Computational haemodynamics for clinical applications

59
1 Computational haemodynamics for clinical applications Sergey Simakov Moscow Institute of Physics and Technology Moscow, INM, 16.04.2014 The British Council Reseacher Links Workshop “Mathematical and Computational Modelling in Cardiovascular Problems”

description

The British Council Reseacher Links Workshop “Mathematical and Computational Modelling in Cardiovascular Problems”. Computational haemodynamics for clinical applications. Sergey Simakov Moscow Institute of Physics and Technology. Moscow, INM, 16 .0 4 .201 4. Review. Global blood flow. - PowerPoint PPT Presentation

Transcript of Computational haemodynamics for clinical applications

Page 1: Computational haemodynamics  for clinical applications

1

Computational haemodynamics for clinical applications

Sergey Simakov

Moscow Institute of Physics and Technology

Moscow, INM, 16.04.2014

The British Council Reseacher Links Workshop“Mathematical and Computational Modelling in

Cardiovascular Problems”

Page 2: Computational haemodynamics  for clinical applications

2

Review

Global blood flowClosed 1D modelElasticity modelingPhysiological reactions: gravity,

autoregulation

ApplicationsSport: stride frequency optimizationVascular surgery: stenosis treatment, cava

filtersEnhanced external counterpulsation (EECP)Arterio-venous malformation (AVM)

Patient specific fittingMulti-touch sensor panel1D core graph reconstruction

Page 3: Computational haemodynamics  for clinical applications

3

Global blood flow

Page 4: Computational haemodynamics  for clinical applications

4

Global blood flow

0

uSS

t x

02

020

0

2,

16 ... ,,2

S SP S Su u

u S SSS St x Sd

S S

1) Mass balance

2) Momentum balance

1 ,...,

0, 1M

m mk k k k

k k k

u S

, , 0,node mk k k m k k k k k kp S x p R u S x L

3) Boundary conditions at junctions

3.1

3.2

Compatibility conditions along outgoing characteristics

3.31 1 1 1n n n n

k k k ku S 2 1N equations

2 1N equations

Page 5: Computational haemodynamics  for clinical applications

5

Boundary conditions at junctions

,k k kV S u

,k k kg

1

k k

kk

k k

u SF

A PV u

S

0ki k kiW A E

k kk

V Fg

t x

k k kki ki ki ki k

dV V VW W W g

dt t x

Page 6: Computational haemodynamics  for clinical applications

6

Boundary conditions at junctions

k k kki ki ki ki k

dV V VW W W g

dt t x

0 00 0

0 0

( 1) exp 1 ,

( 1) ,

i k kk k k k

ki k k

ik k k k

S Su c S S

S S

u c S S

0 00 0

0 0

1exp 1 ,( 1) ,

, ( 1) ,

ikk k k k

k kki

ik k k k

Sc S S S

S SW

c S S S

Page 7: Computational haemodynamics  for clinical applications

7

Boundary conditions at junctions

1, , , , 1

,2 ,2 ,2

1,1 ,1 ,2 ,11 1 1

,1 ,1 ,1

n n n nk M k M k M k MM M M

k k k kk

n n n nk k k k

k k k kk

V V V VW W g

h

V V V VW W g

h

1 1, , , 1 , , 1 ,

1 1,1 ,1,2 ,1,2 ,1

n n n nk M k M M k M M k M

n n n nk k k k

S u

S u

,k k kV S u

,k k kg

Page 8: Computational haemodynamics  for clinical applications

8

Boundary conditions at junctions

1 1 1 1 11 1 1 1 1 1 1

1 1 1 1 12 2 2 2 2 2 21

1 1 1 1 1

( )... ...

n n n n n

n n n n nn

n n n n nN N N N N N N

S S P S

S S P SD

S S P S

F S R 0

1 1 1 1 1

,  , , , , [1, ]N N N N N

j ii k ij ki j j k k

j i j i k i k ik j k j

D R R R i j k N

R R

N equations

Page 9: Computational haemodynamics  for clinical applications

9

Heart model

Isovolumetric contraction (0.08 s), Ejection (0.293 с), Isovolumetric relaxation (0.067 с), Filling (0.56 с)

2

2( ) ( ), 1...4j j j ext

j j j jj

d V dV VI r p t P t j

dt dt c

ijij j i

ij

Q p pr

1 51 51 14 14

2 62 23 23

3 37 37 23 23

4 48 14 14

V Q Q

V Q Q

V Q Q

V Q Q

Mass conservation

Volume averaged chamber motion Left

auricle

Left ventricle

Page 10: Computational haemodynamics  for clinical applications

10

Boundary conditions at heart junctions

Arteries:

Veins:

,0 ,0 , , 5,1 , 6,2

i ij k ki i

k k ijij

p t p Su t S t Q t i j

r

, , , , 3,7 , 4,8

j jk k ij j

k k k k ijij

p S p tu t L S t L Q t i j

r

Discretisation of compatibility conditions

1 1 1 1n n n nk k k ku S

Page 11: Computational haemodynamics  for clinical applications

11

Next step with 1D

51 37( , )y V Q Q

51 37 5 7, ,Q Q s s

5,7max

i i

new old

is s

5 7,s s

5 7, ,y A t y B s s

1.

2.

3.

4.

5.

6.

Boundary conditions at heart junctions

Page 12: Computational haemodynamics  for clinical applications

12

Elasticity modeling

4) Vessel wall elasticity

Pedley, Luo, 1998

Modelling

0 0

0 0

exp 1 1,

ln ,

S S S Sf S

S S S S

2,extP S P t x c f S Analytic approximation

f S S

Toro, Muller

Favorsky, Mukhin. SosninKholodov

Page 13: Computational haemodynamics  for clinical applications

13

Elasticity modeling

T

,f Ts

* * *

*

, ,

0,

T R R

R

1) Tension in deformable fiber

2) Density of elasticity force

3) Tansmural pressure

for collagen fibers

* 1R

* 1R for the others

,p f n h

Peskin, Rosar 2001

X

s

Will be reported later today by V.Salamatova

Page 14: Computational haemodynamics  for clinical applications

14

Elasticity modelling

f S S

Page 15: Computational haemodynamics  for clinical applications

15

Elasticity modelling

,P T f n h

,P S P S x

Page 16: Computational haemodynamics  for clinical applications

16

Physiological reactions: gravity

Ориентация сосуда

g

g cosk k

4) Right part of momentum balance: gravity

2

216 ...

2

Su u Pu

t x Sd

- space orientationk kg

( )k k t

Page 17: Computational haemodynamics  for clinical applications

17

2

0

exp 1 1S

P cS

Wall elasticity adaptation

T T

newPoldP

Physiological reactions: autoregulation

12

new new

old old

c P

c P

Page 18: Computational haemodynamics  for clinical applications

18

Physiological reactions: gravity and autoregulation

S

S

Head

Leg

AuotregulationCollapsible tube

Page 19: Computational haemodynamics  for clinical applications

19

Physiological reactions: gravity and autoregulation

1Ed VanBavel, Jos P.M. Wesselman, Jos A.E. Spaan Myogenic, Activation and Calcium Sensitivity of Cannulated Rat Mesenteric Small Arteries. Circ. Research,1998

Rat artery response to static pressure load1

Page 20: Computational haemodynamics  for clinical applications

20

Patient specific fitting

Page 21: Computational haemodynamics  for clinical applications

21

Patient specific fitting

Page 22: Computational haemodynamics  for clinical applications

22

Patient specific fitting: multi-touch sensor panel

Page 23: Computational haemodynamics  for clinical applications

23

Patient specific fitting: multi-touch sensor panel

Page 24: Computational haemodynamics  for clinical applications

24

Patient specific fitting

Normal Plaque Plaque with bypass

Page 25: Computational haemodynamics  for clinical applications

25

1D Core grpah reconstruction

Reported yesterday by Yu. Ivanov

Page 26: Computational haemodynamics  for clinical applications

26

Sport: stride frequency

optimization

Page 27: Computational haemodynamics  for clinical applications

27

Skeletal-muscle pumping

max

2

2sin 12muscular k

s

PP t T

Wall state: muscularP S P S P

Venous valves in the leg

( , ), 0, max

, 0friction

friction friction

f s u uF A f

A u

Page 28: Computational haemodynamics  for clinical applications

28

Кров

оток

ч

ерез

но

ги

Skeletal-muscle pumping

Right shin

Left shin

Right thigh

Left thigh

Pressure

Page 29: Computational haemodynamics  for clinical applications

29

Skeletal-muscle pumping

Ven

ous

pre

ssur

e in

the

leg

Time

«Human Physiology» Schmidt, Thews

Simulations

Page 30: Computational haemodynamics  for clinical applications

30

Height, cm

Str

ide

fre

que

ncy

Skeletal-muscle pumping

SSSSSSSSSSSSSSSSSS

SimulationsCompetition data

Page 31: Computational haemodynamics  for clinical applications

31

Vascular surgery: stenosis

treatment

Page 32: Computational haemodynamics  for clinical applications

32

Vascular surgery: atherosclerosis treatment

Page 33: Computational haemodynamics  for clinical applications

33

Vascular surgery: atherosclerosis treatment

0

100

200

300

400

cm/s

3 4 12 5 7 9

Peak blood velocity before treatment

measured simulated

`

0

100

200

300

400

cm/s

3 4 12 5 7 9

Peak blood velocity after treatment

measured simulated

Patient-specific MRI and Doppler ultrasound data thanks to I.M. Sechenov First Moscow State Medical University (Ph.Kopylov, A.Tagiltsev)

Page 34: Computational haemodynamics  for clinical applications

34

Vascular surgery: endovascular

implants

Page 35: Computational haemodynamics  for clinical applications

35

Endovascular implants: cava filters

1D netwrok – placement, throbmus capturing, dissolving3D local blood flow – filter structure opotimisation

3D elasticity – pressure-area relationship, critical stress assesment

Page 36: Computational haemodynamics  for clinical applications

36

Endovascular implants: cava filters

Page 37: Computational haemodynamics  for clinical applications

37

1D global netwrok

1D global netwrok

3D flow

Multiscale (1D-3D)

Will be reported later today by T. Dobroserdova

Page 38: Computational haemodynamics  for clinical applications

38

Enhanced External

Counterpulsation (EECP)

Page 39: Computational haemodynamics  for clinical applications

39

Motivation

• Ischemia

• Arterial Hypertension

• Cardiovascular insufficiency

Indications

Effect

• Non-invasive increased

collateral perfusion

Page 40: Computational haemodynamics  for clinical applications

40

EECP optimization: structural model

Page 41: Computational haemodynamics  for clinical applications

41

EECP procedure

Page 42: Computational haemodynamics  for clinical applications

42

A

B

C

EECP model

Wall state equation

2

0

exp 1 1 add

SP c P

S

:addP

Cardiac cycle

0 1

systole diastole

Page 43: Computational haemodynamics  for clinical applications

43

EECP optimization

Terminal coronary arteryPressure averaged over cardiac cycle (kPa)

Continuous pulsations (standard procedure)

1 sec pulsation + 1 sec pause

10 sec pulsations + 10 sec pause

10 sec pulsations + 100 sec pause

Will be reported later today by T. Gamilov

Page 44: Computational haemodynamics  for clinical applications

44

Arterio-Venous Malformation

treatment (AVM)

Page 45: Computational haemodynamics  for clinical applications

45

Motivation

Page 46: Computational haemodynamics  for clinical applications

46

Motivation

Page 47: Computational haemodynamics  for clinical applications

47

Motivation

Page 48: Computational haemodynamics  for clinical applications

48

AVM

Page 49: Computational haemodynamics  for clinical applications

49

Page 50: Computational haemodynamics  for clinical applications

50

, 53,54R ref

i i

P refi

P Pe i

P

, 53,54R refi i

U refi

U Ue i

U

Pressure embolisation quality

Velocity embolisation quality

Page 51: Computational haemodynamics  for clinical applications

51

Pressure embolisation quality

Page 52: Computational haemodynamics  for clinical applications

52

Velocity embolisation quality

Page 53: Computational haemodynamics  for clinical applications

53

ArteriesBefore surgery

BeforeAfter

12

3

4

5

6

7

2 4 6 8

2

4

6

8

12

34

5 6

7

20 40 60 80 100 120 140

10

20

30

40

50

60

70

V-P

Q-E

Page 54: Computational haemodynamics  for clinical applications

54

1

234

2 0 4 0 6 0 8 0 1 0 0 1 2 0

2 0

4 0

6 0

1

23

4

1 2 3 4 5 6

1

2

3

4

5

6

ArteriesAfter

surgery

BeforeAfter

V-P

Q-E

Page 55: Computational haemodynamics  for clinical applications

55In collaboration with Lavrentyev Institute of Hydrodynamics RAS

Page 56: Computational haemodynamics  for clinical applications

56

Discussion

Page 57: Computational haemodynamics  for clinical applications

57

•Fast patient-specific vascular network

skeletonization

•Reference geometry and patient-specific

fitting

•Fast simulations with automatic or semi-

automatic decision making process

Current problems

Page 58: Computational haemodynamics  for clinical applications

58

Acknowledgements

Kholodov A.S.Kholodov A.S., , RAS corresponding memberRAS corresponding member(MIPT, Institute of computer-aided design RAS)(MIPT, Institute of computer-aided design RAS)Vassilevski Yu.V. Vassilevski Yu.V. D.Sc. D.Sc. (Institute of numerical mathematics (Institute of numerical mathematics RAS, MIPT)RAS, MIPT)Chupakhin A.P. Chupakhin A.P. D.Sc. D.Sc. (Lavrentyev Institute of Hydrodynamics (Lavrentyev Institute of Hydrodynamics RAS, NSU)RAS, NSU)Mynbaev O.A. MD (New European Surgical Academy, MIPT) Mynbaev O.A. MD (New European Surgical Academy, MIPT) Rezvan V.V. MD (N.V.Sklifosovsky Research Institute of Rezvan V.V. MD (N.V.Sklifosovsky Research Institute of Emergency Medicine)Emergency Medicine)Kopylov Ph.Yu. MD (1st Moscow State Medical University)Kopylov Ph.Yu. MD (1st Moscow State Medical University)

Salamatova V. (MIPT), Dobroserdova T.Salamatova V. (MIPT), Dobroserdova T. ( (INM, MSUINM, MSU), ), Gamilov Gamilov T.T. ( (MIPTMIPT), ), Khe A. (LIH, NSU), Cherevko A. (LYH, NSU), Ivanov Khe A. (LIH, NSU), Cherevko A. (LYH, NSU), Ivanov Yu.Yu. ( (INM, MSUINM, MSU), ), Kramarenko V.Kramarenko V. (MIPT(MIPT)), Gorodnova N. (MIPT), , Gorodnova N. (MIPT), Golov A. (MIPT), Pryamonosov R. (MSU), Zavodaev P. (MIPT)Golov A. (MIPT), Pryamonosov R. (MSU), Zavodaev P. (MIPT)

Page 59: Computational haemodynamics  for clinical applications

59

Thank You!

General outlines of this work are presented at http://dodo.inm.ras.ru/research/haemodynamics