COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’...

24
Topology Optimization of Lithium-Ion Battery Electrode Microstructure Morphology for Reduction of Damage Accumulation and Longevity of Battery Life Philip L. Clarke a , Reza Abedi a a Dept. of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee Space Institute, 411 B. H. Goethert Parkway, MS 21, Tullahoma, TN, 37388, USA, {pclarke, rabedi}@utsi.edu

Transcript of COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’...

Page 1: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Topology Optimization of Lithium-Ion Battery Electrode Microstructure Morphology for Reduction of Damage

Accumulation and Longevity of Battery Life

Philip L. Clarke a, Reza Abedi a

a Dept. of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee Space Institute, 411 B. H. Goethert Parkway, MS 21, Tullahoma, TN, 37388, USA,

{pclarke, rabedi}@utsi.edu

Page 2: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Motivations

β€’ Ubiquitous use in portal devices β€’ Cellular Phones β€’ Notebook

β€’ Energy storage device for renewable power sources

β€’ Solar, Hydro-, Geothermal power sources

β€’ LIB are top contenders to compensate intermittent nature of renewable sources.

β€’ Hybrid Electrical Vehicles (HEV) and Fully Electric Automotive Vehicles (EAV)

β€’ Higher gravimetric energy density of 150 Wh/kg [1]

β€’ Higher volumetric energy density of 150 Wh/kg [1]

β€’ Longer life of >1000 cycles [1] β€’ Relatively low cost [1] β€’ Global sales projection of approx.

3.5 trillion cells by 2015 (600% increase over 15 years)[2]

Page 3: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Challenges in Specific Applications

β€’ Commercial Demands: β€’ 150 km driving range β€’ 10-15 year lifespan β€’ 1000 cycles at 80% depth-of-

discharge

β€’ LIB Issues: β€’ Limited capacity β€’ Limited lifespan due to aging

mechanisms β€’ High cost for sustainability

New materials experience greater

volumetric expansion, stresses

and fracture

Fracture reduces cycle life and increases cost of system maintenance

New electrode materials for

capacity increase

Attempts to mitigate LIB Issues:

𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 372π‘šπ‘šπ‘šπ‘šπ‘š 𝑔𝑔⁄ 𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝑦𝑦𝑆𝑆𝐺𝐺𝑆𝑆𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = 4000π‘šπ‘šπ‘šπ‘šπ‘š 𝑔𝑔 β†’ ~300% 𝑒𝑒𝑒𝑒𝐢𝐢𝐢𝐢𝑒𝑒𝑒𝑒𝐢𝐢𝑒𝑒𝑒𝑒⁄

Page 4: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Electrochemistry + Solid Mechanics Coupling

Elasto-Diffusion Induced Fracture/Damage

Theory of Anisotropy

Optimization

Conclusion

Page 5: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

COMSOL Physics Implementation

β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE)

𝛻𝛻 β‹… πšͺπšͺ = 𝛻𝛻 β‹… 𝝈𝝈 = 𝛻𝛻 β‹… π‘ͺπ‘ͺ πœ–πœ–π‘‡π‘‡ βˆ’Ξ©3𝐢𝐢 βˆ’ πΆπΆπΊπΊπΊπΊπ‘Ÿπ‘Ÿ = 0

β€’ Electrochemical Diffusion: (General Form PDE)

�̇�𝐢 + 𝛻𝛻 β‹… πšͺπšͺ = �̇�𝐢 + 𝛻𝛻 β‹… βˆ’π’Ÿπ’Ÿ 𝛻𝛻𝐢𝐢 βˆ’Ξ©π‘…π‘…π‘…π‘…

π›»π›»πœŽπœŽπΊ = 0

𝒄𝒄 = 𝟏𝟏

𝒄𝒄 = 𝟎𝟎

Page 6: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

COMSOL Physics Implementation

β€’ Governing Equations β€’ Electrochemical Diffusion: (General Form PDE)

�̇�𝐢 + 𝛻𝛻 β‹… πšͺπšͺ = �̇�𝐢 + 𝛻𝛻 β‹… βˆ’π’Ÿπ’Ÿ 𝛻𝛻𝐢𝐢 βˆ’Ξ©π‘…π‘…π‘…π‘…

π›»π›»πœŽπœŽπΊ = 0

Page 7: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Electrochemistry + Solid Mechanics Coupling

Elasto-Diffusion Induced Fracture/Damage

Theory of Anisotropy

Optimization

Conclusion

Page 8: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Importance of Understanding Fracture

Fracture causes: β€’ Capacity Fade from structural

disorder β€’ Dislocation from Current collector β€’ Dislocation of conductive matrix

β€’ Increase growth of Passivated

Layers β€’ E.g. Solid Electrolyte Interphase (SEI) β€’ Increase impedance

THE MORE WE KNOW THE BETTER!

Complex Fracture (Courtesy of Grantab & Shenoy 2011)

Separation from current collector (Courtesy of Christensen 2010) SEI formation on nanoparticles (Wu, et. al. 2012)

Page 9: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Issues with Sharp Crack Modeling Issues arise from FEM discretization

Fixed Mesh Discretization: β€’ Pro: Relatively simple β€’ Con: Inaccurate pattern resolution

XFEM – Enriched Mesh Elements: β€’ Pro: Relatively more accurate β€’ Con: Challenging and still in

development stage β€’ Issues of singularity still arise

Mesh Adaptivity – Front Tracking: β€’ Pro: Can exactly capture fracture β€’ Con: Expensive and Elements can

distort and impose error β€’ Challenging geometric problem

Page 10: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Bulk Damage β€’ Statistical averaging of solution field

β€’ Alleviates issues of singularity

β€’ Solution is inclusive of damage location

β€’ Continuum viewpoint

β€’ Alleviates issues stemming from

discretization

β€’ Can be represented in terms of: β€’ Material Properties β€’ Mechanical Fields

𝐷𝐷𝑆𝑆 =πœ•πœ•π‘šπ‘šπ·π·πœ•πœ•π‘šπ‘š

= 1 βˆ’πΈπΈπ·π·πΈπΈ

β€’ Coupling through damage parameter

definition: β€’ Continuum Damage coupling to

Mechanical Response: π‘€π‘€π‘’π‘’πΆπΆπ‘š: 𝝈𝝈� = 1 βˆ’ 𝐷𝐷 βˆ’1𝝈𝝈

π·π·πΆπΆπ‘šπ‘šπΆπΆπ‘”π‘”π‘’π‘’: 𝐷𝐷 = 𝑓𝑓(𝝈𝝈, 𝝐𝝐,𝐸𝐸, … )

π‘šπ‘š π‘šπ‘šD

π‘šπ‘šD π‘šπ‘šD

RVE

Page 11: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Bulk Damage

Stochastic and Randomness of Solution Probability

β€’ Appropriate for non-deterministic solution modeling

β€’ Most electrode active materials are brittle

Courtesy of Barai & Mukherjee 2013

Specific Proposed Implementation: Weibull’s distribution formulation

𝐷𝐷 = 1 βˆ’ π‘’π‘’βˆ’πœŽπœŽβˆ—πœŽπœŽπ‘Šπ‘Š

π‘šπ‘šπ‘Šπ‘Š

β€’ Based on β€˜weakest-link’ approach

β€’ Appropriate where initial distribution of flaw is important

Page 12: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

COMSOL Physics Implementation

β€’ Governing Equations β€’ Damage Evolution: (Distributed Ordinary Differential Equation)

�̇�𝐷 = 𝐷𝐷𝑠𝑠̇ 𝐢𝐢𝑓𝑓 𝐷𝐷𝑠𝑠 > 𝐷𝐷 | 𝐷𝐷�̇�𝑠 > 0 0 π‘’π‘’πΆπΆπ‘šπ‘’π‘’π‘œπ‘œπ‘œπ‘œπΆπΆπ‘’π‘’π‘’π‘’

𝐷𝐷𝑠𝑠 = 1 βˆ’ π‘’π‘’βˆ’max 𝜎𝜎1,0

πœŽπœŽπ‘Šπ‘Š

π‘šπ‘šπ‘Šπ‘Š

Page 13: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Electrochemistry + Solid Mechanics Coupling

Elasto-Diffusion Induced Fracture/Damage

Theory of Anisotropy

Optimization

Conclusion

Page 14: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Anisotropic Theory

Non-Uniform Expansion

β€’ Non-Uniformity in mechanical responses

β€’ Non-Uniformity in damage evolution

β€’ Multiphysics effects in context on LIB

β€’ Self-Limiting Strain

Courtesy of Liu, et. al. 2011

Courtesy of Lee, et. al. 2012 Courtesy of Goldman, et. al. 2011

Page 15: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Anisotropic Theory COMSOL Implementation

πœŽπœŽπΊπΊπ‘–π‘– = π‘ͺπ‘ͺπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπ’Šπœ–πœ–π‘˜π‘˜π‘†π‘†π‘šπ‘šπΊπΊπ‘†π‘†πΊ

Ccubic crystal =

𝐢𝐢11 𝐢𝐢12𝐢𝐢12 𝐢𝐢11

𝐢𝐢12 0𝐢𝐢12 0

0 00 0

𝐢𝐢12 𝐢𝐢120 0

𝐢𝐢11 00 𝐢𝐢44

0 00 0

0 00 0

0 00 0

𝐢𝐢44 00 𝐢𝐢44

π‘šπ‘š =2𝐢𝐢44

𝐢𝐢11 βˆ’ 𝐢𝐢12∢ π‘€π‘€π‘’π‘’πΆπΆπ‘’π‘’π‘€π‘€π‘œπ‘œπ‘’π‘’ 𝑒𝑒𝑓𝑓 π‘šπ‘šπ‘’π‘’πΆπΆπ‘’π‘’π‘’π‘’πΆπΆπ‘œπ‘œπ‘’π‘’πΆπΆπ‘¦π‘¦

Courtesy of Goldman, et. al. 2011

Subsequent Non-Uniform Damage

Page 16: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Electrochemistry + Solid Mechanics Coupling

Elasto-Diffusion Induced Fracture/Damage

Theory of Anisotropy

Optimization

Conclusion

Page 17: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Importance of Optimization

β€’ Counterintuitive Concepts!

β€’ Design rules to limit electrode

degradation

β€’ Also limits usable capacity

β€’ Optimization finds optimal

design

β€’ Minimize damage

β€’ Maximum performance

Previous works optimize based on LIB performance quantities but what about mechanical response (i.e. damage evolution)?

Courtesy of Goldman, et. al. 2011

Page 18: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Optimization Framework

β€’ Multi-Objective Scheme β€’ Both Mechanical response and capacity optimized simultaneously β€’ Pareto Optimization

β€’ Optimization based on: β€’ Gravimetric energy density β€’ Volumetric energy density β€’ Effective (Usable) capacity β€’ Stress generation β€’ Damage Criteria

β€’ Optimization Issue: β€’ Altering electrode parameters such as particle size

β€’ limits fracture β€’ accelerate failure in systems susceptible to side

reactions (SEI formation).

β€’ Proposed Solution β€’ Optimization of different aspect of electrode

characteristic β€’ Optimize electrode surface (Electrode-electrolyte

interface) β€’ Subject to higher stresses than current collector

interface

Page 19: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Implemented COMSOL Geometries

Courtesy of Goldman, et. al. 2011

Page 20: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

COMSOL Physics Implementation β€’ Implemented Boundary Conditions

πšͺπšͺ β‹… 𝒏𝒏 =𝐢𝐢𝑆𝑆𝐹𝐹

:πΆπΆπ‘’π‘’π‘’π‘’πΆπΆπ‘’π‘’π‘’π‘’πΆπΆπ‘œπ‘œπΆπΆπΆπΆπΆπΆπ‘’π‘’π‘’π‘’ 𝑓𝑓𝑓𝑓𝑀𝑀𝑒𝑒

𝐢𝐢𝐺𝐺𝐺𝐺:𝐢𝐢𝑒𝑒𝑒𝑒𝐢𝐢𝐢𝐢𝑒𝑒𝑀𝑀𝑒𝑒𝑀𝑀𝑒𝑒 πΆπΆπ‘’π‘’π‘œπ‘œπΆπΆπ‘’π‘’π‘π‘πΆπΆπΆπΆπΆπΆπΆπΆπ‘¦π‘¦ πΆπΆπΆπΆπΆπΆπ‘œπ‘œ ′𝐢𝐢′ 𝐢𝐢𝑒𝑒 πΆπΆπ‘’π‘’π‘’π‘’πΆπΆπ‘’π‘’π‘’π‘’πΆπΆπ‘œπ‘œπΆπΆπΆπΆπΆπΆπ‘’π‘’π‘’π‘’

𝒖𝒖𝐺𝐺𝐺𝐺:𝐢𝐢𝑒𝑒𝑒𝑒𝐢𝐢𝐢𝐢𝑒𝑒𝑀𝑀𝑒𝑒𝑀𝑀𝑒𝑒 πΆπΆπ‘’π‘’π‘œπ‘œπΆπΆπ‘’π‘’π‘π‘πΆπΆπΆπΆπΆπΆπΆπΆπ‘¦π‘¦πΆπΆπΆπΆπΆπΆπ‘œπ‘œ 𝐢𝐢′ ′𝐢𝐢𝑒𝑒 π‘π‘πΆπΆπ‘’π‘’πΆπΆπ‘“π‘“πΆπΆπΆπΆπ‘’π‘’π‘šπ‘šπ‘’π‘’π‘’π‘’πΆπΆ

𝒖𝒖 = 0 ∢ 𝐹𝐹𝐢𝐢𝑒𝑒𝑒𝑒𝑝𝑝 π‘π‘πΆπΆπ‘’π‘’πΆπΆπ‘“π‘“πΆπΆπΆπΆπ‘’π‘’π‘šπ‘šπ‘’π‘’π‘’π‘’πΆπΆ

𝒖𝒖1𝐺𝐺 , 𝐢𝐢1

𝐺𝐺 𝒖𝒖1𝐺𝐺 , 𝐢𝐢1

𝐺𝐺

𝒖𝒖2𝐺𝐺 , 𝐢𝐢2

𝐺𝐺 𝒖𝒖2𝐺𝐺 , 𝐢𝐢2

𝐺𝐺

πšͺπšͺ β‹… 𝒏𝒏

Page 21: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

COMSOL Preliminary Results

𝐹𝐹1 𝐷𝐷 : ∫ 𝐷𝐷 𝑝𝑝𝑑𝑑 Ω∫ 1 𝑝𝑝𝑑𝑑 Ξ©

𝑆𝑆𝐢𝐢𝑒𝑒𝐢𝐢: βˆ«π‘†π‘† 𝑑𝑑𝑑𝑑

Ω∫ 1 𝑑𝑑𝑑𝑑 Ξ©

= 0.8

Page 22: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Electrochemistry + Solid Mechanics Coupling

Elasto-Diffusion Induced Fracture/Damage

Theory of Anisotropy

Optimization

Conclusion

Page 23: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

Conclusion

Implemented iso-/anisotropic elasto-diffusion coupling

Implemented continuum damage physics

β€œPartial” anisotropic mechanical responses

Account for multiphase lithiation physics

Implement elasto-plastic damage evolution law

Implement robust topology optimization function (COMSOL Livelink w/ MATLAB)

Page 24: COMSOL - Topology Optimization of Lithium -Ion Battery ......COMSOL Physics Implementation β€’ Governing Equations β€’ Solid Mechanics: (General Form PDE) 𝛻𝛻⋅πšͺπšͺ= π›»π›»β‹…πˆπˆ=

References

1. (Linden, et. al. 2001), Handbook of Batteries. McGraw-Hill, NY

2. (Scrosati, et. al. 2010), Journal of Power Source, 195, 2419-2430

3. (Grantab, et. al. 2011), Journal of Electrochem. Soc., 158, A948-A954

4. (Christensen 2010), Journal of Electrochem. Soc., 157, A366-A380

5. (Barai, et. al. 2013), Journal of Electrochem. Soc., 160, A955-A967

6. (Liu, et. al. 2011), Nano Letters, 11, 3312-3318

7. (Goldman, et. al. 2011), Advanced Func, Mat., 21, 2412-2422