2.

08E

+0

2

2.08

E+

02

2.

08E

+02

2.

08E

+02

If R

eL

< 50

1F2 70

.769

32

100.

082

931

122.

5760

51

141.

5386

31

158.

2450

0 17

3.34

871

187.

238

01

200.

1658

5 21

2.30

795

U) Ls, U) U) U) 00900099

ththwththw co co co co co tri o tri (ri tri

U) in U) U) 9 w w w

co (D CO CO

0000

0.00

811

0.01

0734

0.

010734

0.0

1073

4

0.01

0734

0.01

0734

1 0

.01

073

4 0.

0107

34

0.01

0734

0.

0107

34

ReL

cn O + W C) 91-

1 2.3

7E+

03

1 3.

56E

+03

cn o + W V) T••••

'4" 1 5.

93E

+03

1

7.12

E+

03 co

o + W 1.-- el CO

cn o -I- W 0) 'Cl• CT)

..cr Cl + W T.-- CD 1-

.

CS) CO h. CO (f) O OOOO

••4- co (..1 ..- 00 0o

I PrL

I 2

:91E

+00

I 2.9

1E

+00

I 2.9

1E+

00

o O

W

I 2.

91E

+00

I 2.

91E

+00

1 I 2

.91

E+0

0 1 2.

91E

+00

I 2.

91E

+00

Page 72: Condensation heat transfer and pressure drop coefficients ...

1

1

271

3.69

1 2

713.

091

264

5.92

1 2

528.

761

236

7.2

31

216

0.74

1 19

02.6

6 15

75.

81

1131

.88

2.19

3E+

03!

z 315

.392

1 31

5.32

19

307.

514

7 2

93.8

987

275.

1252

2

51.1

267]

221.

131

6 18

3.14

47

131.

549

7

cn ci

co ci

t-- a

co. a 0.

5 0.

4 0.

3

a o

Ave

rag

e

Page 73: Condensation heat transfer and pressure drop coefficients ...

I.0 CD +

co

l0 CD +

co .

in 0 +

co .

in 0 +

co WWWWWWWWW

in 0 +

co .

in 0 +

co

in CD +

co

1.0 CD +

co

l0 CD +

co

PrL

2.91

E+

001 C3

CD + W

0) CV

CD 0 + W

01 CV 2.

91E

+00

2.

91E

+0

0

..-.

2.91

E+

00

2.91

E+

001

2.91

E+

00

CD CD + w

CI) N

1.96

286

1 N- CO ,- C3) C3) N-

01 CO CD 1- CD

CV

1 2

.026

851

2.04

191

2.05

7191

2.

0741

01

0) CD to 01 CD

N

o

. 2.

1274

51

. •

Xtt 0.

044

671 0)

CO N 01 0 6 0.

224

07

0.

322

75

0.

464

89

CD CO 1- 01 CD 6 1.

1238

8

2.33

1761

Den

se

N to CA CID 69

.521

N.NNNNNN in t1.0 CO in in in cri i oi ai oi CT a; CD CO (13 CD (.0 CO

in oi CO

t

(f) C CU 0

105

71

N- LO

0000

1057

10

57

1 0

57

10

57

1 057

10

57

1057

CPL

142

7 N.- CV cr .- 14

27

1427

142

7

142

7

1427

1427

142

7

N CD Lb

co cm (0

N CD di

co 01 CO

, N N N N N N N CD : CD CD CD CD CD 0 u:i !Lb

W a j uli Lb .u.1

co ■ co co co co co .co. 01 ; 0) 0) 0') CT) Cil Cr) CD (0(0(0(0(0(0

327

5.32

1 2

911.

361

2174

.951

18

14.9

31

146

0.79

1

405

.351

1

1.83

E+

03-

1 cr .-

cr

1.42

E-0

41

1.42

E-0

4 1.

42E

-04

1.

42E

-04

1.

42E

-04

1.

42E

-04

1.

42E

-04

1.42

E-0

4

380.

6652

1 33

8.36

551

295.

337

61

252

.77

84

210.

9358

to CO

CT oo .,-. 12

9.10

23!

88.5

114!

N CD

1- N.: Nt.

R22

/R14

2b (

60/4

0) 1

› 0 1.

43E

-051

1.

43E

-05

1.4

3E-0

5 1.

43E

-05

1.43

E-0

5

1.4

3E-0

5

1.4

3E-0

5

1.4

3E

-05

1.

43E

-05 Q)

6 oo a

[40

CO O

to 6

,:t• 6

ro 6 0.

21

'Ave

rag

e

Aze

r et

al.

CD

N CD + W CO CD

N 2.08

E+

021

2.08E

+0

2

2.08

E+

02

2.

08E

+02

2.08E

+02

2.08

E+

02

2.

08E

+02

LCD o uoj

CO

in

lf) o IL

(D

in

In o ulj

CD

in

In in 1.11 in in i.c.) o o o a o CD Lb IL di 1.6 di u■ j CO CD CO CD (.0 CO

in in in 6 Lc) in

0.00

8111

0.01

0734

1 0.

0107

341

0.01

0734

1 0.

010734

0.0

10

734

0.01

0734

0.01

073

4

0.0

10

734

0.01

073

4

cr) 6

co 6

N.• 6

CD CO ..7 CO N ...- 6 6 6 6 6 6

Page 74: Condensation heat transfer and pressure drop coefficients ...

Re

eq 1

'cr 0 + Li 0 r--- CO

V' 0 +

U..1 0 -I- CO 3.

10E

+041

2.

81E

+04

1 2.

51E

+04

1 1 2

.21E

+04

1 'cr. 0 + W ,— 03 +••••

Nr 0 + ill ,--- (C) ,-.

NI'

0 + W ,--- CO 1-.

Pry

2.81

E+

00

0 0 + W

CO CV 2.

81E

+001

2.

81E

+00

1 2.

81E

+00

2.

81E

+00

1 0 0 + W

CO CV 2.

81E

+00

1 2.

81E

+00

1

0.03

426

41

0.03

1498

0.02

87

32

CD CD cn LO

0 ci

CV I--

0.02

3200

0.

0204

341 CO

co co I's

0 ci 0.

0149

02J

c) ,r-- CV ,-- 0 c:i

°

cn C CU 0

0 o cO co

0 a cci CD

0 cp cci CD

0 0 o o a o 000000 a ozi cci cc; cc cO CD CD CD (D CD CD

,.

i

1

Deb

SL

C N. I CO 0 r

CV CD CD c•-

CV CD 0 1- 10

62

1062

10

62

1062

1 1062

1062

m=

1/3 col

I I

E

CPL.

h co co +- 13

871

1387

1387

13

87

1 3

87

1 387

1387

1 3

87

CVCV 00 th 1.6 r`• 1*--

I- h:

C•JCV CV CNN CV C\I 0 0 0 0 0 0 0 IL IL Lb 1.6 W I ■

Cs. r-- I's Is- r•••• C-- I's

h: r--: h h: h: h: h: _ .

CO a

I I

Iln=

1/3

a

(.C

orr

ela

tio

n

._

1.4

5E-0

4 1.

45E

-04

1.

45E

-04

1 1.4

5E-0

4

1.4

5E-0

4

1.4

5E-0

4

1.4

5E-0

4

1.4

5E-0

4

1.4

5E-0

4

R22

/R14

2b (

80/2

00%,) 1

1.81

E+

02

1.

81E

+02

1.8

1E

+0

2

1.81

E+

02

1.81

E+

02

1.81

E+

02

1.81

E+

02

1.81

E+

02

1.81

E+

02

C=

0.02

65

C=

5.03

Ake

rs e

t a

l

In Lr) in 1.0 oaa0000 Lb IL di IL co co co co

Lc) In U) U) 5.16

E-0

5

5.16

E-0

5

5.16

E- 0

5

5.16

E-0

5

5.16

E-0

5 co a + W cn o c.i 2.

03E

+03

1

1.97

E+

03

1.91

E+

03

1.84

E+

03

co 0 + W co h t- 1.

68E

+03

1.58

E+0

3 1.

48E

+03

1.

82E

+03

L£600'0

L£600

.0

LC600

.0

L£6

00.0

I's 1"-- I's Is-- N- COCOCOCOCO CD 0) 0) 01 CD 0 0 0 0 0 0 0 0 0 0 d ci ci a czi

'Cr to W

1I A

cow

LO

If R

eeq

< 5E04 1

z 2.37

E+0

21

2.30

E+

021

2.23

E+

02

CV CV CV CV CV 0 0 0 0 0 + + + + + WWWWW CO co co a 0) 1- 0 CD Cf) r"-- . . . CV CV •t- 1- N-

I 1.

67E

+02

N- +

O O O

CD CO r•-• (0 c c a : 0.

5 0.

4 0.

3 0.

2 0.

1

O 0.8 r•-•

c 0.6

0.5

0.4

0.3

0.2 r•

6

Av

erag

e

II .,

Page 75: Condensation heat transfer and pressure drop coefficients ...

1 Re

eq

3.7

0E+

041

D -I- W cr M

o r

3.10

E.+

041

2.81

E+

041

0 -I- W I.0

CNI 2.21

E+

041

4- W

.

000

1-.1 . 1-.

MaDM ---- 111

A- W

.

4- W

.

2.81

E+

001

2.81

E+

00

2.

81E

+0

0

2.81

E+

001

Co Co +4- WW 1- 1- WM NCNI 2.

81E

+00

2.8

1E+

001

2.81

E+

00

Me

q

0.03

426

4

0.03

1498

0.02

8732

CD a O Lc) (..J O O 0.

0232

00

0.02

0434

1 0.

0176

68

0.01

4902

0.01

2136

,.. •

De

ns

1

M cd co M(0

°

000000000

aawaaaaaa cc; aD aD cc;

000000000

0

w 0

1 062

10

62

1

06

2

1 062

1062

1

06

2

106

2

1 062

1/3 m

u E

CP

L

138

7

138

7

1 38

7

1387

N COW MM N- 1-- 1 3

87

1 3

87

1 3

87

1 3

87

I

1

_I ..V

NCNINC.104 00000

ilillii1II.6 N 1-----1 .....

N.:r■ hli■ NI 7.17

E-0

2

7.17

E-0

2

7.17

E-0

2 7.

17E

- 02

n=1

/3

II

Cav

alli

ni a

nd

Zec

ch

in

Q

= U (J)

>

1.4

5E-0

4

1.45

E-0

4_

1.45

E-0

4

1.45

E-0

4

1.4

5E-0

4 1.

45E

-04

1.

45E

-04

1.

45E

-04

1.4

5E-0

4 I i I

R22

/R14

2b

(80/

20%

) I

1.81

E+

02

1.81

E+

02

1.81

E+

02

1.81

E+

02

1.81

E+0

2 CV CV CV CV 0 CD C) CD

WWWW r r r r WWWW -r- e- T- N- C

= 0.

05

C=

5.03

i

1 i

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5 5.

16E

-05

5.16

E-05

5.

16E

-05

5.

16E

-05

2.09

E+

03

2.03

E+

03

M CD + W N o ,- 1.

91E

+03

1.

84E

+03

1.76

E+

03

1.

68E

+03

1.58

E+

03

1.48

E+

03

1 1.

82E

+0

3

g-

L£600.0

L£600.0

L£600

. 0

L£60

0.0

60

0 0

zt. 0 w Lo u A m m

a.)

..4.

.0 w w V

w

Nu

1

2.37

E+

02

1 2.

30E

+02

1

2.23

E+

02

c.i cN

C\INC\INCVN aaaoaa ++++++ WwWwww ammomr-, a ... M M r-- CD

—, ,— —

, l."" co 0 0

O X

9.0

9.0

L.0

9.0

6.0

0.4

' 0.

3 0.

2 0.

1 mco 66

L*0

(D Lo 6 0.

4 0.

3 0.

2 0.

1 A

ver

age

Tabl

e C

.10

Page 76: Condensation heat transfer and pressure drop coefficients ...

ti 1 5

. 282

43

1

0

0) W M N 2.

0658

91

W .-..--

1.55

281

1

MO

W1.0 0 ,7 NM -,-(6 0.

7313

41

0.54

149

1 0.

35227

i

1 0

. 044

18

0.14

889

0.22

159

0.

3191

81

0.45

975

1 0

.684

25

Loco ,r6 —in —0 m

H C w c i

cc; 06 cc;

000000 co0a000

cococowcow cc; cc; cc;

68. 0

0

68.0

0 0 0 co co

tr) C CU 0

NN'N WCLOW 000 10

62

10

62

106

2

1CF■

L

_ 1

38

7 -

138

7 13

87

138

7 13

87

1 13

87

13

871

1387

13

87

0

7.17

E- 0

2 7.

17E

-02

7.17

E-0

21

7.17

E-0

21

7.17

E-0

2 7.

17E

- 02

7.17

E-0

2 7.

17E

-02 N

W N

rRe

L>11

251

27.2

60

67

2

8.66

7751

2

9.4

9085

-1 3 0

.074

54

1 30

. 527

82

30. 8

9794

1 31

.210

861

31.4

8193

1 31

.721

031

cr

CY

1.4

5E-0

4 1.

45E

-04

'1 1.

45E

-04

1.

45E

-04

1.

45E

- 04

1.

45E

-04

1.

45E

-04

1.

45E

-04

1.

45E

-04

Vis

c vap

14

3E-0

5 1.

43E

-05

1.43

E-0

5

1.43

E-0

5

1.4

3E-0

5

1.43

E-0

5

1.43

E-0

5

1.4

3E-0

5

1.4

3E-0

5

N I

GL 1.

81E

+01

3.

63E

+01

5.

44E

+01

7.

26E

+01

9.

07E

+01

1.09

E+0

2 1.

27E

+02

1.4

5E+

02

1.6

3E+0

2

15O

<Re

L>11

LL

N-N

1-.4. rcri c\Jo.., 30

.67

8541

3

1.57

0421

32

.256

49

WO

32. 8

1386

1 33

.283

11

33.6

882

7!

34.0

447C

i

I I

1R22

/R14

2b (

80/2

0%)

1Tra

vis

s e

t al.

Gv 1.63

E40

2 17

45E

+02

f.

27E

+02

1.

09E

+02

9.

07E

+01

7.

26

E+

01

5.

44E

+01

3.

63

E+

01

1.

81E

+01

1

NNNN 0000 ++++ WWIWW .--,-,-,-- comcom

1.81

E+0

2 1.

81E

+02

1.81

E+0

2 1.

81E

+02

1.81

E+0

2 1.

81E

+02

1.8

1E+0

2

If R

eL

< 50

1

63.2

8556

89

. 49930

109.

61380

126.

57

11

21

141.

5108

1

155.

017

33

16

7.43

78

5

178.

9985

91

189.

856

681

to O W m rri

1 5.

16E

-05

5.

16E

-05

5.16

E-0

5 5.

16E

-05

5.16

E-0

5 5.

16E

-05

5.16

E-0

5 5.

16E

-05

l -. CO O CZ a

1....1--r, MMM COMM 000 apa ciOci 0.00

937

0.00

937

0.00

937

0.00

937

0.

0093

7 0.

0093

7 0.

0093

7,

Re

y

m m 00 4-4. WW 1-C.4 00 '— N 3.

04E

+031

4.

05E

+03

mmmmm 0000 + + + + + WWWWW -WrsMal-mmo-- vio5r-.:ccioi

x

C co 466 0.

7 0.

6 0.

5 0.

4 0.

3 0.

2 0.

1

a 2.81

E+0

0

2.8,

1E+

00

2.81

E+0

0.

0 m

W

2.81

E+0

0_

2.81

E+0

0 2.

81E

+00

2.

81E

+00

2.

81E

+00

a) =

Page 77: Condensation heat transfer and pressure drop coefficients ...

I 1

■ 1

I I

245

0.54

24

35.

77

23

72.

49

_c

226

5.4

1

211

9.18

19

33.

14

CS) ("1.1 ,- 0

.,- 140

8.27

1 el al 0 1- cs .,-

C'') 0 + "' , , .

(.0 (D cr).

c z 277.

25

85

27

5.5

87

6

268.

42

80

2

56.3

12

2

239

.76

74

218.

718

6

192.

4867

15

9.33

37

114.

37

88

co 6

co 6 0.

7

co 6

in 6 0

co 6

cs.., 6 6

Ave

rag

e

a)

ca

Page 78: Condensation heat transfer and pressure drop coefficients ...

a) W ,--..-...-- -,-,-

LOInMlnlnkn Intnl0 000000000 -4-1-1-1-1-1-1-++ WWWWWWWWW MMMMMMMMM 000000000

PrL

2.81

E+

001

2.81

E+0

01

2.81

E+0

01

2.81

E+

001

1 2. 8

1E

+00

1 2.

81E

+00

1 2.

81E

+00

1 2.

81E

+00

1 2.

81E

+00

1

O 1.

9624

31

I- co 0 M M r 2.

0102

41

2.02

639

2.04

145 c\Jc\I

r`..CD WM LOP-- 00

2.09

461

1 2.

1269

51

NC\I

= x I

0. 0

4418

1 (O Q) WM r co MV Or

66 0.22

15

9

0.31

918

0.

45

97

5

0.68

425 U')

V'

r r

- 2.30

598]

N

c w 0

000000000 000000000 McOMM co cci cci cci cO cotococoupcococoup

1

_1 tn C W 0

1062

10

62

1062

10

62

1062

10

62

1 062

1 0

62

10

62

I 1

1

CPL

1

1387

13

87

1 387

13

87

1387

13

87

1387

13g7

i 1

_J =

N(N.IN 000

Lli Ili

--- r,:1-

.

7.17

E-0

2

1 7.

17E

-02

7.

17E

-02

7.17

E-0

2 7.

17E

-02

7.

17E

-02

I

7.17

E-0

2

2592

. 21

2262

. 57

M to

m - 1300

. 641

W

989.

041

678.

081

M 6 rl

1.63

E+0

31

7 LT N >

1.4

5E-0

41

1.4

5E-0

4 1.

45E

-04

1 1.

45E

-04

1.

45E

-04

1.

45E

-04

1.

45E

-04

1.

45E

-04

1.

45E

-04

329.

952

0 29

3.28

67

255.

9906

- 0

6 -

(N, 1 82.

8329

I

147.

1570

-m o-

w -r-- 40

. 833

8]

R22

/R14

2b (

80/2

0%)

Vis

cva

p

1.4

3E-0

5 1.

43E

-05

1.

43E

-05

1.

43E

-05

1.4

3E-0

5 1.

43E

-05

1.43

E-0

5 1.

43E

-05

m m dci.cici

N. co

0.51

0.

41 Z

10

C10 6

Ave

rag

e

Az e

r et

al.

0

NCN.INNN

00000

WWWWW

cc

rrrrr 1.81

E+0

2 1 1

.81

E+

02

1.

81E

+02

1.

81E

+02

1.

81E

+02

1.

81E

+02

1.

81E

+0

2

1.81

E+

02

ct

MLOLOMMLOLOInin 000000000 lillii thill WWWWWWWWW -.----..----.-- 666666666

0.00

811

E

r...1.--r--r- mmmm mmmm 0000 0. 000

0666 0.0

09

37

0.

00

93

7

0.00

937

0.00

937

0.00

937

0.0

09

37

0.

00937

-6 x

mm 66

1:0

3.0

£.0

17'0

9'0

L*0

Ta

ble

C.1

2

Page 79: Condensation heat transfer and pressure drop coefficients ...

Aze

r e

t.a

l

..I.!!

Ili

"tr CNI

,-

(0 r— .- T

CO cr.) co T

'4' co co N

Nt ..cr CO CO

0 c•-) T u )

CN1 ,— (0 In

C 's. I r-- • T CO

0) .,— • CO CO

Ul cs) • h- CD

W/m

2K

0 CV r- T

0 0 a T 21

101

0 CO cv N

. 25

10 0

0) r-- C\I

0 (0 0) C\J

0 CO T CO 32

90

0 a) Nr M

Tra

vis

s

a w

22.

78]

01 In

NI co 40

.58

48.

49

6

5.4

2

77.4

4

83. 3

3

01 (0 ci a)

1- T c‘i 0-)

C) (0 r-: O

Exp

erim

enta

l and

The

oric

al B

eat

Tra

nsfe

r C

oeff

icie

nts

of Pu

re R

22

W/m

2 K (0

co O N 22

88

2536

1 2

71

0 a)

a) a) N 32

721

3476

1 37

261

3873

4

108

Zec

ch

in

c...i...„

Ili

In CD ci e--

c., 1- -4- -,-

c\I et

, ‘-.

o 1- , N 44

.51 C0

0 .,- CO

CO M CD I---- 73

.49

(C) 0

0 CO

60

.06

. - C =

CZ > co 0

N E --

0 CO CO T

0 V" 0) T 20

10

221

0

262

0 0 N- 01 N 32

30

CD GI CO CO

0 M CO CO

0 1.0 01 CO

Ake

rs e

t.a

l

2 zi.: w

vr C \ I

T 1-

N.I 1-

• Nr TTTT

C`.1 ..zr

r V'1-

0 "

C \ I

T

.0-

14.4

3

12.8

7

N 1- T CO.

.cl 1- T T

CO T ,--- 1....

‘,..... ••••

"E

0 0 CO 1.-.

0 Nr 0 T 201

0 20

10

0 (NJ 0 (NJ

0 V-T C \ I 21

40

2230

2

25

0

231

0

Exp

eri

men

tal

W/m

2K

0) (O T

0 N. T

0 00 T 18

25

e- 00 T 18

44

01 CO T 19

54]

2016

2

07

8

Mas

s F

lux

kg

/m2s

Is

00 .--

T N- CV

T NI" Cg

Nr CO N

T CD CO 32

7

In In M

C\I cr Or) 1- Ce) .cr

N- NI' et

Ta

ble

C.1

3

Page 80: Condensation heat transfer and pressure drop coefficients ...

Aze

r e

t.al

O

48.6

6

l- r... C) I- 10

1.79

1

CO (0 r- ,r- .-- 13

6.04

j 11

8.44

1 Cn CT) ci N- .,-

a r.• ri () r

Nr V-- r.-: co ',..

W/r

n2K

a Cn CO <-'

a CT) CT CNI

0 (0 (NI (N

C) 'Cr 'Cr CN 26

20

2

820

a CT) CT) (N

a CT)

Cr")

1 33

20

Exp

erim

enta

l and

The

oric

al H

eat

Tra

nsfe

r C

oeff

icie

nts

of

R22

/R14

21)

(60/

40%

)

Tra

vis

s

1.0 1-- 00 Cs 11

4.62

1 13

9.46

1 15

7.98

179.

46

158.

02

184.

85

174.

80

178.

36

W/m

2K

2193

1 24

96

(N co 0 C \ I 2

89

2

310

2 33

31

35

35

3751

r-a) CO co

Zec

ch

in

52.7

2 80

.57

106.

25

127.

48

15

1.35

13

7.80

co co (xi to ,- 15

7.1

4

158.

57

= RI > (4 0 W

/m2K

O CO CO r

a CD 1.-

PNI 231

0

255

0

a 01 N- CV

0 C.- 0 C)

CD 1.- CV j.-.1 35

10

3620

Ake

rs e

t.al

52.7

21

C) 0 14-) co 72

.32

74.8

41

00 (N ai r- 57

.24

1

C • I 0 c; r-

r- 0) cci La

a) CV ai in

1880

1

O CNJ o) .V..

o 01 01 r

a (.0 0) 't ..

a 0) 0) .N.- 2

030

1

a 1- 1-- C • I

0 N e- CV 22

30

Exp

erim

enta

l

W/m

2K I

e- Cr) C■I

cr) CO r

a CV .,...

1- C \ I ',-.

0 ■-• e-

e- 0) CV

e-- NI- C \ I

(.0 CO Cr) 14

00

1 M

ass

Flu

x 1

NC

..,Y

CO 0 C \I

CO V' C\I

0 r-- CV 2

9 81

C7) cv Cr)

Cr) co CO

C■I a) VI 42

0

442

Ta

ble

C.1

4

Page 81: Condensation heat transfer and pressure drop coefficients ...

Aze

r e

t.al

c:

in O CO cr

(0 .4" iri 1.0

CO (NI

C.0 is i

CO In 6 I's 84

.15]

a) t() ‘- 01

(.0 tt) O.) CA

(0 CO N. 0)

CO CO CO 0 A-

CO 0 LO 0

W/m

2K 1

0 cc) CO .,-

0 in CO 1-

0 CO 00 1-

0 0 CNI N

2

370

25

50

0 0) CO N 28

401

0 0) 0) N 32

201

,,..-..

© N ....... = Oa ...mg/

rml ("4 Tr

,....

(̂ 1 el = L.•. O CA k■b o■

r) ... C...) E

C.) 0

Co) Um C.) •••• V) e• C.

4..■

CT:

=

C. U . -

o.) ,... ......

= CT:

74 -*, ,-, cr)

ow 1.• CI.) C.■

W

Tra

vis

s

1 7

8.5

6

r- -cr (0 co

e 9

8.33

109.

58

co co 0) "--

128.

78

13

1.46

1 13

5.9

3

143.

80

132.

04

W1m

2K

(1) (0 CD r

0) .,.. C \ I N

CO N. CO

26

26

2

830

N

\ I 30

45

3215

3395

0) 1...... 1.0 CO

',. C.1 CO CO

Ze

cch

in

c..40.

C3 CO LO (0 58

. 82

0 N-- r LO

CT) LO -e- N- 94

.25

10

5.86

10

5.18

11

4.7

3

128.

20

114.

42

Ca

vall

ini

lsiE 182

0

0 01 CO .1- 19

30

0 LO i74 2

50

0

274

0 2

850

a 0) 0) C.") 3

350

3

540

Ake

rs e

t.al

65.

30

N CO 00 tr)

0 .,- .c.--

.

CO

CO CO . to c.r)

co CS) . a) NI-

CO C \ I . r- ..cr

co '0' . uo NI-

co '0' . CV NI-

0) CO . 1-- -cr. 32

.651

,.... -....

NE

o N co r

o a) co r

o co a) r

co co a) r

o co 0) r

o co 0) ,--

2

020

205

0_1

o oo o N

o a) ,- N

E -..

]Exp

eri

men

ts ll

W/m

2K

1

)-- 0 N-

0 0) e- T-

CO 01 1- ,-- 12

531

128A

.1- CO CO N-

0) 00 CO W-

01 CO NI• ,.

CO CO 'I' .V.

.1- 10 CO N-.

Ma

ss F

lux

0

NE al

..%

CO r

CO .l . 0.1

11") CO C \I

a) (.0 0.1

a) a) N

3

321

N. I.() CO 38

71

CD N.- 'et 4

52

Ta

ble

C.1

5

Page 82: Condensation heat transfer and pressure drop coefficients ...

924.6 5

29.

3651

92

7.5 63

5.62

31

935.2 74

9.14

11

.-- -a: -a- co 95

6.8 93

1.37

11

944.1 89

3.98

11

(0 ci go 0) 98

4.6

101

9.53

41

-o o 0 ---

(N 0

1HT

C,

N 0 + W N 0 "zi 4.

44E

+02

1 NN CO -I- ww

1,.(0 MO

4 1.r;

+

5.98

E+

021

6.32

E+

021

+

(0

NNNN 0000

wwww MOMM 1,-V- 1,...N

N-

+++

N:. cd

sJl

V I- F—

puo3d

=

CV (N 0- 0 + + ww NV NV- NN 2.

70E

+02

CV 0 + W M CO N 3.

20E

+02

3.47

E+

02

3.

72E

+021

CV 0 + WW N O T14

(V 0 +

ON

4.47

E+0

21

Con

dens

er

Inle

t R

efr

iger

ant

Tem

p (°

C)

Con

den

ser

Inle

t Wa

ter

Tem

p (

°C)

Con

den

ser

Ou

tlet W

ate

r T

emp

(°C

)

Con

den

ser I

nle

t Pre

ssur

e (

°C)

( U

sin

g D

ittu

s&

Boe

lter,

Sie

de

r &

Ta

te E

qua

tion

s )

75.6

41

CO 0 0) LI)

. .

00 •,- 1,..M 82

.87

84

.20

(0 1"-• 0 r`-- 0 C') CD000) 1"-.1',.1,.. 79

.42

CO Co 6 I,-

cf LC) 0 0 + WW 1-M W O Mi- 1.

22E

+05

1.32

E+

05

1.49

E+

05

II) lf) LI) ll) 0 .0 0 0 ++++ WWWW WO W W WMMO ,-.,-T-N

1 2.

21E

+05

Com

pre

sso

r P

ower

(w

)

32.2

21

O "7 (0 - ..i w 03

MOM,-M1,..MM

MMM.7-cr ,r1.0

N- 'Tf lr) CO ,:t • • v- 'I' CO CO 0 52

.08

1

..- ,L- 0 0

LU LU WM MM 66

1

1.01

E+

00

1.02

E+

00 0 0 0 0 0 0

o o o o o o + + + + + + LLI Ell LLI UJ LU LLI MN",71'...M.,- 00000,-

MOOMMM wit--:66c\i V-0-1•WO 52

.87

48.6

7 50

.92

53.7

2 55

.18

56.8

0

>

2.91

E+

00

3.20

E+

00,

3.52

E+0

0

3.70

E+0

0

4.02

E+

00

4.7

3E+

00

4.86

E+

00

4.97

E+

00

5.02

E+

00

5.17

E+0

0

Ca

lcu

lati

on of E

xper

imen

tal H

eat

1

To

'Ll- LT 'S li,

r-..1-1.7)N1,-1'..NNMO MWOMMWMr,- ,-M trir-:6Oc\iccicio-;,riaj

LO -a- 111 If) LC) LC) •

i2 =

1.47

E-0

2

1.48

E- 0

2

1.50

E- 0

2

1.51

E-0

2

1.52

E-0

2

1.48

E-0

2

1.48

E-0

2

I .L9

E-0

2

0 LC) Ln

0.00

811

1

0.0

0953

1

CD CV Q

0

0.00

473

1

)erh

eat R

egio

n

105.

30

110.

44

113.

65

11

4.82

11

5.53

104.

84

1 0

5.2

2

104.

87

10

3.66

10

2.51

0 to

U) LI) U) (f) L/) U) LI) LI) 9 0 999999 wthwwwwww LC) LO CO (D (0 LID CO (D

1.63

E-0

5

1.64

E-0

5

1 op

o deq

E Leng

th o

f S

ur

M

M.,-

00

dd

0.03

28

1

0.03304

0.03

31

1

MO

0.0

3341

0.03

35

6

0.03

35

6

0.03

379

0.03

37

9

0.03

387

Den

srb I

64. 1

2

65.8

7

68. 5

4

71.1

91

74. 7

61

69.0

0

73.1

8

78.9

3 82

.35

86

.35

Insi

de in

ner

dia

me

ter

(m)

Ou

tsid

e in

ner

dia

me

ter

(m)

Insi

de o

ute

r di

ame

ter

(m)

Eq

uiva

len t

dia

me

ter

(m)

Mis

s F

low

Ref

rig

(kg

/s)

Mas

s F

low

Wa

ter (

kg/s

)

mmw.-- woovoco MONO 0.-.-.- 0000 dcdd 0.

0155

4 0.

0168

6 0.

0183

5 0.

0202

4 0.

0213

6 0.

023

06

5.16

E-0

51

5.16

E-0

5'

5.16

E-0

5 5.

16E

-05

5.

16E

-05

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

(.4 (n Cr in CD I, CO CO 0 N-

(V el .(1. 141 (I3 N. CO 0) 0 N-•

Tabl

e C

.16

Page 83: Condensation heat transfer and pressure drop coefficients ...

.c, 0 In

-a 0 di ,.. ai 6.

0 0E

-041

5.

73E

- 041

5.

54E

-041

5.

37E

-041

-Kr

1"-- 6

thww

-cr 9

0' cri

-4- 9

N cri 5.

15E

-04

j

-cr 9 w 0 U) 0.

D'

CO 355.

061

0 d

CO 431.

341

463.

471 .,-.

,-- . I—

1.0

,-- co 0

LC) 565.

351

613.

271

638

.191

67

4.78

1

I D

ens" I

0 0 O .--

0 0 o ..-

000

0 0 o .--

10006

0 0 o ..-

0 0 o l.-

o 0 o ,..

l000

L Iw

o I.

'LM

TD

-or CO

N 22.5

0

---. .,-- 6 N

0)

N

N-ONCON'zt N (C) C) 6 cri oi N <- e-

cr) cci a—

N oj ...—

1 I-

43.

231

45

. 10

47.6

51

N N V() 0) ,-- .0 L0

NT (D N- 0

U) CC 0') '0'

U) LO N 1.0

CO 0 0' LO 5

5.44

1

HTCW

CO 0 + UJ

CO csi

1

2.74

E+

031 CO

0 +

1.11 (3) N- (-,i

CO 0 +

1.11 ID 0) csi 3.

01E

+03

2.

85E

+0

3 2.

88E

+03

CO 0 + IL (0 0 c,)

CO 0 + LU c0 0 ei

CO 0 + CU 0 ,-- ri

ri

42.7

9

co 0) ci "0

I-

46.4

6 47

.98

4 4

.46

1

-1- NI' aft -I- 48

.941

(S) L0 (')(Cl

o ,- in tn

.

= Z

19.4

411

20.4

171

20

.757

21.7

09

22.0

81

21.0

37

21.

221

22.4

02

1 22

.516

22

.66

4 LI' 2

574

001

2575

001

257

60

0

257

700

25

770

0

257

600

2

5770

0]

257

70

0

257

700

2

5760

0

.

_

3 . a, CC.

cr) 0 +

1.1.1 01 CO CV 2.

93E

+03

0 co

+ LU 0) 0 0-i

CO 0 + CU 0 N ci 3.

33E

+03

3.14

E+03

3.27

E+0

3

0 (0

+ 111 CO .0' oi 3.

51E

+03

CO 0 + LIJ 0 CO ri

h2 313

400

1 3

172

00

31

9200

1 31

9600

31

9400

31

1800

3110

00

30

9300

30

740

0

3055

00

a-. 0

o o o o

++

co (0 0 C0 ,:i CO

o o +

r--- 1--- CO 3.

61E

+O

CI

3.49

E+

001

3.74

E+

00

o 0 + LU r-- (11 CO 3.42

E+

00

3 33

E+

00

3.

25E

+00

3 <

8.83

3E

-051

8.

833

E-0

5 8.

833

E-0

5

8.83

3E

-05

8.83

3E

-05 LO

LIJ C'') cn c0 c0 8.

833

E-0

5 8.

833

E-0

5

8.83

3E

-05

8.

833

E-0

5 -.

CPW

0 0 CO 03 e-- •E-- V' *I'

CO 0 CO ,-- 0- 418

01

41

82

4180

41

801

4182

1

CO 1- -cr 41

83

3 H

0 (0 CO N- CO 0 1-- N CO lf) cii cri cii ai ai NNNNN 25

.55

1

OD CO 03 0 CV 0 CO (0 csi NN-CO NNNN

3 >

3.51 E

-01

3.71

E-0

1 1- 0 . iii ct N-. CO 3.

75E

-01

1

.- .-- 9 0 w Lii CO 0 t■ CO CO CO 3.

80E

-01

3.

83E

-01

1

3.83

E-0

11

1 3

.83

E-0

11

I-

45.2

7

47.4

2

50.3

6

52.3

9

54.6

5 50

.83

53.

26

56.1

6

57.7

0

59.2

4

7

1 =

CO CO (C) CO d d 0.

635

0.64

21

0.64

4

0.64

0 0.

643

1

"0" CO d 0.

647

0.64

8

N-• NI CI et ID CO is CO C0 0 .1-•

1- 00 CO .0 U) CO 1".. CO CT) 0 r

Tabl

e C

.16

Page 84: Condensation heat transfer and pressure drop coefficients ...

0 .

U cn 5

-4-

9 w F) 4

I 5.

1 3E

-041

5.

27E

-041

V' 9 U.1

o co

4

Cr cr 9 9 (.11 . LL1

— 4 6

I 5.27

E-04

1

r0-- In

4.

17E

-041

2 -. 52

.959

1 55

.72

71

58.9

411 r---

T- 1.1")

ci co

)--

1-- CO CO

,- co

0, in cr r•-: co 59

.095

1 60

.853

61

.764

1

4

co c`i ■

. + W N.. 0) N 6 5.

574

E+

01

3 + LLI (r) 01 CO cri

3 + L.1.1 V' Ln 0 uzi

0 + LL1 ..- a) ,- O 5

748

E+0

11

5.91

2E+

01

0

+ LU CO CO 0 co;

0 + 1.11 (3") r•-• .(- O

Q

0.

068

3171

0.

072

3871

0.

078

5511

0.08

0646

0.08

2082

1 0.

0862

86

0 I,- l'n N- CO 0 b 0.

0878

571

0.08

9024

1 -

0.08

8935

1

1 :- •

i

(,

0.

058

141 o

co -•

CO 0 0

tn co (D CO 0 0

cn co CO (D 0 0

tn co 0) CO 0 0 0

0734

31

co C') '1(' N--. 0 o 0.

074

771

co N- 111 N- 0 ci

co CO

0 d

CO N-

2.28

3

2.41

9 o N CO CV

co (3) CO N

cn 'V' N- N

'1- CO CO N

0 N 0) C \I

CO CO Cr) C \i 2.

975

1

N N- 0) N

a. 3 .

g 0. 0

Q

1 52

9.84

0 0.

4751

N- 'Kt CO 0

N C) (.4

6 C') CO

0) CO 0 ci

.■- Co T.

6 "V' I's

1 82

1.146 0.

2631

1E

0'0

96£'1£6 1

CO C') 0 ci

0) <- 0 4 01 CO

el (3) 0 d

N co N N: 1.0 0)

I 101

9.486

:0.0

481 CO

'Cr 0 0

CA C \ I Cn CO CO 0 %-

,cl- CO 0 d

N CO 0 cri Ns 0 ..-

.c,

O. 0

o o o COCOCO .- •-• .,-, '1' Nr 'Cr

1 41

801

o CO 1.-- V'

o CO T .7

1 _

4180

1 o 0 COCO N.... T-. '47 V

o 03

1-. V

dn

s.0

1

co

a) co co

Page 85: Condensation heat transfer and pressure drop coefficients ...

I -.0

136

3 1

80.8

531

m I,- M 1

39

0 2

24.

2501

14

05

234.

9581

14

26 24

7.22

61

1426 10

0.48

51

144

6 1

15.4

481

1470 14

9.98

41

148

8 14

9.03

81

1507

1

63.

9981

1HT

C, +

NNN 000

WWW WW0 r.-NM 466

+ +

1 ..,

6.3

8E

+021

NN 00 ++ WW 0 ,7 T-W i--:

• •

8.25

E+

021

O + W .- 0 a) 9.

48E

+021

0 + W N

I- 3

H H

c

Q-

qd„

4.92

E+01

,-. 0 + W 0 0 0 6.

25E

+01

.--- 00 ++ WW MW Mt-- Wr■ 8.

28E

+01

1 1-NNN 0000 ++++ WWWW 00N0 000 ,- MN-v-v- ....

Con

den

ser

Inle

t R

efri

ger

ant

Tem

p (

°C)

Con

dens

er O

utle

t R

efri

ger

ant T

emp

(°C

)

Con

dens

er In

let W

ate

r T

emp (

°C)

'Con

den

ser

Ou

tlet

Wa

ter

Te

mp

(°C

)

Con

dens

er I

nle

t P

ress

ure (

°C)

Leng

th o

f S

ubc

oo

led

Reg

ion

( U

sin

g D

ittu

s &

Bo

elte

r an

d S

ied

er

& T

ate

Eq

uati

ons

)

-1-01

5b

00 .-- W aid m4 42

.881

44

.781

M N r-- 4 4

6.58

1 48

.75

51.2

0

52.8

4

54.4

4

0 '7 ,7 00. 4.4. ww Nr.... 0

1.3

7E+

04

1.53

E+

04

1.

81E

+04

1 1

.95

E+

04

2.18

E+04

2.48

E+

04

2.68

E+

04

2.95

E+

04

-ra

nsf

er C

oe

ffic

ien

t

[ Com

pre

sso

r P

ow

er

(w)

(Na) NO N4 mm 36

.401

1

. 38.

631 + - Mrs.COM

r-- , 70(0.7

.....

4444m

44.4

9 4

6.57

48

.68

50.4

9 52

.08

2.59

E+

00

2.59

E+

00

2.58

E+0

01

2.58

E+

00

2.

58E

+0

0

2.58

E+00

2.58

E+

00

2.58

E+0

0

2.58

E+0

0 2.

59E

+00

Tr4

1-911 7

L6 St. 49

.351

Ni'- mm O0 0 52

.87

48.6

7

50.9

2 53

.72

55.1

8 56

.80

>

a-D:c71 WWW

r.-- W 0

W .r.- W

... 1-1-N 2.

38E

-01

2.

74E

-01

2.

97E

-01

1 3.

27E

-01

3.

64E

-01

3.88

E-0

1

4.2

2E-0

1

Ca

lcu

lati

on o

f E

xper

imen

tal

He

at 1

r-- ,--ONN-r--NNWO mommmwmr---m vin:aiciNMOMMM -4.44mo4ommo

NNN 999 www 4cam car-co r-:[--:I■ 7.

58E

-02

7.

46E

-02

1 7.

49E

-02

7.

39E

-02

7.28

E-0

2

7.2

1 E-0

21

7.14

E-0

21

R22

pur

e

0.0

0 81

11

M 0 m 0 0 O

W N v — 0 O

M r.-. .4- 0 0 O

105.

30

110.

44

11

3.65

11

4.8

2

115.

53

104.

84

10

5.2

2

104.

87

103.

66

102.

51

Vis

or, 1

1.49

E-0

4 1.

46E

-04

1

.43E

-04

1.39

E-0

41

1.3

5E-0

4

1.36

E-0

41

1.32

E-0

4

1

.28E

-04

1.25

E-0

4

1.2

3E-0

4

°I) deg

3 E2

3

0.03

099

0.

03

28

1

0.03304

0.03311

0.0

33

41

0.

03356

I 0.

033

56

0.

0 3379

0.0

337

9

0.0 3

387

Den

s,b

1135

112

7

111

8

1109

1 0

97

1098

10

88

10

76

10

67

105

9

(Ins

ide

inne

r di

am

eter

(m

)

(Ou

tsid

e in

ner

dia

met

er (

m)

(Ins

ide

oute

r d

iam

ete

r (m

)

(Eq

uiva

lent di

am

ete

r (m

)

Mas

s F

low

Re

frig

(kg

/s)

Mas

s F

low

Wa

ter

(kg

/s)

0.00

965

0.01

089

1 0.

0124

6 0.

0136

1 0.

0155

4 0.

0168

6 0.

0183

5 0.

0202

4 0.

0213

6 0.

023

06,

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5'

5.16

E-0

5

04mTs. .nmi, mmo v.

.- 01 Co) er in co rsco 0) 0 a—

(a

Page 86: Condensation heat transfer and pressure drop coefficients ...

1 U (.1

5

-I. 0 W V' 0 cc) 8.

01E

-041

,:r

, w N- CD r-

0 . w 1.-- 01 r- 7.

92E

-041

8

82E

-041

"rr 9 w CD (0 cr:i 8.

47E

-04

8.

31E

-041

8

21E

-041

.0

408.

211

448.

311

494.

291

527.

501

1 58

0.43

1 co (0 a) 0 CO 64

5.74

69

4.25

1 72

3.25

76

3.32

1

3 In U

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 F-

_1 2

.4- 03 N:

— r- cri 11

. 92 r--

LO ci ‘-- 16

.40

N CD ci (\I

0 0 (V N

CO LO (' C \I 24

.38

25

.52

I-

oN. 6 C \ I

cr) CO cri N

0 b CO

30.5

21

'0' ci CO

‘- 0) a) N

() N

CD r--: N

ct a) C \ I

ap a) N

3 (-) /-

o1"--

2.47

E+0

31

2.58

E+

031

o + al 0 CO C \ I

o + LLI ,.- CO N 2.

63E

+0

31

2.52

E+0

31

o +

1.11 ct-

1.0 C\I

o .+ LLI 0) Lf) C\I

1 2.

61E

+03

1 I • 2

.63

E+0

31

I-

0 'cl' O () 30

.631

CO 1,- CO CO 6_. co co 3

1.331

26.2

71

2

7.11

2

8.14

vt CO a) (N, 29

.461

3 = Z•

1.89

E+0

1 OBE + + U.1 LLJ CO C) rm cr)

+ LC! o o c.i 2.

01E

+011

E05 + + + LLI UJ LL1 tr) co o.) 0) c) a) ,- ,-- ,- 2.

01E

+01

1 2.

02E+

01

2574

001

257

5001

2

5760

0

257

700

25

770

0

257

600

2

577

001

257

700

257

7001

25

7600

1

3 U

co O + ui CO 0 CV

co o + LII 0) ,- 6

' 2

.22E

+031

2.

24E

+03

1 2.

26E

+03

1 2.

04E

+03

2.0

8E+0

3 2.

14E

+03

2.

1 8E

+0

3

2 2

1E+0

3

3134

00

31

7200

31

920

0

3196

00

o o o o ,C CO 0) n- ,-- e- CO 01

o o 0 I-- 1-- CO 30

930(

30

7400

5055

00

ta.

+ L1J -a 'cl- LU 5.

41E+

001 o

o +

1.11 ol CO U) 5.

35E

+00

o o +

LLI LO C) tri

o o o o o o + + + ILI LLI LLI N 0 CO 0 0) N a) iri Lri

o o +

LLJ "4' (0 (ri 5.

57E

+00

3 .rt

in LU 00

CO co CO

co co co ad co

LU

LLI

8.83

3E

-05

' 8.

833

E-0

5 Lc) LO 00 1.11 Llj CO co co

CO

co co ca co 8.

833

E-0

51

1 8.

833E

-05

8.83

3E

-051

LU o Li j

can co cci

3 a_ 0

0) r- zt

0) r- 'V'

0) r- -- 4

17

9

4179

4179

4

179

417

9

417

9 41

79

I-

o co 0 N- cri oi N N 29

.26

29

.67

1

29.5

6

25.5

5 CD N a) N 27

.08

1 0)

03

r--: N

0 co cci N

> ' 3

.51

E-0

11

3.71

E-01

1

'T) LL1 ..zr I-- cO 3.

75E

-01

3.78

E-0

1

3.80

E-0

1

3.80

E-0

1

3.83

E-0

1

3.83

E-0

1

3.83

E-01

7 1-

45.

27

47.4

2 5

0

36

52.3

9 tf) Ol o co 4 c lf) 111

CD N v Ill

(D v"

a lt)

0 N

r- : LO

'7 N O Ill

' Y

CO CO CO

D D O cicidciddcicioci

CO CO N CO ,71- Co

7

D

D 3 O D I 3

1- (s1 CO •Zr 10 CO 1... CO CD 0 .t

r (V C) v. ul CO I, CO 01 0 x•••

N

0

co co

Page 87: Condensation heat transfer and pressure drop coefficients ...

o 7a'

V

O 7.82

E-0

41

7.84

E-0

41

7.83

E-0

41

"z1- 9 LL CO N. ter`

'V' 0 LLI CO I".-

8.59

E-0

41

8.35

E-0

4 '1"

9 W CO 0 CCi

'Cr 0 Ill ,.. 0)

N:

'Cr 9 W l'N. N- N:

Tw

atlo

I

31.1

82,

1

N- o

C') 311

34|

M co co

31

.637

1 27

.322

1

29.8

641

,-- :1- a) 0 cr)

1 31

.861

1

3 + w W CO ,-

ei

3 + w cs) r-- o

ci 3.11

46E

+01

1 3.

1578

E+

011

3 + w (0 to co

ei 2.73

47E

+01

2.

850

2E+0

1

,_

2.98

97E

+01

1

+ w (0 r- a) o C 3.

1899

E+

011

0.0

5652

71

co a-

-4- o O 0.

038

0641

0.

0328

121

0.00

803

5 0.

0081

24

,-- co CO o o ci

, 0.

0084

541 ,-

(NI '4' CO o o ci

_

ICpw

b I L I Al I

.

417

9 0 04

810

4179

Ella

RE

M &

0323

8|

4179

4 1

79111

,N

OM

0.02

2101

0.

0068

4

CO N- 0 0 ci

AV

a) 1".-

cr•r—

0") I-l'-- 0 0 6

4

0

cn r•-

Cr1.-- 4179

[BM

W

V00

7171

2 a

11

.

g

er

247.2

4 0.

011

Page 88: Condensation heat transfer and pressure drop coefficients ...

258

2.65

t,„„

.:

a

0.09

571 1-

A-. 0 N—

ci

r-- CN 0 1---

ci 0.1 0

541

0.1

100

6.

1 217

r--- CD C \ I 1—

ci

4 0) N- 1—

6

CD 01 1- 1—

c;

.-- 0') T-

T--

ci

= 3

r--- (0

(0 co 3

7.7

1!

N r

ai co 4

0.30

1

1 CO VI

A- -4-

( r . r--- co 3

8.8

7

41.

03

42.

35

CD C) -4-

1007

00

10

28

001

1054

09] o

O CD N- 0 N- 11

03

00

10

4400

107

500

111

5001

- 1

1360

0

o CD 0 CO

.0 C. 't

C.

0

126

81

1285

13

08

13

291

13

57

1300

1

329

1369

1 1 3

92

142

11

R22

(p

ure)

!

257

400

257

500

25

760

0

257

700

2577

00

257

600

2

5770

0

257

70

0

5770

0

0 CD CO

In CNI

N1--

= ...

C..)

1424

1 CO co et

(0 I.0 erj- r 14

73

LO al er c-

CD LO '7 r 147

3

LC) C to) <-- 15

23

CO "Cr LO

Tw

o-P

has

e R

egio

n eD

N- V)

1"-- Ch

V) 4.03

-cr r

N1: 4.3

2

CO I's

4

'At r--

4

0) (13

4 4.67

CO (0

4

0. 0

0.

A- A- .,-.

CN CO ,

0) LO r

'- cro.) r

CO N- V..1

C) er r

4 CO r

1 12

33

A-- (0 C\I

4$)

0) CV

Lsu

b

CY) CO CO

c-

CLI 4 LC) 1---

tN 1"-- r--- 0) NO l-. 1..-. 0.

868 0)

(0 C \ I

ci 0.27

21

C--- 0 CO

c) 0.28

31

A- CO CN

ci

Cpwb

C/1 N- A- 4

0) r--- A- -4- 4

1791

41

791

417

91

417

91

417

91

0) 1"-- A-- -4-

1 41

79

4179

, d

nsi _1 _I L

„p

2.2

831 co

v- .1-

C•1 2.62

5 2.

695

2.74

31

2.88

4 2.

920

1

co co 0)

f\i

Lo 1--- 0)

("\i 2.9

721

FN NN LI

tCL

I-

45.

971

47.

51

49.

35

50.

92

52.8

7 4

8.67

50

.92

1 53

.72

1

1 55

.18

56.8

0,

Con

den

ser T

otal L

eng

th (

m)

Sup

erhe

at Le

ngth

Su

bco

o le

d Le

ngth

Tw

o-P

has

e Le

ngth

J

() a) N-

co a) N-

co (4) a) a) N- I's:

co a) N-

(4) a) N-

co c7) N-

co a) N-

co a) N- 7.

93

F- 1 35

.79

36.7

1 ,-- a) h: co

.,- a) CO 01

cc CO

0) co 35

.36 r--

rs

(.6 co 38.5

4

39.6

5 40

.55,

1-• C4 C.) •cl• *

Lf) CO is CO CD 0 ql.

a— Cs1 col el• In to f■ CO a) 0

Page 89: Condensation heat transfer and pressure drop coefficients ...

S

O

1014 4

30.5

821

1022 52

9.4

301

co O 10

03 61

0.6

951

m o co

1 08

4 60

3.25

41

109

9 60

6.93

41

104

4 6 0

0.24

21

m o

HT

Cr

N 0 + w ,_ co ,i 5.

29E

+02

1 NN 00 + ww ,_C,, r...N U)

+

(0 6.72

E+

021

7.28

E+

021

NN oo + ww r-...m 1---0 r--:06

+

8.55

E+

021

V i- I-

3 i-

,,,

1-

2 0 0

o_ cp,, qd

Nu

2.57

E+

021

2.92

E+

02.

3.14

E+02

3.30

E+

02

3.

73E

+021

NN oo w w No om 4 ,4: 4.

48E

+02

1 N o w ..r r---- -4;

Con

den

ser I

nle

t Re

frig

eran

t Tem

p (

°C)

Con

den

ser

Ou

tlet R

efr

iger

ant

Tem

p (°

C)

Con

den

ser

Inle

t Wa

ter

Tem

p (

°C)

Con

dens

er O

utle

t Wa

ter

Tem

p (

°C)

Con

den

ser I

nle

t Pre

ssur

e (

°C)

; U

sing

Ditt

us

& B

oe

lter,

Sie

de

r &

Ta

te E

qua

tio

ns

)

O -4-1-...

m

cn .

el m 84

.62

N o M a0 82

.69

83

.50

83.2

0

82. 5

9

o r---- c,i m

al C4

° m m U) U) U) m U) 0000000 + + + + + + + wwwwwww MNMWWNt..- ,--M ,TWNMO .

N 2.22

E+

05

2.

33E

+05

Tra

nsfe

r C

oeff

icie

nt

I

Com

pre

ssor

Pow

er

(w)

T,5

WWWMW 1,- MNr--,-- oivicrici Nmmm-1- 37

.25

NMW MM,- OON .Kr ,TI-Nr

il

1.04

E+0

0

1.0

5E+

00

1.

05E

+00

1.01

E+

00

1.11

E+0

0

1.13

E-0

0 00

1.

15E

+0

0

00 00 ++ ww mr- 0 '- ,-,-.

Tr4

54

.21

56

.00

56

.81

8.01

60

.08

61.6

0 62

.58

62.3

4 63

.07

3.42

E+

001

3.89

E+

00'

4.

20E

+001

4.

75E

+00

1 4.

60E

+00

4.87

E+

00

5.11

E+

00

5.48

E+

00

5.65

E+

00

Ca

lcu

lati

on of E

xper

imen

tal H

eat

1 R

22/R

142b (

60/4

0%)

1

61.6

2 6

3.33

64

. 10

65:2

4 67

.21

68.6

4

69.5

7 6

9.3

4

70.0

4

1.46

E-0

2

1.47

E-0

2

1.48

E-0

2 1.

53E

-02

1.

46E

-02

1.47

E-0

2

1.47

E-0

2

1.46

E-0

2

1.46

E-0

2

M ,--W

0 0 0 0 o 6 0.

014

261

M zr 0 o

)erh

eat

Reg

ion(

101.

18

104.

12

105.

13

104.

80

9

8.17

98

.36

96.8

3

95. 8

4

95.3

6

e c.) cn -

MW

wth m- ,:1-0 ,---- 1.

55E

-05

1.52

E-0

5

1.53

E-0

5

1.54

E-0

5

1.53

E-0

5

1.54

E-0

5 Op

-ci E 2 Leng

th o

f S

ur

0.03

4169

0.03

424

5

0.03

5152

0.

034

774

0.03

5530

0.

0359

83

0.0

3568

1 0.

0360

59

0.03

5756

1Den

srb

60.8

4 6

3.2

2 64

.38

62.8

6 71

.65

1 74

.52

, 76

.90

76.6

6

78.3

1

Insi

de in

ner

dia

me

ter

(m)

Ou

tsid

e in

ner

dia

met

er

(m)

Insi

de o

uter

dia

met

er

(m)

Eq

uiva

len

t dia

me

ter

(m)

Ma

ss F

low

Re

frig

(kg

/s)

Mas

s F

low

Wa

ter (

kg/s

)

0.01

073

4 0.

012

700

0.

0139

40

0.01

5391

0.01

7009

0.01

872

5

0.02

0259

0.02

1696

0.02

283

0

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5 5.

16E

-05

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

c40.1nru com 7-c4m.irgowr-co

0 C) 0

Page 90: Condensation heat transfer and pressure drop coefficients ...

Vi s

c,, b

.u.

9 1.1.1 N

CO 5.82

E-0

41

-4-

9 11.1 OD CO Lri

.cr 9 LU CO V Lc;

n'

9 UJ +- N tri

1 5.

37E

-041

'4'

9 (LI CO N U)

1 5

.28

E-0

41

5.24

E-0

41

. ‘7,

=

403.

401 (0

N

0 -cr

1 48

9.95

1 52

8.72

1

1 56

7.0

51

605.

581

639.

521 I'.- .--

&T) (0

1 69

2.34

1

Den

swb 1

O O 0

1 0001

o o 0

o o 0

o 0 0 10

001

o o 0

o 0 0

000 L

1LM

TD

0) N n' C') 33

.58

1 33.

111

co U) N- cn

o

r--- CNI

1 30

.37

28

.97

28

.62

28

.42

Tw

b

N 0) Cn +I'

0 co Co NI-

N .-- CO V'

C') N 0 1.0

U) C') Cn 1.11

C') CO .- U) 52

.70

52.5

11

0 0

LO LO

.

3 0 I-=

C') 0

COW

N- 6

1 2.

85E

+031

1

2.95

E+

031

2.98

E+

03

3.

10E

+03

C') 0

LU 00 0 Cri

co 0

LU 0 .- C0

1 3.

12E

+03

c,-) 0

LU

42.4

21

In 0) .(1:

46.1

31

48.1

31

(0 +t- ,--

.

ND OD . C5)

(0

0

(0

.

50. 5

2

U) OD 0

: 3

7 Z

20.5

21

1 0 0 ,-

N 21.7

38,

O

N

1 22

.727

22

.651

1

N 0) CD

CNI 22.8

60

22

.792

+,

-C 2797

001

280

0001

28

02

00

28

040

01

280

7001

28

090

01

0 0 0

CO 281

0001

28

1100

1

(N \ I

a

CC

r) 0 + W 0) 0) (Ni

CO 0 + W lf) 1-- O'i 3.

32E

+03

CI 0 + W

Zr

1 3.

65E

+03

1 01 0 + IL 0) LO ri

1 3.

63E

+03

Cn 0 + UJ C9 CO C'i

CO 0 + W CO CO C,i

3201

001

3226

001

32

170

01

0 0

V" +- cn

0 0

C')

n 311

200

31

0300

30

9300

1

+- c

a..3 0

0

4.02

E+

001

0 0

UJ ‘- co cn

0 0

(LI o N- cn

1 3.

55E

+00

1 3.

37E

+00

0 0

W 0) -4-

1 3.

41E

+00

1 3.

42E

+0

0

0 0

W 0.) cn ci

a <

8.83

3E-0

5 8.

833E

-05

8.

833

E-0

5

8.83

3E-

051

8.83

3E-0

51

8.83

3E-0

51

8.83

3E

-05

1.0 9 W cn

co coca

L.C)

9 w cn n co 00

a Ct.

C.)

418

01

4180

O co u- 418

2

1 41

801 0 co —

-I- 4182

41

82

4183

28.7

51

28.9

3 CO 0 6 N

OD N• 6 N

0) CO 6 C')

N- LO 6 CO

N N-- 6 In

CO N- 0 In

9 w N- co cn

9 w CO co cn 3.

98E

-01

3.94

E-0

1

4.02

E-0

1 I

4.07

E-0

1

4.04

E-0

1'

9 w co o 4 4.

05E

-01

Tw

2

(,) TI- tri 48

.65

1

N

o U) 52

.33

1

U) N tri to

V' C') v-i LI)

Cn N- -41 LO 54

.50

1

+I- .- U) U)

.0 a

..1C

OD CO co ci

a) (v) CD ci

-cr CO ci

C') 'cl- CO ci

CO zr

CID ci

+:1' '0' CO 6

CO TI- CO ci

CO V' CO ci

CO 'I' CO b

C.4 C') 'V %II (0 N- CO 0) r CV CI vi. U) U2 P■ 00 00

0)

a) ca ca

Page 91: Condensation heat transfer and pressure drop coefficients ...

'.' o 0 5

O w O) 6 5.

4 7E

-041

M tri

;

999 wwlw

r ON

1O

Lri 1 6 1 i

5.17

E-0

41

o ,„ WWW 000 666

oo

1

46.1

441

55.7

92

53.7

73

55.1

42

55.0

191

55.6

301

=

1-

4.61

7E+0

11

+ w

(Dm m ,:i 5.

125E

+01

5.35

9E+

01

5.58

2E

+01

5.

381

E+

01

5.51

8E+

011 ,...,-.

oo + + wr- ow om 60

ww

V) <-

M 0 O 0.

034

53

3

t■ N

(O

Ci- .-W

MM 00 dd

W

0.03

662/

0.03

279

7

0.03

276

7

0.03

172

0

0.03

2587

,

-(3)(7) LOMN. , OMO NNM 000 ddd 0.

031

171

0.

0311

7

0.02

791

0.

027

88

0.

02699

0.02

773

V M d'WO Ov-N . 1-..--v- 1.

224

1

V'M1110M NMMW W NO000 . . . . .

. .... . o

6£E'0

1.Z6 0E17 I

529.

618 0.

188

1 0900

688'989

611.

103

0.40

8

562.910 -

0.02

4 N 0 0 0

607.

155 0.

221

I 60

0.2

18

-

0.02

31

M ,.-

O

1 a U

418

0

4180

4180

41

80

418

0

4180

4180

41

80

4180

Page 92: Condensation heat transfer and pressure drop coefficients ...

. <7,

a

T.... vT 0 (1) ..... 'eT 91 N- co CV N V' N 0 CD N- U) CO CO 0) V U) U) a) r-••• 0) 0) v: .4 co ci ,_- N ,r N,_ U) CV vT N. T.... 91 N- vl- N- cn VT -er V VT CO CD CO CO .

1HT

C, 4.

83E

+021

5.

54E

+021

CV 0 + (II (3) 0) U)

CV 0 + ai 0 -0) LO (61'

CV 0 + Lu

0 r--

• .

CV 0 + ui -1- (D N-

CV 0 + (Li 0) 1- a)

CV 0 + in .4- CO c6

CV i 0 + Lu .-- o ci

135

2

135

9

CO CO CO 1-

CO N CO 1-.

CO 0) 91

■ • 1388

N- 0 V.

■•-•

1

1401

N. 0 VT 1-

= z

1-- 0 +

1.11 V

in

1 5

.96

E+

01

6.50

E+

01

7.

14E

+0

1

N-- 0 -1- CU (0 0) N.:

1 8.

53E

+0

1

1

9.27

E+0

1,

1- 0. +

LL1 0) N-• cr)

CV 0 + CU CO 0 •

Tr2

Try

Twe

,,

12 E `' 0_ C

pva

Cpb

Con

dens

er In

let R

efr

iger

ant T

em

p (°

C)

Con

den

ser

Ou

tlet R

efr

iger

ant

Tem

p (°

C)

Con

den

ser

Inle

t Wa

ter

Te

mp

(°C

)

Con

dens

er O

utle

t Wa

ter

Tem

p (

°C)

Con

den

ser

Inle

t Pre

ssu

re

(°C

)

Sie

der

& T

ate

Eq

uati

on

s )

1

0) 0) 1.- V'

0 CO CO vT 4

5.04

1 0 0) cci vT 50

.131

(,) ve- cri VT 51

.75

51.6

7

CO c.i 11)

V- 0 +.

1.1.1 91 0

cu

V 0 + CU V CV .-- 1:

38E

+04

1.56

E+

04

'cr. Ca +

1.11 CO T-- .t-

a- 0 +

1.1.1 V 01

VT 0 + CU CO .L- CV

V' 0 +

1.11 ,- CO N

1 2.

4 5E

+04

(0 N. 01 N 31

.381

co CV cn 91

oo N. in cn

co .-- d V' 37

.25

(NI 0) ci, "el-

co 01 ci, V'

in ,-- c\i VT

i o

1 15?

I CU 0 01

I CV

L. t 1

0

5? LIJ 0 (3) CV

o o

5? $) W ILI 0 0 0) 0) CV CV

CO

1

2.89

E+

00

2.

89E

+00

o 0 + LU 0) 00 CV

o 0 + CU

CO CO CV

o 0 +

1.11

CO CV

---I

Tra

nsfe

r C

oe

ffic

ien

t

Leng

th of S

ubc

oo

led R

eg

ion (

Us

ing

Dittu

s &

Boe

lte

r a

nd

54.2

11

0 ', 000 (a (6 58

.011

CO 0 CO OCOLD . . . o ,- CV

(10 (.0 CO 62.3

41

1,- 0 CO (f) LC)

U) i

> !

. , s

,. 0 . 1.11

, CO , 00 -•

1... 0 . 1.11 -o- CV N 2.

46E

-011

2.

74E

-01

,...

9 CU co 0 CO

1..

9 CU en 91 CO

.,..

9 CU N-- CO CO

1 3

.93

E-0

1

1 4

.15

E-0

1

Tr3

CV CO — CO

CO 0.-vT CO n- CV . CO VT lf) CO (C) CO

N- N CO 11) T..... CO CT) CO CO CO CO 69

.341

It7cioz. 1

7.55

E-0

2 7.

48E

-02

7.39

E-0

2

7.23

E-0

2 7.

27E

-02

7.15

E-0

2

7.15

E-0

2 CV

9 CU .,.- ,- N.

Ca

lcu

lati

on of E

xp

eri

men

tal

Hea

t 1

R22/R

142b (6

0/4

0%

)

101.

18

104.

12

105.

13

104.

80 £

896

9E18

6

LI:8

6

VT 00 tr) CT)

CO 91 6 01

.M* ; C.) cn

5 .

-,o- .cr VT ..cr vT vT V V '0`

9 9 ° 9 9 ° 9 9 9 rwthuiLutliwww -1- +- co (o 0 CV CO CO CO co co inin In in ,c3- v1- V1-

o 0 ci 0.

0095

31

0.01

426 CO

N. ,o- o 0 ci

I my,

cn CO 1- VT CO 0 O 0.

0342

45

0.03

515

2

0.03

477

4

0.0

3553

0 0.

0359

83

0.

0356

81

1 0.

0360

59

1

CO LC) N U) CO 0 ci

.0 vi C cu 0

1107

11

01

10

96

108

9

107

7

1080

1071

10

71

10

67

op d deg

E 3

2

Insi

de i

nner

dia

met

er

(m)

Ou

tsid

e in

ner

diam

eter

(m

)

Ins

ide

out

er d

iam

ete

r (m

)

Eq

uiva

len

t dia

me

ter (

m)

Mass

Flo

w R

efri

g (k

g/s

)

Mas

s Fl

ow W

ate

r (k

g/s

)

N. 0 0 O 0.

0127

0

0.01

39

4

0.01

539

0.01

70

1

0.01

873

0.02

026 o

N'

N 0 d 0.

022

83

ct

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

csi en of co co r-... 00 0) .- CV en VJ• U) CO N. CO 0)

Tabl

e C

.20

Page 93: Condensation heat transfer and pressure drop coefficients ...

Vis

cm,

9

W cr) CD N:

9 iii U) a) N: 7.

92E

-041

9

Li, CO o 3 N:

o

iii CO N- N.:

0

ii, CV co N:

9

iii 0 co N:

9 W N.: (C) N: 7.

55E

-041

"2

=

419.

061

471.

52

50

5.0

5

540.

49

582.

47

o

ni CN1 (0

00 ici LC) (.0

1 68

6.82

1

co C) 0 1"--

Den

swb

10o oL l000l

l 000L bow

l .

o 0 0

0 0 0

0 CD 0

OOOL

0 0 0

LMTD

7.20

1 'cr N. . 0)

'cr r.-- . s-

'cr n- . 'V"

'cr V' . 1"-- -•

0 V-- . `0 ,.

0)

N- I

CD

.

1 17

.421

N. 01 C) V•••

I-.

v-- (3) cri NJ 30

. 23

CO '13" OM CO

0 N- 6 CO 31

.381

0) 'cr

CO CO 32.6

31

32.8

71

CO 0

-i CO

3 0 1- =

2.70

E+

031

CO 0 +

1.11 0 N- C,i

(4) 0 + U.1 (0 N- C,i 2.

74E

+031

co 0 + I-U 0 CO C \I

1 2.

86E

+0

3

1 2.

84E

+0

3 m

0 + LU N-- CO C \I

1. 2.

86E

+03

I I-

U) .-• .-- CO

CV N- 1- CO

CO (3) .- 01 32

. 321

(13 0) C \ i CO

0 (.0 "Zr CO

0) (0 CO CO

CO 0 tn CO 35

.281

"m

3

Z

2.07

E+

011

2.07

E+0

1

Ir .

0 +

11.1 s- ..- C \I

1.....

0 +

LL.1 01 0C \i 2.

13E

+01

2.18

E+0

11

3 + LIJ (0

hi

3 +

1.1.1 01 .r-

C \ I

1 2.

17E

+01

2

279

7001

28

000

0

2802

001

28

04

00

280

7001

28

0900

28

1000

281

0001

28

1100

1

1 ....

j

Ix 1 2.

29E

+03

CO o + LU

CV) C \i 2

38E

+03

2.36

E+

03

2.

44E

+03

2.53

E+

03

CO 0 + UJ

U) Cs.1

1 2

.55

E+

03

2 54

E+

03

2

3201

00

3221

00

3226

001

321

7001

31

4000

1 31

330

01

3112

001

3103

001

309

3001

1 CE

o o 00 + + UJ UJ 0 N. '7 CO tri Ili 5.

35E

+00

5.32

E+0

0

5.25

E+

00

5.13

E+ 0

0

0 0 + IL 1- 1- tri

0 0 +

1.1.1 01 0 tri

o o +

11.1 r--- o iri

3 <1(

8.83

3E-0

5

8.83

3E-0

5 8.

833

E-05

8.

833E

-05

8.

833E

-05

8 83

3E-0

51

in 9 11.1 CO CO CO 03 8.

833

E-05

8.

833E

-051

C p

,

a) (3) r-- r-- ..- ,r- '0' 'cr

01 r-- T- 'Cr

cr) N.-

11"

o) r--

'0'

o N.-

'Cr

cr) r--

"0'

(3) 1"--

`I' 4179

Tw

5

h- U) CO N.- cri cci CV CV

CO 0) ai N 29

.08

1

0) N-: cri Csl

0) CO ci CO

N- lf) ci CO

C•1 r-- ci CO

r-- ci CO

>

CO

3.8

7E-0

1

3.88

E-01

1

3.98

E-0

1

0 , LU .4- 0) Cr)

1 4.

02E

-01

9 1.1.1 h. 0 cr

9 LLI .0' 0 4

9 ILI CO 0 -;1'

9 LLI U) 0 4

cn U) c (0 tri cci '41- '0'

0.1 1- 6 (C) 52

.33

55.2

5

53.3

4

CO N.- -4 U) 54

.50

1

c '- U) 111

kwb

1

0 CO CO 03 t,-. .- (0 (0

0 0

CD CO .-- (0 0

a) CO l• (0

0

CO

I . (0

b

1 0.

6212

1 0)

1 0.

6214

1 0.

621

7 0)

(0

ci

,- hi C•1 '0* u1 (0 N CO CD N- N C') et 41 (0 1.■ 03 CO

O C

0 a)

_o F-

Page 94: Condensation heat transfer and pressure drop coefficients ...

0 0

-zr u)

rn

.E1

U

9 1.1.1 CD

O

co

zr 9

N-

co

9 L.0 co

O)

co

9 w CD

to co tri

0

(11

N 1.0 O tri Cc)

-zr 0

rn

N-

(.0 co u) M

9 7

3

O

LLI N U) CD

3.39

58E

+0

3.34

08E

+0

3.31

03E

+0

3.32

99E

+0

3.53

72E

+0

0

11.1 U) O

C•i 3.53

88E

+0

3.56

15E

+0

N 0 CO V CO U) (.0 0 CD h- N

-• 0 0 0 O O d

MD O E -- a) V N

O CD U) 0 0 0 ci d

N

O

O O

U) N N CI) O 0 O

0) N

0 O

U) C

U) O O

U) U)

LO O O

N U)

0 O

co co co U) O O

O

U) O ci

Tr3 -zr O O

CO CO

O O

0 N

C)

F-

O O O 0

CO N 0

CD

O

O 01 O O O O

0 •cr N 0) I N ,- CO

CD CO ( (0 D 0 N

ci Cn CD Ci (')toN

N •cr N N. 01 r-01 V' '4' CD (.0 CD (D

a

N- N- th. 0)

N- O r--

co r-

CT)

Page 95: Condensation heat transfer and pressure drop coefficients ...

1 2

945.

44 ,'W

e't

;(1

", /,

(1)01

co In h- 0 ci

1 0.

093

8

co co ID r

d

co co r r

6

1 0.

131

21

T 1.0 r r ci

a 0 C \ I N- ci 0.

1288

0.

1303

1

,,, F-

38.

63

40.

53

4

1.40

42.

83

4

5.05

45.

29

46.

32

46.

54

47.

12

R22

/R1

42b

(60/

40%

) 1

1132

001

1157

00

O 0 CO (0 1- 1- 11

8500

1 12

140

0

1236

00

12

50

00

12

460

01

-12

5700

21 O. t

CL

1 1

27

7

OD 0) (NI r

1 13

00

N T C•1 r

1 13

32

13

48

135

9

CD LO 01 r

1 13

65

27

9700

2800

001

280

200

2

8040

0

280

700

2809

00

281

000

281

00

0

281

100

1427

143

9

144

51

1454

1470

14

82

14

90

148

8 14

95

Tw

o-P

has

e R

egio

n

0 C5) CV 3.

681 01

7- 4

1.) CD 4

1.0 vt .

cri

CV CO 1.0 a

-ci 6

(0 a

tri

CV T

tri

ca.

CL

CD CV T T

1

11

46

L0 U) ,--- 1.-.

C) CO ,- T 11

94

4 1-- CV T

1 12

28

1

22

4

123

5

p=u

b

CV CO cr, ri

Cn CD a cO

01 CV to c.i

CD 1.0 a csi

C \ I In to . .--

4 T T r-- co r--

. .

c.i •,-

CO ,-

‘.- 1.72

31

co .

C P

wb

a r-- ,-- -cr

0) r-- ,-- -cr.

0) r--- 'T 4

a) r- T 4

1 41

79

4179

41

80

1 41

80

1 41

80

I- —I --I L

sub

J

0.

J

.C. Nr 0

'Cr LO 1-

a) a CV

"Cr 0.1 CV

'Cr CNA CN.I

(.0 LO 01 CD 0 0 .

a CO 0

a) CO 0

N II a

..r=

t F-

(p 04 CD

: 6

N CO CD Lf)

(0 4 ci CD

CO (.0 , CD

LO (0 ri CD

1 65

. 12 CO

0 6 CD 65

.84 (.0

1.0

CO

'Con

dens

er T

ota

l Len

gth

(m) I

'Sup

erhe

at L

eng

th

Su

bco

o led

Leng

th

Two-

Pha

se L

eng

th

M O i■

VI a N

cn cr) N

C.) a N 7.

931

VI c') cn cm N^

co a N 7.

931

I-

co r- cri VI

1 38

.33 to

CD CY) CO 40

.22 ,

CNI

CV 4

co CD

1.-. nt

co CO CV .o.

N r-- CV • Nr 43

.06

N el 'Cr LO CO f■ 00 01 T C•4 CO ":" LO CO N. co ein

0 co

cc

Page 96: Condensation heat transfer and pressure drop coefficients ...

0.. ti

CI

1 98

0.1 3

59.4

131

98

7.4 4

51.7

571

988.

2 .

552.

8801

co

M

Cr)'- '-'

N

0

6

‘-

0 Cn

1 10

41

850.

039

1

MMWMW

1---

0 (0

'--

1 109

4 85

0.4

381

M

IHTC

,

N 0 4- w

com (t) 4.

53E

+021

N 0 + w

m 4

.:5.

51E

+021

•I

6.01

E+

021

mco

NNNNN 00000 +++++ wwwww

mam cocar:N:co

m-T m

1-=- F- F- 3'

o c

tic.) C p

b nN 1 2

.31

E+

02I

CN 0

LLI 0 CO C,i

1 2.

78E

+02

I

CN 0

LI1 t co 0 ri

, 1 3

.34

E+02

N 0

W m CO Cvi

I 3.

85E

+02

4.

12E

+0

2

(N 0

W 0 7 11" 4.

72E

+02

I

Con

den

ser

Inle

t Re

frig

eran

t Tem

p (

°C)

Con

dens

er O

utlet R

efr

iger

ant T

em

p (°

C)

Con

den

ser

Inle

t Wa

ter

Tem

p (

°C)

Con

den

ser

Ou

tlet W

ate

r T

emp (

°C)

Con

den

ser

Inle

t P

ress

ure (

°C)

Us

ing

Ditt

us &

Boe

lter,

Sie

de

r &

Ta

te E

qua

tions

) I

Tr 2

3b

mm 77 dM r-r-- 77

.351

1.-...mm MN <- ... m—m r---com 83

.46

I

M 82.6

4

82.0

6

9.8

6E+

04

1.14

E+

05

1,

24E

+0

5

m o + w <- -1-

1.54

E+

05

to o + w 0 1--

1.82

E+

05

1.

96E

+05

2.10

E+

05

2.28

E+

0

Com

pre

ssor

Pow

er (

w) 32

.93

34

.21

ocom-- Nint,. L0

mm-1-4- 44.3

8

45.1

5

mco Win 66 -(!--(1- Q

000000 000000 ++++++ wwwwww ocomr-sm 00000<- ......

1 1.

13E

+0

0

oo 00 ++ ww mo 1-N e-y-

1 1

.21

E+0

0

R22

/R14

2b (

80/2

0%) 1

45. 8

4

47.7

4

49. 3

2

51.

37

I •

53.3

4

55.7

3

56.6

6

58.4

7

60.0

21

60. 2

4

I>

3.0

7E+

00

3.46

E+

00

3.

72E

+0

0

4.07

E+

00

4.

31E

+00

4.51

E+

00

4.

72E

+00

4.

83E

+00

4.

94E

+00

5.

31E

+00

50.8

9

- 52

.72

54.2

5 56

.23

53.1

3 60

.43

. 61.

32

63.

06

64.5

5 64

.75

krb

1.39

E-0

2

1.41 E

-02

1.43

E-0

2

1.4

5E-0

2 1.

46E

-02

1.47

E-0

2

1.47

E-0

2

1.47

E-0

2 1.

47E

-02

0.00

811

M in 01 0 O

0.01

426

1

0.00

473

1

)erh

eat

Reg

ion

(

O...

90.0

1

94.2

6

100.

45

10

3.71

105.

44

105.

95

105.

59

103.

31

10

0.7

2

99.3

7

Vis

crb

1.49

E-0

5

1.51

E-0

5

1.53

E-0

5

1.55

E-0

5

1.57

E-0

5

1.59

E-0

5

1.59

E-0

5

1.60

E-0

5

1.61

E-0

5

1 61

E-0

5

op -o E 2 Leng

th o

f S

ur

I 0.

0351

52

0.03

5530

0.03

5681

0.

035

983

0.03

6134

0.

0362

86

0.03

651

2

0.03

6664

0.03

681

5

0.03

6739

De

ns,b

59. 2

1

61.5

9

63.1

1

66.

04

69

. 27

73. 7

2

75.6

6

80.0

5

84.2

5 85

.18

Ins

ide

inn

er d

iam

eter

(m

)

Ou

tsid

e in

ner

dia

me

ter (

m)

Ins

ide

oute

r di

amet

er (

m)

Eq

uiv

ale

nt

diam

eter

(m

)

Mas

s Fl

ow R

efr

ig (

kg/s

)

Mas

s F

low

Wa

ter

(kg

/s)

0.00

9374

0.

0110

14

0.01

211

0 0.

0138

87

0.01

542

1 0.

0171

60

0.01

844

5 0.

0199

57

0.02

149

2 0.

0233

59

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

c-..a C) Tr kt, tO Ps CO CO 0 1-..

C•I CO et 10 tO N. CO CO 0 1-

6 a)

Page 97: Condensation heat transfer and pressure drop coefficients ...

Vis

cw

b

-4-

9 LU CO C O Co

-4-

9 1.11 0) N.- (D

.4- 9 LU 0 0 CO

1 5.

78E

-041

5.

58E

-041

-4- 0

Lb CD CO co

-4- 9 LU 0') N co

0 Ill 0 N cri 5.

13E

-041

0 W (D -• tri

V'

cc

=

353.

091

r.... CO

MM 429.

111

475.

731

514.

551

557.

141

587.

151

621

.881

692.

761

De

ns„,,

b 1

l00 0L

O O .,-

o o c.-

r000L

o o ..-

o o .-

l000

t.

o o 1 ..

1 000

t.

o o S.

LM

TD

24.5

4

25.5

01

a) 6 (N1 27

.36

27

.471

27

.301

26

.651

a) cri N 25

.22

1 2 5

.46

1

Tw

b

Ci)

.4-

N Cc)

C' -4-

CO 0 4-5 -.4

N. ,--

1• v-

(D 0

6 'V'

CO 1—

.-- LID 52

.281

CO ',1-

c•-i L.0

0) Cc)

-cr: LC)

'4' 0) cri Lt)

C.) I- =

CO 0 + UJ N N. Ni 2.

84E

+0

3

CO 0 + UJ +- 0) Csi

CO 0 + Ili C7) 0) N

co 0 +

1.11 CC) 0 CO 3.

12E

+03

1 co 0 +

111 CO e- CO

co 0 + LU 0 N CO 3.

23E

+031

3.

22E

+03

Tw

3 40.2

81

0 CO ., -4

CT) .,-. v..; -4-

CO 0) -4' '7

N (i) (O 'V

N. NI- CO 'cr 49

. 491

N. (D d V)

N CD -:

V)

V' 0 N- 1.0

i 7 Z

CO N co 0 N 21

.17

51

21.5

831

22. 0

911

22.4

981

22

.900

1 2

3.18

91

23.

4301

23

.634

1 23

. 514

h3 1

2679

00

2681

00

2683

001

26

840

0

2685

001

2686

00

26

860

01

268

600

26

850

01

1 26

8500

1

cu (4. 1

2.95

E+

03

CO 0 + UJ CO 0 CO

1 3

.18

E+

03

3.

33E

+0

3

3.

47E

+0

3

3.61

E+

03

(`) 0 + LU 01 CO CO

1 3.

78E

+03

1 1

3.85

E+

031

CO 0 + Ill

00 CO

h2

0 o

O o co (D CO 0) 0 0 co co 3

1450

01

0 o CD CO N-. ,-) 31

7200

1 31

6400

1

3156

001

3123

001

3088

001

2 a

o 0 + LIJ 1.- (-4 "zi

o o + LIJ N. o -4'

o o + LU Nr

c-i

o o o o + + 1.1.1 UJ N. CO

co cri c6

o o + LU o to cO

3

.43E

+00

1 3.

37E

+00

3.3

1E

+00

1 3.

34E

+00

3 < 8.

833E

-05

8.

833E

-05

8.83

3E

-05

8.

833E

-05

LO

9 IL C,)

CO

CO 6 8.

833

E-0

5

8.83

3E-0

5

8.83

3E

-05

8.

833E

-05 Ul

9 LU C,) CO CO ozi

1Cpw

CO 0) N-

N-. 'cl• 41

801

418

0

4180

418

1

,-- CO ..- V' 41

82

CO N.- "Cr 41

83

41

83

1 I-

o co N N aiai N N

cr) co 0) 0 aid N CO 30

.23

o o 1"... v (D 0) 000 CO CO CO 31

.32 1...

U)

. CO

3 >

3.98

E-0

1

'CT' 'r:): 'CT 0 ‘- wtwww N '1' N. 0) 0 0 0 0 'z 4 mi 'i V 4.

13E

-011

4.

15E

-011

''` cu N.

`i

0 cii CO

4

`i' t-

42.7

3

44. 8

4 0 CO a) co cci 6 Nr V'

0 co ..7 Li ) 53

.78

55.0

6

56. 2

6 U) N-- r-: lil 56

. 84

1

1 =

(r) co CO d 0.

6 35

0.

637

, 0.

640

0.642

0.64

4 LU 'cr CO 6

CO ‘71- CD d

N ct CO d

N.- V' CO d

1-, CNI e'l Tit U) CO f".• CO 0) 0 e-•

e.• CNI el "Cr 10 CD N. CO CD 0 r

N N 0 a) )7)

Page 98: Condensation heat transfer and pressure drop coefficients ...

VIS

Cw

all

o

I

' 0

thw LC) 0 (ci

-a- 9

CD I,- 14.5 5.

51E

-041

Q 99

ww 0) Nor- tri

'7

CO

LO

cr 9

wth,-- 0) 0) 4

'1' o

0) .,:i

'cf

11.1 LO co -cr: 4.

81 E

-041

4.

85E

-04

9

Tw

all

o

I

44.7

421

N 0 S . N- -zr

Lf) N- (0 c) '7 52

.174

1 C') co

zi U) 55

.990

1 57

.081

57

.708

0) ‘—

‘-.. «5 In

0) N (0 r--: LI)

4.47

59E

+01

1 4.

7123

E+

01

4.96

98E

+01

0 +

0 0 NN Lci 5.

416

2E+

011

0 +

0 C \ I O CD tri 5.

711

3E+

011

5.77

40

E+

011

5.81

52E

+01

5.

7664

E+0

1

1

<0

0.04

1475

1 3,

044

428

0.04

7834

• 0

.05

0 572

1 0.

0521

821

0.05

2951

0.

054

3121

0.

053

0561

0.

051

3801

L 1 A

, 1

4179

ME

1110

:41 0

.03

5301

4180

EVAM

MC

5iad

i 0.

0407

1

4180

MIN

IM

0.04

3041

4181

V2

VIE

M7

,7Q)

0.

0450

6

4182 ir,3

22

',Tg

3 0.

045

15

,

41

83 1

0.04

372

41

83

°',° 1,

-p,sT,

0

0429

71

CO 0 CO . .I- CC) V

I 55

2.883 0.

003

1

t".- l— 0

v- LO N . CO LO CO

'7

0

f•-• N (.0 . 1,- CO N-

0

N- CO 0

0

f•-• N V) . 0)

C')

66666c56

MOCONN

lf)

LI) CO (..0 t.0 N

0 N 0 0 0 0

Cr) Cr) V' CO lf)

CO-- v- N 'Cr

CO 0") 't V C') . . . . . LI') C) N- 0 0 0 V Lf) U) 0) cococococo

C p

wb

dns .ol

N N

a) C

Page 99: Condensation heat transfer and pressure drop coefficients ...

134

5 16

2:77

01

1353

20

1.62

31

136

3 21

6.55

81

CO cn 01 . Tr

CV

(0 r.-- C) - 13

88

268.

8391

Tr cy 00 . r-

01

v ,-- 14

11

319.

5981

14

19

377.

2091

14

30

411.

5221

14

26 4

88.3

241

(.3- I-

4.38

E+

021 04

CD + UJ cn CD 4

CV'C4 CD +

UJ ,- <7 U)

C) +

LU CO CD OD

C4 0 +

1.19 o- OD 6

CA CD + LU Tr CV, r-'r-:

CV CD +

UJ cn QD

1 8

.21

E+

021

1 8.

74E

+02

1 _ Cq CD +

UJ co C') 01

Try "; 7 7S

cp,,

1

CPb

nN

I o- 0 + UJ el r- v 5.

45E

+0

1

5.97

E+

01

6.79

E+

01

7.52

E+

01

8.34

E+

01,

8.9

5E+

01

,- (N1 000 + + UJ UJ Tr Tr (D CD cri ,-

CV

+ UJ CD o-,-

Con

dens

er I

nlet R

efrig

eran

t Tem

p (°

C)

Con

den

ser O

utle

t Re

frig

erant T

emp

(°C

)

Con

den

ser

Inle

t Wa

ter

Tem

p (°

C)

Con

dens

er O

utlet W

ate

r T

emp

(°C

)

Con

den

ser

Inle

t Pre

ssu

re (

°C)

Leng

th o

f Su

bco

oled R

egio

n (

Us

ing

Ditt

us

& B

oe

lter

and S

ieder

& T

ate

Eq

ua

tio

ns

)

0) ("1 a el 4

0.98

1 CO r-- cY Tr

C) (7) Tr Tr

UCI O— r.: '7

CV

CD Tr 5

0.52

1 o- CO ,- uo 53

.331

1 52

.91

In 'Cr '1' -1- 'Cr •Zr ‘1" 0000000 + + + + + + + UJ UJ UJ.LU UJ UJ UJ CD CV OD 00 00 o- OD cr o- CA Tr OD cnco CV 2.

29E

+04

2.

50E

+04

2.

71E

+04

Ca

lcu

lati

on o

f E

xper

imen

tal H

eat

Tra

nsfe

r C

oe

ffic

ien

t I

Com

pre

ssor

Pow

er (

w) 32

.931

34

.21

ON CV uS

00 Q0 CO

00 C.- c5

42.

51

00 01 Tr

Ul

ui

01 QD 6

00 Q0 tri

2.81

E+

00

2.81

E+

00

2.81

E+

00

2.81

E+

00

2.81

E+

00

2.81

E+

00

2.81

E400

2.82

E+

00

2.82

E+

00

1 2.

82E

+00

45.

841

Tr r- I,: Tr

cy el cri Tr

r- co ,- Cl)

V' co ci up

. •

55.

73

QD CO 6 U)

l's. Tr COul

CV CD d CO

Tr CV ci QD

1.67

E-0

1

1.97

E-0

1

2.18

E-0

1

2.52

E-0

1

2.82

E-0

1

3.16

E-0

1

3.42

E-0

1

3.72

E-0

1

4

.03E

-01

4.37

E-0

1

Tr3

0) CO 6 ul 52

.721

ul CV Tr uo 56

.231

el o- 6 Ul

VI '4'c) QD

04 01 ,- (0

QD CS co OD

LO Q1 Tr CD

Ul r--

CO Tr

7.51 E

-02

7.44

E-0

2

7.3

5E-0

2

7.24

E-0

2

7.14

E-0

2

7.04

E-0

2

6.97

E-0

2 CV CV ° 9 UJ LU ,- co CD 00 (U (0

CV 9 Lu QD 00 6

.--

0; CD 0 6 0.

0095

31

0.01

4261

0.00

473

1

C)

0 0) 94.2

6

100.

45

1 10

3.71

1 10

5.44

1 ul C) U5 CD o-

cn 1.0 U5 CD o-

1 10

3.31

1 10

0.72

1.-- 01 CD CD

1Vis

crt,

1.57

E-0

4

1.54

E-0

4

1.51

E-0

4

1.4

8E-0

4

1.44

E-0

4

1.41

E-0

4

1.39

E-0

4 Tr CD

LU f`- co

'T 0 IL Ul co

71' CD LIU QD co .

'0 *

o -6 f 3

2 MW M

i„

U)

U) Ul

o 6 0.

0355

30

00

U1

e CD 0.

0359

83

'cr 01 o- (0

e 0 0.

0362

86

C\I

1.0 QD

c 0 0.

036

664

0.

0368

15,

C) 01 P■

UD c

CD

Den

s

1089

1083

1076

1067

1059

1051

1045

1 10

40

'Cr 01 CD o-

(10 01 CD -

(Ins

ide

inne

r di

ame

ter (

m)

(Out

side

inn

er d

iam

ete

r (m

)

Insi

de o

ute

r di

amet

er (

m)

Eq

uiva

lent

diam

eter

(m

)

(Mas

s Fl

ow R

efr

ig (

kg/s

)

(Mas

s Fl

ow W

ate

r (k

g/s)

0.00

937 --

CD

-- 0 6

,- cn ,- CO Cq 01 ,- -- 0 0 O a 0.

0154

21

1,-

O

0.01

845

,-

(.0 c) CD '7 O,- ,- CV 0 0 OO 0.

0233

6

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5

5.16

E-0

5 u) 9 LU (ID

ui

uo 9 UJ 0

ul

Ul 9 UJ 0

ui

N CM .1. MI CD 1.... CO C) CD .1.

'-' N CI 't WO CD I, CO C) CD 1.

Page 100: Condensation heat transfer and pressure drop coefficients ...

Vis

cwb

Nr

9

LO

I-

V

9

C11

h:

V'

°

0)

r--:

V'

°

(0

11-:

wwilitilLutuLuibiLw

0")0)COCOCON.1"--(DCOLO

'0'

9

C'sl

r`-:

'V

9

N

11-:

V'

9

U)

r■

V'

°

11-

h:

V'

°

0

l'-:

V

9

V'

h:

385

. 08

4

32.5

6

463.

481

511.

281

(D co • — tf) tf)

r is) • .1- 0) U)

r•-• u-) • In Cs1 (0

U) co • o CO (0

0 to • in 0) CO

1 73

3.13

1

1 ti) C cu in

0 0

1000

0 0 0

0 0 0

0 0 0

I oo m

I 00

0

000

1 00

0

0 0 0

LM

TD

CO CO

11-:

/- C,./

0) 11.0

8

13.3

4

15.3

11

1"-- 0

1"-:

1 18

.41

.-

20.2

0

V' CNI cri

Tw

b

III CNI O in 30

.461

CO (1) ci cn

CD CO

d co

N111

— — co el

1- V'

31

.651

32

.14 (D

(.0 Ni co

0 ,- c•-i cn

1HTC

w 1

2.77

E+

03

2.

78E

+03

01 0 + W O CO

C ••• I 2.84

E+

03

2.85

E+

03

2.87

E+

03 cn

0 + Lu o 0)

C \ I 2.92

E+

03

co 0 + W CI 0) C•i

Tw

o

30.8

1

1-

31.4

01

Cr•-•O

.-- M 32.0

11

32.

50

32.6

91

CO ri cn

0) cri r)

CD -i cn

3 • 7 . Z

2.10

E+

01

2.

12E

+01

2.13

E+

01

2.

14E

+01

0 + W N

CV 2.18

E+

01

+ W cn

2.21

E+

01

2.

22E

+01

2.23

E+

01

h3

0 CD 0) 1'1- CO C \I 26

8100

268

3001

26

840

01

2685

00

2

68

60

0

2686

001

2686

001

268

5001

2

6850

01

O

2.37

E+03

2.40

E+

031

2.4

2E+

03

CD 0 + w V Cs1

1 2.

47E

+0

3

CO 0

w 0 LO (NI

I 2.

52E

+0

3 cn

0 +

LIJ CO LO (NI

cn 0 +

UJ C) ID C\I

co +

LLI .- CD csi

306

6001

0 0 CO 0) 0 CO 31

450

01

3172

00

3164

00

3156

001

3123

00

3088

001

3

0730

01

Prw

5.37

E+

00

0 +

0

LU U) CO tD 5.

32E

+00

0 0 +

1.1.1 O CO

U) 5.2

8E+

001

5.24

E+

001

00 +

LIJ CA C \ I U)

I 5.

17E

+0

0

1

5.11

E+

00

0 0 +

U.! CD 0 U)

U) CD di CO CO Oa

Co 8.83

3E-0

5

8.83

3E

-051

8.

833

E-0

51

8.83

3E-0

5

8.83

3E-0

5 8.

833E

-05

8.83

3E

-05

8.83

3E-

05

8.83

3E-0

51

1Cp

w

0) N .- :1-

(3) N — zr 41

79

4179

4

179 (3)

N — V'

01 N — -a-

0) N — V' 41

79

r- — V'

0 1`.-•

oi (-11

03 f•-•

a) CNI

ID 0)

a> CV

111 0

a CO 30

.23

3

0.40

30

.60

30.

91

31.3

2 ,-- LO

— CO

3.98

E-0

1 4.

02E

-01

4.04

E-0

1 4.

07

E-01

4.

09E

-01,

4.

11E

-01

4.13

E-0

1 1

4.15

E-0

1

V

o III N- V'

9 w CO

42.7

31

V' C0 ,:r V'

CD 01 cci '0'

(D CO

cri V'

0 CO CD (0 10 1.0 71- 0 N.—

— c•) tri ca N: CO LO LO LO LO 56

.84

1

s

CO 0) 0) 0) 0) 0 0 .- C \ I N C11 C11 CD CO (17 CD CO (0 (D (D CO 600006600 0.

622

N VI V. tO CO N CO CO CZ r

r N M.1 10 GO N CO CO 10

Cs1

0 a)

is

Page 101: Condensation heat transfer and pressure drop coefficients ...

_

U VI

5

',1' 0 Lb 1,-- N N:

'7 0 Li:i

u) N h: 7.

73E

-04

7.38

E-0

4 7.

32E

-04 1"

9 ii, 0) N N:

9 LL — N:

V'

7.13

E-6

41

9 w (0 0 N:

. N.

31.4

471

31

5851

co 0 Li) ,_ co 31

.72

7 32

.04

2 32

.61

7

32.8

971

33

.668

1 cc) 0, ,r v co 35

.11

81

F. 3

N.

3.14

5E+

011

3 + u.i 0) L11 .--

C)

3 + 0 1..0

(D .- C,) 3.

174

E+0

1 3.

206

E+

01

3.26

4E

+01

3.

292

E+

01

+ w 0)

CO CO

3.44

3E

+01

3.51

5E+

01

0 a) 0 u-)

G

N r-(1) o

ci

el Cr) .- C \ I

ci 0.0

3581

9 0.

031

839

0.03

131

6

1.0 U r- r.--

ci 0.02

9805

0.02

929

6

0.03

4616

I

1 i I

Ci 0.04

688

1 0.

0430

41 -

0) in Cr) 0 0 0.

0304

8 0.

027

10

0.02

665

0.02

362

u-) N 0 ci 0.

024

93

(0

C'Cr)

N o d

I I

1

-I

, X. , . 0 0 0

w ar-1

0.0

5 CO 0

9

0) 0

9

V' 0

9 -0.0

2 0.

05

CO 0

9 0.04

0 ci

ilt", ;

*741. v

"•r yti

....,

....,/^ ' , ' , , ,

-.!,., 4' '✓ • .:may " —7 OP '7

! sr, ...,..=

zr; 10..., 7"" v.....-, ...1.

C) N.

'1"

1 b

N LO 'Kr co N CO N. U) (.0 U) CO LO (0 CO CO CO U) N LO el (NI ,-- (6 V CO 1"-: cri r- - ca (D 0 ..- '1' (0

N

1- N N N el C) Cn 'I' '7

ICp

,,b

0) N.

V'

C) N.

'1' ..—...—.—..-- ■ .—o

a) r•-•

`71'

0) N. 1

'1' I

03 . N ■

1' '

0) N

'CI'

0) N.

cr

0) N.

.cr

C) N.

'1'

C)

10

a)

Page 102: Condensation heat transfer and pressure drop coefficients ...

0.

242

7 27

0

03 0) .1- 1-

O

A- .1-. CNI 1-

o 0.12

53

1 0.

128

4

Nt 0 co e--

O'

1 0.

1302

r N co r

O 0.1

31

4

1 0.

133

3

a) . N .r.--

O

O) 1, "

cO () 37.6

5

co 0 cO c,-)

o) C) oi 01

1 41

.27

42.

82

43

.63

44.9

0

46.0

3

46.

36

R22

/R14

2b (

80/2

0%)

o

o O O) 0 Ci l- 10

3500

1 o o co 1.0 CD r 10

8400

1 O o ,- r N- .N...

1

1450

01

1158

001 0

a co CO 1-. 1-

-•

.12

05

0)0]

1208

001

CL =

CL 0

CD 4,tr N 1.-.

to to N l.... 12

80

13

0Z

13

26

13

561

1368

139

5

142

0 14

23

=

26

7900

1

268

100

1 26

8300

1 26

8400

1 2

6850

01

2686

001

2

686

001 C

CD (o co C \I- 26

85

001

2685

00

co ,--

0 f

C. 0

138

7

140

0

141

0

142

5

1- 'Cr ":2- 14

60

03 (0 ..ct ,..-

LO CO -cr r

C Ci to ,- 15

02

Tw

o-P

hase

Reg

ion

1

0 r--

4 (D N

4 4.92

1

,c1- 0 tri

CNI r

tri

r I-

()

C7) 1.-

tri 5.16

5.

23 01

a cri

CL e3

O. 0

c(') 0 ,-- r.

01 CV ,— r

1 11

50

01 r- ,- r

1 12

10

r to N r

1 12

68

1 13

05

G. () CO A-

"d- ..cr 01 I-

.0 In

,- .cr 03

a a) CO

. 1.41

0-1

r- a) 1-

-a- CD Co

1.04

71

co N a)

co a) r- C) N CO cr) a) t--

C P

wb

a) N ,

a) N l'.-

1 41

79

a) N r

1 41

79

a) N 1....

1 41

79

1 4

179

4180

4

180

i-- -1 -J

to

Lau

b

J

O.

J

(D 00 V)

r 1.48

5 0) CD 1.0 . ...-

0 01

r

to

.

1.74

4 0 I-- r- .

to ,- co .

.....

r,1 N N- N ,-- 00 r- N(. . . .

In

11 as

I -

1-- VI cO NI- 50

.23 01

1"-- . ‘-- in

CD CO . co (0) 55

.74

1 58

.08

1 58

.99

1 60

.77 0)

N

c.i co

1 62

.50

Con

dens

er T

ota

l Len

gth

(m

)

Sup

erhe

at L

eng

th

Su

bco

o led

Leng

th 1

Tw

o-P

hase

Len

gt h

M CS)

Cn 0)

V) CD

C) CD

C1) CI)

7.93

1

CI) CD

7.93

7.

93

7.93

.0

F-

35.

55

36. 4

7 37

.30

38.3

3 1-- CI

co 40.4

8 41

.09

42.0

2 42

.81

42.8

7

N VI cr Lo to r... oo 0) o '

v- c....4 cn Tr U) co N. 03 (31 0

Tabl

e C

.24

Page 103: Condensation heat transfer and pressure drop coefficients ...

Coefficient of Performance versus mass flux

R22 R22/R142b (80/20) R22/R142b (60/40) 184 1.45 1.67 211 1.53 1.78 1.82 241 1.58 1.86 2.05 268 1.62 1.95 1.96 299 1.71 1.99 2.08 329 1.96 2.03 2.19 358 2.00 2.10 = 2.34 390 2.00 2.14 2.39 417 2.02 2.21 2.53 447 2.04 2.36 2.57

Compressor Power input versus mass flux

R22 R22/R142b (80/20) R22/R142b (60/40) 184 1040 940 211 1100 1020 980 241 1200 1060 1020 268 1260 1140 1160 299 1340 1220 1200 329 1320 1300 1240 358 1380 1340 1260 390 1480 1400 1320 417 1520 1440 1340 447 1600 1460 1380

Tables C.25 C.26

Page 104: Condensation heat transfer and pressure drop coefficients ...

i I Pressure drop results tables

I I 1 R22/R142b (60/40%) 1 1

1 1 1 • PD sup PD su b 1 'PO TP 1PD 1EXP jError (%)

11 1 I I 21 1.071 0.22! 2.441 3.731 5; • . -34.05

1.55; 0.241 4.011 5.80 1 51'!.. 13.79 41 1.89; 0.231 5.32' 7.44. 5, 32.80 51 2.34: 0.231 6.93: 9.50, 5: 47.37 61 2.45; 0.21 , 8.89! 11.55: 15t' -29.87 7! 2.52' 0.371 9.11 12.00; 15: -25.00 81 2.80: 0.33; 11.54. 14.67 15 , -2.25

- 91 3.08, 0.38: 13.12: 16.58: .201 -20.63 101 3.39 , 0.39' 14.39! ' 18.17 25 -37.59

-6.16 !

'R22/R142b (80/20%)

1Psup :Psub : PTP P 1EXP :Error (%)

11 1.15 0.83: 3.06 , 5.04! 101 -98.41

21 1.59: 1.03, 4.03. 6.65 , 51 24.81 3! 1.99 , 1.03 4.86 7.881 15, -90.36 41 2.56 1.121 6.14. 9.82 151 -52.75 5i 3.05 1.22! 7.31 11.58! 20! -72.71 61 3.51 1.46, 8,..4.8.. 13.45 25. -85.87

' 7! 4.00. 1.481 9.69, 15.17 20 -31.84

8! 4.27' 1.85: 10.82' 16.94 . 25; -47.58 9: 4.4T 2.08 12.19: 18.74 30 -60.09

101 5.05 2.85 . 13.72! 21.62' 30; -38.76

1 -55.36

R22 pure ,

1 I I

I Psup ' Psub I PTP IP 1EXP 'Error (%)

11 1.84. 0.0861 2.331 4.256i 01 100.00

21 2.36i 0.0881 2.981 5.4281 01 100.00

31 3.131 0.0931 3.741 6.9631 01 100.00

41 3.651 0.0951 4.421 8.1651 101 -22.47

51 4.471 0.0971 5.671 10.2371 51 51.16

61 5.921 0.0351 7.771 13.7251 101 27.14

71 6.541 0.0411 8.621 15.201 10 34.21

81 7.291 0.0561 9.771 17.116 10 41.58

91 7.811 0.0571 10.491 18.357 10 45.52

101 8.541 0.0661 11.771 20.376 20 .1.85 47.90

. 1

... I 1 I 1

1

Table C.27