Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8...

103
1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll` ege de France Quentin M´ erigot / Universit´ e Paris-Sud Computational geometry, optimal transport and applications Joint works with Thomas Gallou¨ et, Jun Kitagawa, Pedro Machado, Jocelyn Meyron, Jean-Marie Mirebeau, Boris Thibert

Transcript of Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8...

Page 1: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

1

Geometric Understand in Higher Dimension / 8 Juin 2017 / College de France

Quentin Merigot / Universite Paris-Sud

Computational geometry, optimal transport and

applications

Joint works with Thomas Gallouet, Jun Kitagawa, Pedro Machado,Jocelyn Meyron, Jean-Marie Mirebeau, Boris Thibert

Page 2: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

2

Overview

1. Optimal transport & Laguerre diagrams

2. First application: non-imaging optics

3. Second application: enforcing incompressibility

Page 3: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

3

1. Optimal transport & Laguerre diagrams

Page 4: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

4

Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

YX

Page 5: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

4

Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

YX

Think of ρ, ν as describing piles of sand, made of many grains.

Assume that moving a grain with mass dm from x to y costs c(x, y)dm.

Optimal transport problem: what is the cheapest way of moving ρ to ν ?

Page 6: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

4

Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

T : X → Y YT−1(B)X

T is a transport map (written T#ρ = ν) if for all B ⊆ Y, ρ(T−1(B)) = ν(B)

B

Page 7: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

4

Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

T : X → Y YT−1(B)X

T is a transport map (written T#ρ = ν) if for all B ⊆ Y, ρ(T−1(B)) = ν(B)

B

Optimal transport problem: minimize∫Xc(x, T (x)) d ρ(x) where T#ρ = ν

Page 8: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

4

Optimal transport

Data: ρ = prob density on X ν probability meas. on Y

T : X → Y YT−1(B)X

T is a transport map (written T#ρ = ν) if for all B ⊆ Y, ρ(T−1(B)) = ν(B)

B

Optimal transport problem: minimize∫Xc(x, T (x)) d ρ(x) where T#ρ = ν

Many applications:

computer graphics, machine learning, inverse problems, etc.

PDEs, functional inequalities, probabilities,

# articles containing ”OT”

Page 9: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

5

Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Sinkhorn/IPFP

Page 10: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

5

Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampere

Sinkhorn/IPFP

Page 11: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

5

Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source with density, discrete target:

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampere

Minkowski, Alexandrov, etc.

Sinkhorn/IPFP

Page 12: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

5

Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source with density, discrete target:

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampere

Flexibility for the cost function but computationally expensive

Computationally efficient but restricted to ”geometric” cost functions.

Minkowski, Alexandrov, etc.

Sinkhorn/IPFP

Page 13: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

5

Computational optimal transport

Hungarian algorithm

linear programming

Discrete source and targetαi βj

Source with density, discrete target:

Source and target with density:

dynamic (Benamou-Brenier) formulation

finite-differences for Monge-Ampere

Minkowski, Alexandrov, etc.

”semi-discrete optimal transport”

Sinkhorn/IPFP

Page 14: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

6

Semi-discrete optimal transport

Data: ρ = prob density on X ν =∑y∈Y νyδy prob. on finite Y

Y

X

Page 15: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

6

Semi-discrete optimal transport

Data: ρ = prob density on X ν =∑y∈Y νyδy prob. on finite Y

y

T : X → Y

Y

T−1(y)X

T is a transport map if for every y ∈ Y, ρ(T−1({y})) = νy (capacity constraint)

Page 16: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

6

Semi-discrete optimal transport

Data: ρ = prob density on X ν =∑y∈Y νyδy prob. on finite Y

y

T : X → Y

Y

T−1(y)X

T is a transport map if for every y ∈ Y, ρ(T−1({y})) = νy (capacity constraint)

The set of transport maps is huge (⊆ measurable partitions of X) . . .

Page 17: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

6

Semi-discrete optimal transport

Data: ρ = prob density on X ν =∑y∈Y νyδy prob. on finite Y

y

T : X → Y

Y

T−1(y)X

T is a transport map if for every y ∈ Y, ρ(T−1({y})) = νy (capacity constraint)

The set of transport maps is huge (⊆ measurable partitions of X) . . .

. . . but fortunately optimal maps form a much smaller (finite-dimensional) set.

Page 18: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

7

Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

Page 19: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

7

Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

Vor(y) = {x ∈ X;∀z ∈ Y, c(x, y) ≤ c(x, z)}

I If the price of bread is uniform, people go the closest bakery:

Page 20: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

7

Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

y0

Vor(y) = {x ∈ X;∀z ∈ Y, c(x, y) ≤ c(x, z)}

I If the price of bread is uniform, people go the closest bakery:

Minimizes total distance walked . . . but might exceed the capacity of bakery y0!

Page 21: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

7

Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

I If prices are given by ψ : Y → R, people make a compromise:

Lagψ(y) = {x ∈ X;∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

Y

X

Page 22: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

7

Semi-discrete OT and Laguerre diagrams

ρ : X → R density of population

Y = location of bakeries

c(x, y) := ‖x− y‖2 cost of walking from x to y

I If prices are given by ψ : Y → R, people make a compromise:

Lagψ(y) = {x ∈ X;∀z ∈ Y, c(x, y) + ψ(y) ≤ c(x, z) + ψ(z)}

Y

X

Solving optimal transport between ρ and∑y νyδy ⇐⇒ Finding ψ

Lemma: The Laguerre diagram induces an optimal transport between ρ and

νψ :=∑y∈Y ρ(Lagy(ψ))δy

xTψ(x)

Page 23: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

8

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =∑Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν [Gangbo McCann ’96]

Page 24: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

8

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =∑Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

I Coordinate-wise increments O(N3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]

Page 25: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

8

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =∑Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

⇐⇒ maximizing the concave function Φ [Aurenhammer, Hoffman, Aronov ’98]

Φ(ψ) :=∑y

∫Lagy(ψ)

[c(x, y) + ψ(y)] d ρ(x)−∑y ψ(y)νy

I Coordinate-wise increments O(N3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]

Page 26: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

8

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =∑Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

⇐⇒ maximizing the concave function Φ [Aurenhammer, Hoffman, Aronov ’98]

Φ(ψ) :=∑y

∫Lagy(ψ)

[c(x, y) + ψ(y)] d ρ(x)−∑y ψ(y)νy

I First variational approaches, without convergence analysis

I Coordinate-wise increments O(N3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]

[M. 11], [de Goes et al 12], [Levy 15]

Page 27: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

8

Semi-discrete OT as Concave Maximization

Theorem: Finding an optimal transport between ρ and ν =∑Y νyδy

⇐⇒ finding prices ψ on Y such that νψ = ν

⇐⇒ maximizing the concave function Φ [Aurenhammer, Hoffman, Aronov ’98]

Φ(ψ) :=∑y

∫Lagy(ψ)

[c(x, y) + ψ(y)] d ρ(x)−∑y ψ(y)νy

I First variational approaches, without convergence analysis

I Coordinate-wise increments O(N3

ε log(N)). [Oliker–Prussner ’99]

[Gangbo McCann ’96]

under (rather) general assumptions on ρ and c. [Kitagawa, M., Thibert 16]

I Damped Newton’s algorithm, with global linear convergence,

[M. 11], [de Goes et al 12], [Levy 15]

Page 28: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

9

Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

ε0 ' 0.05

Voronoi diagram

Page 29: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

9

Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

too much masstoo little mass

ε0 ' 0.05

Voronoi diagram

Where εk :=∑i |ρ(Lagi(ψk))− 1

N | is the amount of misallocated mass.

Page 30: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

9

Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

ε0 ' 0.05

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0)

Where εk :=∑i |ρ(Lagi(ψk))− 1

N | is the amount of misallocated mass.

ε1 ' 0.007

Page 31: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

9

Numerical example 1

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 1]2

ε0 ' 0.05

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0) ψ2 = Newt(ψ1)

Laguerre diagram

Where εk :=∑i |ρ(Lagi(ψk))− 1

N | is the amount of misallocated mass.

ε1 ' 0.007 ε2 ' 10−9

Page 32: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

10

Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram

Cost: c(x, y) = ‖x− y‖2

Page 33: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

10

Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0)

ε1 ' 0.024

NB: The points do not move.

Page 34: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

10

Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0) ψ2 = Newt(ψ1)

Laguerre diagram

ε1 ' 0.024 ε2 ' 10−6

NB: The points do not move.

Page 35: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

10

Numerical example 2

ψ0 = 0

Source: ρ = uniform on [0, 1]2,

Target: ν = 1N

∑1≤i≤N δyi with yi uniform i.i.d. in [0, 13 ]2

ε0 ' 0.48

Voronoi diagram Laguerre diagram

Cost: c(x, y) = ‖x− y‖2

ψ1 = Newt(ψ0) ψ2 = Newt(ψ1)

Laguerre diagram

ε1 ' 0.024 ε2 ' 10−6

Laguerre diagrams are able to encode an actual transport of mass (large movement).

NB: The points do not move.

Page 36: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

11

2. First application: non-imaging opticsJoint works with J. Kitawaga, P. Machado, J. Meyron and B. Thibert

Page 37: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

12

(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Forward problem:

surface S

raytracing

Input

Output

0

S20

S

TS(x) ∈ S2∞

x

Page 38: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

12

(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Inverse problem:

Forward problem:

surface S

raytracing

source: ρ ∈ Probac(S20 )

target: ν ∈ Prob(S2∞)surface S s.t. TS#ρ = ν

Input

Output

OutputInput

??

0

S20

S

TS(x) ∈ S2∞

x

Page 39: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

12

(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Inverse problem:

Forward problem:

surface S

raytracing

source: ρ ∈ Probac(S20 )

target: ν ∈ Prob(S2∞)surface S s.t. TS#ρ = ν

Input

Output

OutputInput

??

−→ Optical components for car beams, public lighting, hydroponic agriculture

0

S20

S

TS(x) ∈ S2∞

x

Page 40: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

12

(Point source) Inverse Reflector Problem

point light source := ρ ∈ Probac(S20 )

light distribution after reflection : TS#ρ ∈ Prob(S2∞)

Inverse problem:

Forward problem:

surface S

raytracing

source: ρ ∈ Probac(S20 )

target: ν ∈ Prob(S2∞)surface S s.t. TS#ρ = ν

Input

Output

OutputInput

??

−→ Optical components for car beams, public lighting, hydroponic agriculture

0

S20

S

TS(x) ∈ S2∞

x

−→ Zoology of similar optics problems: collimated source, lenses, near field targed...

Page 41: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

towards y ∈ S2∞

Page 42: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2∞

Page 43: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2∞

Page 44: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

−→ Can be adjusted by playing with focal distance κy

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2∞

Page 45: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

−→ Can be adjusted by playing with focal distance κy

−→ Focal distance ' prices in the economic example

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2∞

Page 46: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

−→ Can be adjusted by playing with focal distance κy

−→ Focal distance ' prices in the economic example

and, indeed, Vy(κ) is a Laguerre cell !

and c(x, y) = − log(1− 〈x|y〉)Vy(κ) = Lagy(ψ) for ψ(y) = log(κy)

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2∞

Page 47: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

13

Semidiscrete Inverse Reflector Problem

focal 0, direction y and focal distance κy

0

∂Py(κy)

S20

Assume ν :=∑y∈Y νyδy, and let Py(κy) := solid paraboloid of revolution with

S

ρ(Vy(κ)) = amount of light reflected towards y ∈ S2∞.

Theorem: Semidiscrete Inverse Reflector Problem

⇐⇒ semidiscrete OT problem on S2 for c(x, y) = − log(1− 〈x|y〉)

−→ Can be adjusted by playing with focal distance κy

−→ Focal distance ' prices in the economic example

and, indeed, Vy(κ) is a Laguerre cell !

and c(x, y) = − log(1− 〈x|y〉)Vy(κ) = Lagy(ψ) for ψ(y) = log(κy)

S := surface = ∂ (∩yPy(κy))

towards y ∈ S2∞

' [Glimm-Oliker ’03] [Wang ’04]

Page 48: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

14

Numerics 1

ν =∑Ni=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2+ N = 1000

drawing of (Lagψ(yi)) on S2+ for ψ = 0

[Machado, M., Thibert ’14]

Page 49: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

14

Numerics 1

ν =∑Ni=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2+ N = 1000

drawing of (Lagψ(yi)) on S2+ for ψsol

[Machado, M., Thibert ’14]

Page 50: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

14

Numerics 1

ν =∑Ni=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2+ N = 1000

reflected image (using LuxRender)

[Machado, M., Thibert ’14]

Page 51: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

14

Numerics 1

ν =∑Ni=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2+ N = 1000

constructed reflector

[Machado, M., Thibert ’14]

Page 52: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

15

Numerics 2

drawing of (Lagψ(yi)) on S2+ for ψsol

ν =∑Ni=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2+ N = 15000

[Machado, M., Thibert ’14]

Page 53: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

15

Numerics 2

reflected image (using LuxRender)

ν =∑Ni=1 νiδyi = discretization of a picture of G. Monge.

ρ = uniform measure on half-sphere X := S2+ N = 15000

[Machado, M., Thibert ’14]

Page 54: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

16

Numerics 3

ν =∑Ni=1 νiδyi = discretization of the ”Cameraman” picture

ρ = non-uniform measure on half-sphere X := S2+ N = 250k

[Meyron, M., Thibert ’17]

Desired target ν

Page 55: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

16

Numerics 3

ν =∑Ni=1 νiδyi = discretization of the ”Cameraman” picture

ρ = non-uniform measure on half-sphere X := S2+ N = 250k

[Meyron, M., Thibert ’17]

Constructed reflectorcolor = mean curvature

Page 56: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

16

Numerics 3

ν =∑Ni=1 νiδyi = discretization of the ”Cameraman” picture

ρ = non-uniform measure on half-sphere X := S2+ N = 250k

[Meyron, M., Thibert ’17]

Constructed reflectorcolor = mean curvature

Resimulated image

Page 57: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

17

Damped Newton’s Algorithm

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε

Page 58: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

17

Damped Newton’s Algorithm

Damped Newton algorithm: for solving G(ψ) = ν

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

Input: ψ0 ∈ Y R s.t. ε := 12 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε

Page 59: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

17

Damped Newton’s Algorithm

Loop: −→ Compute Newton point: −DG(ψk)−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

−→ Backtrack so that ψk+1 ∈ Eε + sufficient decrease cond.

Input: ψ0 ∈ Y R s.t. ε := 12 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε

Page 60: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

17

Damped Newton’s Algorithm

Loop: −→ Compute Newton point: −DG(ψk)−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Proposition: The algorithm converges globally with linear rate provided:

(Strong monotonicity): for all ψ ∈ Eε, DG is negative definite on {cst}⊥

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

−→ Backtrack so that ψk+1 ∈ Eε + sufficient decrease cond.

Input: ψ0 ∈ Y R s.t. ε := 12 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε

Page 61: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

17

Damped Newton’s Algorithm

Loop: −→ Compute Newton point: −DG(ψk)−1(G(ψk)− ν)

Damped Newton algorithm: for solving G(ψ) = ν

Proposition: The algorithm converges globally with linear rate provided:

(Strong monotonicity): for all ψ ∈ Eε, DG is negative definite on {cst}⊥

(Smoothness): G is C1 on Eε

Recall: G : ψ ∈ RY 7→ (ρ(Lagy(ψ)))y∈Y RY .

−→ Backtrack so that ψk+1 ∈ Eε + sufficient decrease cond.

Input: ψ0 ∈ Y R s.t. ε := 12 miny∈Y min(Gy(ψ0), νy) > 0

Admissible domain: Eε := {ψ ∈ RY | ∀y ∈ Y,Gy(ψ) ≥ ε}

ρ(Lagψ(y)) ≥ ε

Page 62: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

Page 63: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=(∂Gy

∂1z(ψ))

and the graph H:

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .

Page 64: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=(∂Gy

∂1z(ψ))

and the graph H:

I H = 1-skeleton of (Lagy(ψ) ∩ {ρ > 0})y∈Y

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .

Page 65: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=(∂Gy

∂1z(ψ))

and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected

I H = 1-skeleton of (Lagy(ψ) ∩ {ρ > 0})y∈Y

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .

Page 66: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Strong monotonicity of G):

(y, z) ∈ H ⇐⇒ Lzy > 0

I Consider the matrix (Lyz) :=(∂Gy

∂1z(ψ))

and the graph H:

I If {ρ > 0} is connected and ψ ∈ Eε, then H is connected

I H = 1-skeleton of (Lagy(ψ) ∩ {ρ > 0})y∈Y

I L is the Laplacian of a connected graph =⇒ KerL = R · cst

. . . recall that Gy(ψ) = ρ(Lagy(ψ)) . . .

Page 67: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

Page 68: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

Loeper’s condition: there exists expcy : Rd → X diffeo. s.t. ∀ψ and y

Lagψ(y) ⊆ X[expcy]−1(Lagψ(y)) ⊆ Rd

is convexexpcy

Page 69: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

Loeper’s condition: there exists expcy : Rd → X diffeo. s.t. ∀ψ and y

Lagψ(y) ⊆ X[expcy]−1(Lagψ(y)) ⊆ Rd

is convexexpcy

−→ Restrictive condition, which fortunately is satisfied for the reflector problem.

Page 70: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

18

Convergence of Damped Newton

Theorem: Let X be an hemisphere of S2. Assume that Y ⊂ S2 \X and that

ρ ∈ Cα(X) and {ρ > 0} is connected

Then, the damped Newton algorithm for SD-OT converges globally with linear rateand locally with rate (1 + α). special case of [Kitagawa, M., Thibert ’15]

(Smoothness of G): Relies heavily on a convexity property of Laguerre cells:

Loeper’s condition: there exists expcy : Rd → X diffeo. s.t. ∀ψ and y

Lagψ(y) ⊆ X[expcy]−1(Lagψ(y)) ⊆ Rd

is convexexpcy

−→ Restrictive condition, which fortunately is satisfied for the reflector problem.

−→ Loeper’s condition originates from regularity theory for OT...

Page 71: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

19

3. Second application: enforcing incompressibilityJoint work with J.M. Mirebeau

Page 72: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

Page 73: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

I What about the minimizing geodesics between s∗, s∗ ∈ SDiff ?

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗}

Page 74: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

I What about the minimizing geodesics between s∗, s∗ ∈ SDiff ?

[Brenier ’93]

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗}

−→ theory of generalized geodesics

Page 75: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

I What about the minimizing geodesics between s∗, s∗ ∈ SDiff ?

−→ non-deterministic behavior of fluid particles. [Shnirelman ’94]

[Brenier ’93]

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗}

−→ theory of generalized geodesics

Page 76: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

I What about the minimizing geodesics between s∗, s∗ ∈ SDiff ?

−→ non-deterministic behavior of fluid particles. [Shnirelman ’94]

[Brenier ’93]

I Discretization: N = number of particles, T = number of timesteps

At time i, the particles are at positions mi := (M1i , . . . ,M

Ni ) ∈ RNd.

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗}

−→ theory of generalized geodesics

Page 77: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

I What about the minimizing geodesics between s∗, s∗ ∈ SDiff ?

−→ non-deterministic behavior of fluid particles. [Shnirelman ’94]

[Brenier ’93]

I Discretization: N = number of particles, T = number of timesteps

At time i, the particles are at positions mi := (M1i , . . . ,M

Ni ) ∈ RNd.

action incompressibilityboundary conditions

minm0,...,mT∈RNd

T

2

T−1∑i=0

‖mi+1 −mi‖22 + λ(‖m0 − s∗‖22 + ‖mT − s∗‖22 + ???

)

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗}

−→ theory of generalized geodesics

Page 78: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

20

Geodesics between incompressible maps

Thm: Smooth solutions to Euler equations for incompressible fluids are geodesics in

SDiff = {volume-preserving diffeo. from X to X} ⊆ E := L2(X,Rd)[Arnold ’66]

I What about the minimizing geodesics between s∗, s∗ ∈ SDiff ?

−→ non-deterministic behavior of fluid particles. [Shnirelman ’94]

[Brenier ’93]

I Discretization: N = number of particles, T = number of timesteps

At time i, the particles are at positions mi := (M1i , . . . ,M

Ni ) ∈ RNd.

action incompressibilityboundary conditions

minm0,...,mT∈RNd

T

2

T−1∑i=0

‖mi+1 −mi‖22 + λ(‖m0 − s∗‖22 + ‖mT − s∗‖22 + ???

)

inf

{∫ 1

0

‖s′(t)‖2E d t | s : [0, 1]→ SDiff, s0 = s∗, s1 = s∗}

A point cloud cannot be exactly incompressible =⇒ penalization using optimal transport.

−→ theory of generalized geodesics

Page 79: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Page 80: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 900, X = [0, 1]2.

m

Page 81: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 900, X = [0, 1]2.

m

dS(m) ' 0, 031

Page 82: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 900, X = [0, 1]2.

m

dS(m) ' 0, 031 −N2 ∇ d2S(m)

Page 83: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 900, X = [0, 1]2.

m

dS(m) ' 0, 031 −N2 ∇ d2S(m) m− N

2 ∇ d2S(m)

Page 84: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 740, X = [0, 1]2.

m

dS(m) ' 0, 14

Page 85: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 740, X = [0, 1]2.

m

dS(m) ' 0, 14 −N2 ∇ d2S(m)

Page 86: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

21

Distance to incompressible maps

where ρ is uniform on X and c(x, y) = ‖x− y‖2.

Definition: Given m = (M1, . . . ,MN ) ∈ RNd, we define

d2S(m) = min. transport cost between ρ and ν =

1

N

N∑k=1

δMk

Example: N = 740, X = [0, 1]2.

m

dS(m) ' 0, 14 −N2 ∇ d2S(m) m− N

2 ∇ d2S(m)

Page 87: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

22

From particles to paths

I Time-discretization of geodesic with endpoints s∗, s∗ ∈ RNd

action incompressibilityboundary conditions

minm1,...,mT∈RNd

T

2

T−1∑i=0

‖mi+1 −mi‖22 + λ

(‖m0 − s∗‖22 + ‖mT − s∗‖22 +

T−1∑i=1

d2S(mi)

)

Page 88: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

22

From particles to paths

I Given m = (m1, . . . ,mT ) ∈ RTNd, let γk ∈ C0([0, 1],Rd) be PL with γk(ti) = Mki

I Time-discretization of geodesic with endpoints s∗, s∗ ∈ RNd

action incompressibilityboundary conditions

minm1,...,mT∈RNd

T

2

T−1∑i=0

‖mi+1 −mi‖22 + λ

(‖m0 − s∗‖22 + ‖mT − s∗‖22 +

T−1∑i=1

d2S(mi)

)

t = 0 t = 1

γk

ti = iT

Page 89: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

22

From particles to paths

I Given m = (m1, . . . ,mT ) ∈ RTNd, let γk ∈ C0([0, 1],Rd) be PL with γk(ti) = Mki

I Time-discretization of geodesic with endpoints s∗, s∗ ∈ RNd

action incompressibilityboundary conditions

minm1,...,mT∈RNd

T

2

T−1∑i=0

‖mi+1 −mi‖22 + λ

(‖m0 − s∗‖22 + ‖mT − s∗‖22 +

T−1∑i=1

d2S(mi)

)

t = 0 t = 1

γk

−→ One can associate to m a probability measure

ti = iT

µm := 1N

∑Nk=1 δγk ∈ Prob(C0([0, 1],Rd))

over the set of C0 paths:

Page 90: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

22

From particles to paths

I Given m = (m1, . . . ,mT ) ∈ RTNd, let γk ∈ C0([0, 1],Rd) be PL with γk(ti) = Mki

I Time-discretization of geodesic with endpoints s∗, s∗ ∈ RNd

action incompressibilityboundary conditions

minm1,...,mT∈RNd

T

2

T−1∑i=0

‖mi+1 −mi‖22 + λ

(‖m0 − s∗‖22 + ‖mT − s∗‖22 +

T−1∑i=1

d2S(mi)

)

t = 0 t = 1

γk

−→ One can associate to m a probability measure

ti = iT

µm := 1N

∑Nk=1 δγk ∈ Prob(C0([0, 1],Rd))

over the set of C0 paths:

−→ Under suitable hypotheses, minimizers of thediscrete problem converge to a so-called

generalized minimizing geodesic,

µ ∈ Prob(C0([0, 1],Rd)).

Page 91: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

23

Numerical result: Inversion of the DiskX = B(0, 1) ⊆ R2 (s∗, s

∗) = (id,−id)

Classical solutions: clockwise/counterclockwise rotations µ±

Page 92: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

23

Numerical result: Inversion of the DiskX = B(0, 1) ⊆ R2 (s∗, s

∗) = (id,−id)

Classical solutions: clockwise/counterclockwise rotations µ±

linear combination µ 12

of µ± constructed from rotations

Examples of generalized solutions:

NB: dim(spt(µ 12)) = 2

Page 93: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

23

Numerical result: Inversion of the DiskX = B(0, 1) ⊆ R2

spt(µ) = {t 7→ x cos(πt) + v sin(πt) ∈ C0([0, 1], X);

(s∗, s∗) = (id,−id)

Brenier’s generalized solution: µ ∈ Prob(Γ):

(x, v) ∈ X × R2, ‖v‖2 = 1− ‖x‖2}t = 0

t = 12

t = 1

−→ non-deterministic solution, dim(spt(µ)) = 3

Page 94: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

23

Numerical result: Inversion of the DiskX = B(0, 1) ⊆ R2

spt(µ) = {t 7→ x cos(πt) + v sin(πt) ∈ C0([0, 1], X);

(s∗, s∗) = (id,−id)

Brenier’s generalized solution: µ ∈ Prob(Γ):

(x, v) ∈ X × R2, ‖v‖2 = 1− ‖x‖2}t = 0

t = 12

t = 1

Computed trajectories for N = 105, T = 17

−→ non-deterministic solution, dim(spt(µ)) = 3

Page 95: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

24

Numerical result: Beltrami Flow in Square

forwardsimulation

Page 96: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

24

Numerical result: Beltrami Flow in Square

forwardsimulation

s∗ s∗

Page 97: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

24

Numerical result: Beltrami Flow in Square

forwardsimulation

reconstructedgeneralized

geodesics

s∗ s∗

Page 98: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

25

Numerical result: Comparison of Trajectories

Square, tmax = 1.5

Disk inversion

Page 99: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

26

Comparison of Minkowski dimensions

Disk inversionSquare rotation, tmax ∈ {0.9, 1.1, 1.3, 1.5}

dim = 2

dim = 3

Estimation of dim(spt(µ)) via log(N)/ log(1/δN )

where δN = minimum radius required to cover spt(µ) with N balls.

Page 100: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

27

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Optimal transport

Monge-Ampere type PDEs

Generated jacobian equations

physics

optics, geometry, economics

Page 101: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

27

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Optimal transport

Monge-Ampere type PDEs

Generated jacobian equations

physics

optics, geometry, economics

2) The discretized problems inherit many (geometric) features of the continuous ones.

Page 102: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

27

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Optimal transport

Monge-Ampere type PDEs

Generated jacobian equations

physics

optics, geometry, economics

2) The discretized problems inherit many (geometric) features of the continuous ones.

3) Geometric inference for probability measures in RT×N×d (e.g. dimension estimation).

could provide insight on Brenier’s generalized geodesics (fractal behavior?).

Page 103: Computational geometry, optimal transport and · 1 Geometric Understand in Higher Dimension / 8 Juin 2017 / Coll ege de France Quentin M erigot / Universit e Paris-Sud Computational

27

Summary

1) Laguerre diagrams provide a very suitable and efficient tool for discretizing :

Optimal transport

Monge-Ampere type PDEs

Generated jacobian equations

physics

optics, geometry, economics

2) The discretized problems inherit many (geometric) features of the continuous ones.

3) Geometric inference for probability measures in RT×N×d (e.g. dimension estimation).

could provide insight on Brenier’s generalized geodesics (fractal behavior?).

Thank you for your attention!