Conceptions of secondary students on phenomenology...

1
Conceptions of secondary students on phenomenology of superconduction School experimentations Marisa Michelini, Lorenzo Santi, Alberto Stefanel Research Unit in Physics Education, DCFA, University of Udine - via delle Scienze 206, 33100 Udine, Italy [email protected], [email protected], [email protected] Introduction Teaching and learning Modern Physics is a challenge for Physics Education research (PE 2000; AJP 2002, Meijer 2005; Johanson, Milstead 2008; Steinberg, Oberem 2000). Nowadays superconductivity can be brought in the educational laboratory both for qualitative exploration, both measurements with sensors interfaced to the computer. In the context of a research project to renew physics curricula introducing modern physics, an educational path for high school was developed to introduce superconductivity, integrating it in the courses of electromagnetism. The educational path implement an IBL approach using a set of hands- on/minds-on apparatuses designed with simple materials and High Technology (Kedzierska et al. 2010; Michelini, Viola 2011), YBCO samples, USB probe to explore R vs T (Gervasio, Michelini 2010). The rational of the path on Meissner effect for HSS Students 1) YBCO disc at T=T e : no magnetic properties 2) YBCO at T=T NL : evident levitation of a magnet magnetic properties? 3) Systematic exploration of the interaction of the SC with different magnets and different objects (ferromagnets in primis), with different configurations It always shows repulsive effects close to a magnet: an YBCO at TTNL is diamagnetic. 4) The interaction between SC and a magnet do not depend on the pole put close to the surface of the magnet, the equilibrium position is always the same.. 5) The SC tends to react to an external magnetic field creating a counter field to maintain B=0 inside (Meissner effect). 6) The magnet would be stopped just falling over a conductor with R=0 Ω B=0 Meissner effect 7) Experimental measurement R vs T at phase transition 10) From the model of conduction to the model of superconduction: analysis of the energy of the electrons inside of a crystal lattice and Cooper pairs formation 11) persistent currents and pinning effect and the correlated phenomenology (i.e. magnetic suspension, the MAGLEV train model). N Context Type of school Site grade N class Phy years h per week age N Students s.y. h driver 1 Curricolar Sci. Lyceum Pordenone 4 2 4 3 17-18 34 05/06 15 teacher 2 Curricolar Sci. Lyceum Udine 2 2 2 3 15-16 33 05/06 10 teacher 3 Curricolar Tech. Lyceum Udine 5 1 3 3 17-18 25 05/06 14 Prospective teacher 4 Curricolar Tech. Lyceum Scicli (Ragusa) 5 1 3 3 17-18 8 05/06 20 teacher 5 Curricolar Class. Lyceum Vibo Valencia (Ragusa) 5 1 2 2 17-18 5 05/06 20 teacher 6 Curricolar Sci. Lyceum Comiso (Ragusa) 5 1 3 3 17-18 11 05/06 29 teacher 7 Curricolar Sci. Lyceum Bolzano 5 2 3 3 17-18 36 05/06 11 teacher 8 Curricolar Sci. Lyceum Modena 1-2 1 3 3 17-18 27 05/06 12 teacher 9 Curricolar Sci. Lyceum Tricarico (Matera) 5 2 3 3 17-18 63 5/06 8 teacher 10 Curricolar Profession Sc. Gemona (Udine) 1-2 2 2 3 15-16 25 05/06 21 teacher 11 Curricolar Tech. Lyceum Udine 5 1 3 3 18-19 21 06/07 9 teacher 12 Curricolar Profession Ist. Gemona (Udine) 1-2 2 2 3 14-16 25 6/07 21 teacher 13 Curricolar Sci. Lyceum Bolzano 5 2 2 3 15-16 38 6/07 11 teacher 14 Curricolar Profession Ist. Bolzano 5 1 2 3 18-19 7 06/07 5 teacher 15 Curricolar Tech. Lyceum Palermo 5 3 3 3 17-18 53 06/07 21 teacher 16 Project "Maturità" 2008 Sci. Lyceum Udine 5 6 3 3 18-19 42 07/08 4 Res 17 Summer School FM 2009 Different Udine 4-5 40 2-3-5 3 17-18- 19 42 08/09 6 Res 18 Project Guidance Sci. Lyceum Pordenone 5 1 5 3 18-19 13 08/09 6 Res 19 Curricular - Lab IDIFO Sci. Lyceum Tolmezzo 5 1 3 3 18-19 20 08/09 8 teacher 20 Young 2010 - LACOMAS Sci. Lyceum Udine 5 20 3 3 18-19 90 09/10 2 Researcher 21 Curricular - Lab IDIFO Geom. Inst. Milano 3 1 3 3 16-17 20 08/09 9 CP-IDIFO teacher 22 Curricular - Lab IDIFO Profession Ist. Modena 2 1 3 3 15-16 20 0809 9 CP-IDIFO teacher 23 Curricular - Lab IDIFO Sci. Lyceum Bolzano 5 1 3 3 18-19 20 08/09 9 teacher 24 Curricular - Lab IDIFO Tech. Lyceum Treviso 5 1 3 3 18-19 20 08/09 9 CP-IDIFO teacher 25 Curricular - Lab IDIFO Sci. Lyceum Bolzano 5 1 3 3 18-19 15 08/09 4 CP-IDIFO teacher 26 Curricular - Lab IDIFO Sci. Lyceum Milano 5 1 3 3 18-19 15 08/09 6 CP-IDIFO teacher 27 Curricular - Lab IDIFO Different Udine 4-5 20 2-3 3 17-18- 19 80 10/11 4 Res 28 Curricular - Lab IDIFO Different Cosenza 5 7 3-5 3 18-19 50 10/11 4 Res 29 Curricular - Lab IDIFO Sci. Lyceum Crotone 5 3 3 3 18-19 20 10/11 6 Res 30 Summer School FM 2011 Different Udine 4-5 9 2-3-5 3 17-18- 19 40 10/11 6 Res 31 Summer School Pigelleto Different Udine 4-5 40 2-3-5 3 17-18- 19 46 10/11 6 Res 32 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 16 11/12 12 Res/teach 33 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 27 12/13 9 Res/teach 34 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 23 12/13 Res/teach 35 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 16 12/13 9 Res/teach 36 Curricular - Lab IDIFO Sci. Lyceum Tolmezzo (Udine) 5 1 3 3 18-19 23 12/13 12 Res/teach 37 Curricular - Lab IDIFO Sci. Lyceum Monfalcone (GO) 5 2 3 3 18-19 40 12/13 8 Res/teach 38 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach 39 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach 40 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach 41 Summer School MP 2013 Different Udine 4-5 36 2-3-5 3 17-19 36 2013 6 Res 42 Summer School MP 2014 Different Udine 4-5 36 2-3-5 3 17-19 30 2014 6 Res Research experimentation summary: 14 sites (all around in Italy) 1199 students of 220 classes (last two grade of the Italian High School) Explorative activities (informal learning) 4 contexts, with 715 students) Pre/post test REFERENCES AJP, (2002) Special Issues of Am. J. Phys. 70 (3) PE (2000) Special Issues of Phys Educ.35 (6) Johansson K E, Milstead D (2008) Phys. Educ. 43, 173-179 Steinberg R. N., Oberem G. E. (2000) JCMST 19 (2) 115-136 F. Ostermann, F., M. A. Moreira, Updating the physics curriculum in high schools, Revista de Enseñanza de las Ciencias, 3 (2), (2004). pg. 190-201 H. González-Jorge, G. Domarco (2004). Superconducting cylinders aid in an understanding of current induction, Phys. Educ. 39, 234 Essén H., Fiolhais N. (2012) A.J.P., 80 (2), 164-169 F. Erickson “Qualitative research methods for Science Education”.in IHSE. Part 2, ed. by B.J. Fraser, K.G. Tobin, (Kluvier, Dordrecht, 1998), pp. 1155-1174. H. Niedderer, “Qualitative and quantitative methods of investigating alternative frameworks of students”. Paper presented to the AAPT-AAAS meeting (1989). E. Kedzierska, F. Esquembre, L. Konicek, W. Peeters, A. Stefanel, V. S. Farstad, MOSEM 2 project: Integration of data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity, Il Nuovo Cimento, 33 C, 3, DOI: 10.1393/ncc/i2010-10616-y, NIFCAS 33(3), (2010), pg. 64-74 A. Stefanel, M. Michelini, L. Santi “High school students analyzing the phenomenology of SC and constructing model of the Meissner effect” Proc. of te WCPE2012, (Pegem, Istanbul, 2014) , pp.1253-1266. T. Greczylo, F. Bouquet, G. Ireson, M. Michelini, V. Engstrøm, High-Tech-kit – the set of advanced activities from the MOSEM project, in Multimedia in Physics Teaching and Learning, Michelini M, Lambourne R, Mathelisch L eds, SIF, Bologna and in Il Nuovo Cimento, 33 C, 3 (DOI 10.1393/ncc/i2010-10621-2) NIFCAS 33(3) 1-238, pp.221-229E. Kedzierska et al., Il Nuovo Cimento, 33 (3) (2010), pg. 65-74. M. Michelini, L. Santi, A. Stefanel (2014) Basic concept of superconductivity: a path for high school, in Frontiers of Fundamental Physics and Physics Education Research, Burra G. S., Michelini M, Santi L, eds, Book of sel. papers presented in the International Symposium FFP12, Springer, Cham, Heidelberg, NY, Dordrecht, London, [978-3-319-00296-5] pp. 453-460. N. J. Nersessian. Synthese 80 (1), 163-183, (1989). Marton, F. (1988). In Qualitative res. in educ. ed by B. Sherman & Webb (London: Faler) p 141-161. J. Park, J. Kim,, M. Kim, M. Lee. Int. J. Sci. Educ., 23 12, 1219-1236 (2001). D. N. Perkins, T. A. Grotzer. Models and moves in Proceedings of AERA Conf., New Orleans, LA (2000). Discussion The students use concepts as field lines, magnetization vector, EM induction, as tools to construct a link between magnetic and electric properties of a SC, describing the phenomenology of the Meissner effect, according to the suggestion of many authors (Essen, Fiolhas 2012). In the phenomenological description of the SC the aim is the recognition of the role of the EM induction. How this state is produced or the phase transition occurs, it is described as results of creation of the Cooper pairs. From research experimentations carried out in different contexts emerges that the majority of students recognize the change in the magnetic properties of the SC under Tc, the B=0 condition, the different nature of the magnetic suspension and the levitation of a magnet on a YBCO. Tutorials From the tutorial (N=240): according to the observations carried out, which aspects characterize the Meissner effect? C) R=0, and exist Tc (15%) D) B=0 and R=0 (13%) NA: not answer (12%) A) Existence of Tc and/or repulsion/levitation (21%) B) diamagnetism of YBCO (B=0); B line do not cross the magnet; YBCO screens the magnetic properties) in more than half of cases also Tc (38%) From the test: High School Experimentation in Udine-Salerno-Tolmezzo 122 students (13 grade – 18 aged)

Transcript of Conceptions of secondary students on phenomenology...

Page 1: Conceptions of secondary students on phenomenology …stefanel/PerMarisa/PosterFFP14/4017881519...Part 2, ed. by B.J. Fraser, ... G. Ireson, M. Michelini, V. Engstrøm, High-Tech-kit

Conceptions of secondary students

on phenomenology of superconduction

School experimentations

Marisa Michelini, Lorenzo Santi, Alberto Stefanel

Research Unit in Physics Education, DCFA, University of Udine - via delle Scienze 206, 33100 Udine, [email protected], [email protected], [email protected]

IntroductionTeaching and learning Modern Physics is a challenge for Physics Education research (PE 2000; AJP

2002, Meijer 2005; Johanson, Milstead 2008; Steinberg, Oberem 2000). Nowadays superconductivity

can be brought in the educational laboratory both for qualitative exploration, both measurements with

sensors interfaced to the computer. In the context of a research project to renew physics curricula introducing modern physics, an

educational path for high school was developed to introduce superconductivity, integrating it in the

courses of electromagnetism. The educational path implement an IBL approach using a set of hands-

on/minds-on apparatuses designed with simple materials and High Technology (Kedzierska et al. 2010; Michelini, Viola 2011), YBCO samples, USB probe to explore R vs T (Gervasio, Michelini 2010).

The rational of the path on Meissnereffect for HSS Students

1) YBCO disc at T=Te: no magnetic properties

2) YBCO at T=TNL: evident levitation of a magnetmagnetic properties? 3) Systematic exploration of theinteraction of the SC with different

magnets and different objects(ferromagnets in primis), with differentconfigurations It always shows repulsive effects

close to a magnet: an YBCO at T∼TNLis diamagnetic.

4) The interaction between SCand a magnet do not depend on

the pole put close to the surfaceof the magnet, the equilibriumposition is always the same..

5) The SC tends to react to an external magnetic field creating a

counter field to maintain B=0 inside (Meissner effect).

6) The magnet would be stopped just falling over a conductor with

R=0 Ω B=0 Meissner effect7) Experimental measurement R vs T at phase transition

10) From the model of conduction to the model of superconduction: analysis of the energy of the electrons

inside of a crystal lattice and Cooper pairs formation

11) persistent currents and pinning effect and the

correlated phenomenology (i.e. magnetic suspension, the MAGLEV train model).

N

Co

nte

xt

Typ

e o

f sch

oo

l

Site

gra

de

N c

lass

Ph

yye

ars

h p

er w

ee

k

ag

e

N S

tud

en

ts

s.y.

h

driv

er

1 Curricolar Sci. Lyceum Pordenone 4 2 4 3 17-18 34 05/06 15 teacher

2Curricolar Sci. Lyceum Udine 2 2 2 3 15-16 33 05/06 10 teacher

3

Curricolar Tech. Lyceum Udine 5 1 3 3 17-18 25 05/06 14 Prospective teacher

4 Curricolar Tech. Lyceum Scicli (Ragusa) 5 1 3 3 17-18 8 05/06 20 teacher

5Curricolar Class. Lyceum

Vibo Valencia

(Ragusa)5 1 2 2 17-18 5 05/06 20 teacher

6Curricolar Sci. Lyceum

Comiso

(Ragusa)5 1 3 3 17-18 11 05/06 29 teacher

7 Curricolar Sci. Lyceum Bolzano 5 2 3 3 17-18 36 05/06 11 teacher

8 Curricolar Sci. Lyceum Modena 1-2 1 3 3 17-18 27 05/06 12 teacher

9Curricolar Sci. Lyceum

Tricarico

(Matera)5 2 3 3 17-18 63 5/06 8 teacher

10Curricolar Profession Sc.

Gemona

(Udine)1-2 2 2 3 15-16 25 05/06 21 teacher

11 Curricolar Tech. Lyceum Udine 5 1 3 3 18-19 21 06/07 9 teacher

12Curricolar Profession Ist.

Gemona

(Udine)1-2 2 2 3 14-16 25 6/07 21 teacher

13 Curricolar Sci. Lyceum Bolzano 5 2 2 3 15-16 38 6/07 11 teacher

14 Curricolar Profession Ist. Bolzano 5 1 2 3 18-19 7 06/07 5 teacher

15 Curricolar Tech. Lyceum Palermo 5 3 3 3 17-18 53 06/07 21 teacher

16 Project "Maturità" 2008 Sci. Lyceum Udine 5 6 3 3 18-19 42 07/08 4 Res

17Summer School FM 2009

Different Udine 4-5 40 2-3-5 317-18-

1942 08/09 6 Res

18 Project Guidance Sci. Lyceum Pordenone 5 1 5 3 18-19 13 08/09 6 Res

19 Curricular - Lab IDIFO Sci. Lyceum Tolmezzo 5 1 3 3 18-19 20 08/09 8 teacher

20Young 2010 -LACOMAS

Sci. Lyceum Udine 5 20 3 3 18-19 90 09/10 2 Researcher

21 Curricular - Lab IDIFO Geom. Inst. Milano 3 1 3 3 16-17 20 08/09 9 CP-IDIFO teacher

22 Curricular - Lab IDIFO Profession Ist. Modena 2 1 3 3 15-16 20 0809 9 CP-IDIFO teacher

23 Curricular - Lab IDIFO Sci. Lyceum Bolzano 5 1 3 3 18-19 20 08/09 9 teacher

24 Curricular - Lab IDIFO Tech. Lyceum Treviso 5 1 3 3 18-19 20 08/09 9 CP-IDIFO teacher

25 Curricular - Lab IDIFO Sci. Lyceum Bolzano 5 1 3 3 18-19 15 08/09 4 CP-IDIFO teacher

26 Curricular - Lab IDIFO Sci. Lyceum Milano 5 1 3 3 18-19 15 08/09 6 CP-IDIFO teacher

27 Curricular - Lab IDIFODifferent Udine 4-5 20 2-3 3

17-18-

1980 10/11 4 Res

28 Curricular - Lab IDIFO Different Cosenza 5 7 3-5 3 18-19 50 10/11 4 Res

29 Curricular - Lab IDIFO Sci. Lyceum Crotone 5 3 3 3 18-19 20 10/11 6 Res

30Summer School FM 2011

Different Udine 4-5 9 2-3-5 317-18-

1940 10/11 6 Res

31Summer School Pigelleto

Different Udine 4-5 40 2-3-5 317-18-

1946 10/11 6 Res

32 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 16 11/12 12 Res/teach

33 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 27 12/13 9 Res/teach

34 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 23 12/13 Res/teach

35 Curricular - Lab IDIFO Sci. Lyceum Udine 5 1 3 3 18-19 16 12/13 9 Res/teach

36 Curricular - Lab IDIFOSci. Lyceum

Tolmezzo

(Udine)5 1 3 3 18-19 23 12/13 12 Res/teach

37 Curricular - Lab IDIFOSci. Lyceum

Monfalcone

(GO)5 2 3 3 18-19 40 12/13 8 Res/teach

38 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach

39 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach

40 Curricular - PhD Exp Sci. Lyceum Salerno 5 2 3 3 18-19 20 12/13 6 Res/teach

41Summer School MP 2013

Different Udine 4-5 36 2-3-5 3 17-19 36 2013 6 Res

42Summer School MP 2014

Different Udine 4-5 36 2-3-5 3 17-19 30 2014 6 Res

Research experimentation summary:

14 sites (all around in Italy)

1199 students of 220 classes (last two grade of the Italian High School)

Explorative activities (informal learning)4 contexts, with 715 students)

Pre/post test

REFERENCES• AJP, (2002) Special Issues of Am. J. Phys. 70 (3)

• PE (2000) Special Issues of Phys Educ.35 (6)

Johansson K E, Milstead D (2008) Phys. Educ. 43, 173-179Steinberg R. N., Oberem G. E. (2000) JCMST 19 (2) 115-136

• F. Ostermann, F., M. A. Moreira, Updating the physics curriculum in high schools, Revista de Enseñanza de las

Ciencias, 3 (2), (2004). pg. 190-201

• H. González-Jorge, G. Domarco (2004). Superconducting cylinders aid in an understanding of current induction,

Phys. Educ. 39, 234

• Essén H., Fiolhais N. (2012) A.J.P., 80 (2), 164-169• F. Erickson “Qualitative research methods for Science Education”.in IHSE. Part 2, ed. by B.J. Fraser, K.G. Tobin,

(Kluvier, Dordrecht, 1998), pp. 1155-1174.• H. Niedderer, “Qualitative and quantitative methods of investigating alternative frameworks of students”. Paper

presented to the AAPT-AAAS meeting (1989).

• E. Kedzierska, F. Esquembre, L. Konicek, W. Peeters, A. Stefanel, V. S. Farstad, MOSEM 2 project: Integration of

data acquisition, modelling, simulation and animation for learning electromagnetism and superconductivity, Il Nuovo

Cimento, 33 C, 3, DOI: 10.1393/ncc/i2010-10616-y, NIFCAS 33(3), (2010), pg. 64-74

• A. Stefanel, M. Michelini, L. Santi “High school students analyzing the phenomenology of SC and constructing

model of the Meissner effect” Proc. of te WCPE2012, (Pegem, Istanbul, 2014) , pp.1253-1266.

• T. Greczylo, F. Bouquet, G. Ireson, M. Michelini, V. Engstrøm, High-Tech-kit – the set of advanced activities from the

MOSEM project, in Multimedia in Physics Teaching and Learning, Michelini M, Lambourne R, Mathelisch L eds, SIF,

Bologna and in Il Nuovo Cimento, 33 C, 3 (DOI 10.1393/ncc/i2010-10621-2) NIFCAS 33(3) 1-238, pp.221-229E.

Kedzierska et al., Il Nuovo Cimento, 33 (3) (2010), pg. 65-74.

• M. Michelini, L. Santi, A. Stefanel (2014) Basic concept of superconductivity: a path for high school, in Frontiers of

Fundamental Physics and Physics Education Research, Burra G. S., Michelini M, Santi L, eds, Book of sel.

papers presented in the International Symposium FFP12, Springer, Cham, Heidelberg, NY, Dordrecht, London,

[978-3-319-00296-5] pp. 453-460.

• N. J. Nersessian. Synthese 80 (1), 163-183, (1989).• Marton, F. (1988). In Qualitative res. in educ. ed by B. Sherman & Webb (London: Faler) p 141-161.

• J. Park, J. Kim,, M. Kim, M. Lee. Int. J. Sci. Educ., 23 12, 1219-1236 (2001).• D. N. Perkins, T. A. Grotzer. Models and moves in Proceedings of AERA Conf., New Orleans, LA (2000).

DiscussionThe students use concepts as field lines, magnetization

vector, EM induction, as tools to construct a link between magnetic and electric properties of a SC, describing the phenomenology of the Meissner effect, according to the suggestion of many authors (Essen, Fiolhas 2012).In the phenomenological description of the SC the aim is

the recognition of the role of the EM induction.How this state is produced or the phase transition occurs, it is described as results of creation of the Cooper pairs.From research experimentations carried out in different contexts emerges that the majority of students recognize

the change in the magnetic properties of the SC under Tc, the B=0 condition, the different nature of the magnetic suspension and the levitation of a magnet on a YBCO.

Tutorials From the tutorial (N=240): according to the

observations carried out, which aspects characterize

the Meissner effect?

C) R=0, and exist Tc (15%)

D) B=0 and R=0 (13%)

NA: not answer (12%)

A) Existence of Tc and/or

repulsion/levitation (21%)

B) diamagnetism of YBCO (B=0); B

line do not cross the magnet; YBCO

screens the magnetic properties) in

more than half of cases also Tc (38%)

From the test: High School Experimentation

in Udine-Salerno-Tolmezzo 122 students

(13 grade – 18 aged)