Computation of Wind Pressures on Low-rise Structures

download Computation of Wind Pressures on Low-rise Structures

of 12

Transcript of Computation of Wind Pressures on Low-rise Structures

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    1/12

    Journal of Wind E ngineering and Industrial Aerodynamics, 41-44 (1992) 1629-1640Elsevier 1629

    C o m p u t a t i o n o f W i n d P r e s s u r e s o n Low-rise St ructuresD.A. Paterson, and J.D. Holmesb-CSIRO Division of Building, Construct ion and Engineering, P.O. Box 310, NorthRyde, N.S.W. 2113, Austra liabCSIRO Division of Building, Construction and Engineering, P.O. Box 56,Highett, Vic. 3190, AustraliaA b s t r a c t

    This report describes the use of some computer programs writ ten by one of theauthors (DP) in predicting mean and peak wind pressures on arched-roofbuildings. The research was carried out because there is a lack of good wind-tunnel and full-scale data on arched-roof buildings. The programs have beenvalidated by comparing the results with wind-tunnel and full-scale dataassociated with the Texas Tech building.1. INTRODUCTION

    The related problems of wind-induced pressures on building surfaces and windvelocities at pedestrian level adjacent to buildings are of great importance toengineers and architects. Over the last 20 years, these problems have usuallybeen solved by wind tunnel tests. This is a relatively expensive approach, andrequires separate models to be made for each geometrical configuration. Also, fora structure with a curved external surface, such as an arched-roof building, theflow and pressures obtained on a small scale model may differ from full scale dueto the difference in Reynolds Numbers in the two cases.

    The technique of computer modelling of wind flows around structures has beendeveloped by the authors. It seems to be as accurate as wind tunnel modelling inthe determination of mean flow velocities and mean surface pressures. It ismuch less expensive than wind tunnel modelling. Mean surface pressurecoefficients, when used with peak gust wind speeds, may be sufficiently accuratefor the structural design of many structures for which resonant dynamicresponse is not expected to be important. This approach is known as the 'quasi-steady' method, and has formed the basis of many international codes and0167-6105/92/$05.00 1992 Elsevier Science Publishers B.V . All rights reserved.

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    2/12

    1630s t a n d a r d s f o r w i n d l o a d i n g.

    T h e p r e s e n t c o m p u t e r p r o g r a m s h a v e b e e n v a l i d a t e d b y c o m p a r i n g t h e r e s u l t sw i t h th o s e o f m a n y d i f f e re n t w i n d t u n n e l a n d f u ll -s c a le e x p e r i m e n t s . O n e s u c hc o m p a r i s o n , w i t h r e s u l t s a s s o c i a t e d w i t h t h e T e x a s T e c h b u i l d i n g , i s r e p o r t e dh e r e. I n t h e f i r s t h a l f of 1 9 89 , a s e ri es o f m e a s u r e m e n t s o f p r e s s u r e s w e r e m a d eo n a n i n s t r u m e n t e d (9 .1 x 1 3. 7 x 4 .0 m ) ( 3 0 x 4 5 x 1 3 f t) e x p e r i m e n t a l b u i l d i n g a tt h e T e x a s T e c h U n i v e r s i t y [1 ]. P e o p l e w o r k i n g w i t h t h i s b u i l d i n g h a v e p r o d u c e ds o m e s e t s o f d a t a o f m e a n , r . m . s , a n d p e a k p r e s s u r e s . T h e s e a r e s o m e o f t h e b e s ts e t s o f p r e s s u r e d a t a o n lo w - r i se b u i l d i n g s c u r r e n t l y a v a i l a b l e . T h e y a r e v e r yu s e f u l in d e t e r m i n i n g w i n d l o a d s o n lo w b u i l d i n g s . T h e s e f u l l - s c a le r e s u l t s h a v ea l r e a d y b e e n c o m p a r e d w i t h so m e w i n d t u n n e l r e s u l t s m e a s u r e d a t t h eU n i v e r s i t y o f W e s t e r n O n t a r i o [2 ].

    F o r t h e p r e s e n t p a p e r , w i n d f lo w s a r o u n d s t r u c t u r e s w e r e c o m p u t e d b y s o l vi n gt h e s e t of p a r t i a l d i f f e re n t i a l e q u a t io n s t h a t g o v e r n s t h e f lo w . I n t h i s i n s t a n c e,t h e t h r e e - d i m e n s i o n a l f l o w a r o u n d t h e T e x a s T e c h B u i l d i n g w a s c a l c u l a t e d a n dt h e m e a n a n d r .m . s , p r e s s u r e c o ef fi ci en ts w e r e c o m p a r e d w i t h b o t h f u l l- s c a le a n dw i n d t u n n e l r e s u l t s .T h e p r o g r a m s t e s t e d o n t h e f l o w a r o u n d t h e T e x a s T e c h B u i l d i n g h a v e b e e nu s e d t o c o m p u t e t h e f lo w s a r o u n d a l a r g e n u m b e r o f a r c h e d - r o o f b u i l d i n g s . T w oo f t h e s e c o m p u t a t i o n s a r e r e p o r t e d h e re . O n e o f t h e b u i l d i n g s i s a m o b i l e t a i l

    e n c l o s u r e p r o d u c e d b y S t r a r c h I n t e r n a t i o n a l L t d o f M e l b o u r n e , A u s t r a l i a . T h em o b i le t a i l e n c lo s u r e i s a s t r u c t u r e t h a t a l lo w s e x i s t i n g h a n g a r s t o h o u s e b i g g e ra i rc r a ft . T h e f r o n t o f t h e a i r c r a ft is p u t i n t h e e x i s t i n g h a n g a r a n d a m o b i lee n c l o s u r e i s m o v e d o v e r t h e t a il o f t h e a i r c r a f t t o k e e p i t o u t o f t h e w e a t h e r a ss h o w n i n F i g u r e 1. T h e e n c l o s u r e i s s u p p o r t e d b y s e m i - c i r c u l a r p r e s t r e s s e da r c h es , e re c t e d b y t h e p a t e n t e d S t r a r c h s y s t e m . T h e e n c l o s u r e is m u c h t a l l e r a n dn a r r o w e r t h a n m o s t a r c h e d - r o o f s t r u c t u r e s b e c a u s e i t h a s t o fi t o v e r t h e t a il o fa n a i r c ra f t . T h e s t r u c t u r e o n w h i c h t h e p r e s s u r e s w e r e c a l c u l a t e d c o n s i s ts of ar o o f w i t h a r a d i u s o f 1 5 .5 m s u p p o r t e d b y v e r t i c a l w a l l s o f 1 0 m h i g h . T h e l e n g t ha l o n g t h e a x i s i s 2 0 m .

    T h e o t h e r c o m p u t a t i o n r e p o r t e d h e r e is o n a n a r c h e d - r o o f b u i l d i n g . T h i sb u i l d i n g i s s el e c te d b e c a u s e i t s d i m e n s i o n s a r e t y p i c a l o f m a n y a r c h e d - r o o fb u i l d i n g s t h a t h a v e b e e n c o n s t r u c t e d b y S t r a r c h I n t e r n a t i o n a l . I t h a s a r i s e / s p a nr a t i o o f 0 .2 , a l e n g t h / s p a n r a t i o o f 1 .0 , a n d a n e a v e s h e i g h t / r i s e r a t i o o f 0 .4 5 . T h i si s o n e o f m a n y c o m p u t a t i o n s i n v o lv i n g d i f f e r e n t a r c h e d - r o o f b u i l d i n g s h a p e s ,d i f f e r e n t a p p r o a c h f l ow a n g l e s , a n d d i f f e r e n t i n l e t v el o c i ty p r o f i l es . B u i l d i n g sw e r e s t u d i e d b o t h w i t h a n d w i t h o u t m a j o r o p e n i n g s . T h e a i m o f t h e r e s e a r c hw a s t o p r o v i d e a s m u c h i n f o r m a t i o n a s p o s s i b l e o n p r e s s u r e s o n a s m a n y a r c h e d -r o o f b u i l d i n g s a s p o s s i b le u n d e r a v a r i e t y o f w i n d c o n d i ti o n s .

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    3/12

    1631

    i

    TYPICAL SECTION

    Iii -ItI

    I]1E x ,

    SIDE ELEVATION

    F i g u r e 1 . S t r a r c h M o b i l e T a i l E n c l o s u r e .

    2 . M A T H E M A T I C S

    C o m p u t e r m o d e l l in g o f f lu i d f lo w s s t a r t s w i t h t h e e q u a t i o n s o f c o n s e r v a t io n o fm a s s a n d m o m e n t u m t h a t a r e c ol le c ti v el y k n o w n a s t h e N a v i e r - S t o k e s e q u a t io n s .T h e s e e q u a t i o n s a r e ti m e - d e p e n d e n t . I n t h e p r e s e n t a p p r o a c h th e y a r e a v e r a g e do v e r t i m e to g e t t h e R e y n o l d s e q u a t i o n s . T h e e q u a t i o n s f o r t h e c o n s e r v a t i o n o fm o m e n t u m a r e s o l v ed f or t h e m e a n ve lo c it ie s . T h e c o n s e r v a t i o n o f m a s se q u a t i o n i s c o m b i n e d w i t h t h e e q u a t i o n s f o r t h e m e a n v e l o c i ti e s to y i e l d ap r e s s u r e c o r r e c t i o n e q u a t i o n . T h i s u s e o f a p r e s s u r e c o r r e c ti o n e q u a t i o n i sk n o w n a s t h e S I M P L E m e t h o d [ 3].

    T h e t i m e - a v e r a g e d e q u a t i o n s c o n t a i n s i x e x t r a t e r m s t h a t a r e r e l a t e d t o t h er .m . s , v e lo c i ti e s a n d a r e c r e a t e d w h e n t h e t i m e a v e r a g i n g i s d o ne . I n t h e p r e s e n tm e t h o d , t h e s e e x t r a t e r m s a r e d e r i v e d f r om t h e t u r b u l e n t k i n e t ic e n e r g y (k ),w h i c h i s h a l f t h e s u m o f t h e s q u a r e s o f t h e r . m . s , v e l o ci ti e s, a ~ d f r o m t h e r a t e o fd i s s i p a t i o n o f t h e t u r b u l e n t k i n e t i c e n e r g y ( z) . k a n d ~ a r e c a l c u l a t e d f r o m t w of u r t h e r e q u a t i o n s [ 4,5 ]. N o a t t e m p t h a s b e e n m a d e t o c h a n g e t h e r e s u l t s to

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    4/12

    1632b e t t e r f it e x p e r i m e n t a l d a t a . E a r l i e r w o r k h a s i n d i c a te d t h a t f i n e tu n i n g o f t h ec o n s t a n t s i n t h e m o d e ! i s n e i t h e r n e c e s s a r y n o r d e s i r a b l e .

    T h e s e e q u a t i o n s a r e n o n - l i n e a r a n d s o a r e s o l v e d i n a n i t e r a t i v e m a n n e r .T h e y w e r e t u r n e d i n to a tr a c t a b l e f o r m b y i n t e g r a t i n g t h e m o v e r a p p r o p r i a t ev o l u m e s o n a st a g g e r e d g r id . T h e c o n v ec t io n t e r m s i n t h e e q u a t i o n s w e r ed i s c re t is e d b y u s i n g t h e f i r st - o r d e r h y b r id u p w i n d i n g s c h e m e .

    C o m p u t a t i o n o f t h e f l o w o v e r a m o b i l e t a i l e n c l o s u r e p o s e s s p e c i a l p r o b l e m s .T h e r o o f i s se m i c i r c u l a r a n d t h e w a l l s a r e v e r t i c a l s o it is n e c e s s a r y t o m o d e l t h et r a n s i t i o n b e t w e e n t h e tw o c o rr e c tl y . P o l a r c o o r d i n a t e s c a n ' t e a s i l y b e u s e d a n da t t e m p t s t o u s e b o d y - f i t t e d c o o r d i n a t e m e s h e s w e r e a b a n d o n e d b e c a u s e o fc o n v er g e nc e a n d a c c u ra c y p r o b l e m s . I n t h e e n d a s i m p l e C a r t e s i a n m e s h w a sused .

    A n o t h e r p r o b l e m w i t h t h e m o b i l e t a i l e n c l o s u r e i s t h a t t h e m o s t c r i ti c a l l o a dc a s e o c c u r s w h e n t h e a r c h i s o ff t h e a i r c r a f t a n d t h e w i n d i s b l o w i n g i n to t h eo p e n e n d o f t h e e n c l o s u re . I n t h i s c a se t h e r e a r e v e r y s e v e r e l i ft a n d o v e r t u r n i n gf or ce s. T h e r o o f a n d w a l l s h a v e t o b e m o d e l l e d a s z e r o t h i c k n e s s s u r f a c e s s od e r i v a t i v e b o u n d a r y c o n d i t i o n s h a v e t o b e s e t b y c h a n g i n g n o d a l c o e f f ic i en t sr a t h e r t h a n v a l u e s o v e r b o u n d a r i e s . E x t r a c a r e i s t a k e n w h e n v a l u e s o v e rb o u n d a r i e s a r e u s e d t e m p o r a r i l y t o i n c r e a s e c o m p u t a t i o n a l e f f i c i e n c y a s i nT E A C H [6 ].

    T h i s a l g o r i t h m c o u l d n o t b e v e c t o r i s e d a n d s o a n e w a l g o r i t h m w a s d e v e l o p e di n w h i ch t h e S O R p a r t o f t h e a l g o r i th m w a s r e p l a c e d b y a J a c o b i a l g o r i t h m . T h i si s f u l ly v e c t o r is a b l e , a n d d o e s n o t s u b s t a n t i a l l y s lo w d o w n t h e o v e r a l lc o n v e r ge n c e b e c a u s e o f t h e u s e o f A D I . I n a d d i t i o n , s i g n i f i c a n t c h a n g e s w e r em a d e t o t h e w a y in w h i c h t h e b o u n d a r y c o n d i t i o n s a r e c a l c u l a te d . I n t h e f i n a la l g o r i th m , v e c t o r le n g t h s i n e x c e s s o f 1 0 ,0 0 0 a r e a c h i e v e d i n t h e s e t t i n g u p o f t h et r i d i a g o n a l m a t r i c e s a n d i n t h e c a l c u l a ti o n o f t h e i n i t i a l a p p r o x i m a t i o n . V e c t o rl e n g t h s a r e i n e x c e ss of 4 0 0 w h e n d o i n g t h e b lo c k T D M A s o l u ti o n . O v e r a l l , t h e r ei s a f a c t o r o f a b o u t 3 0 s p e e d - u p f r o m t h e s e c h a n g e s .I n t h e p r e s e n t p r o g r a m s , t h e l o c a ti o n s o f s o l id s u r f a c e s ( w a l l s a n d r oo f ) w e r ei n p u t a s a s i n g l e 2 -D a r r a y f r o m a d a t a f il e. T h i s a r r a y g i v e s t h e h e i g h t o f t h er o of a b o v e g r o u n d le ve l. T h e p r o g r a m s a u t o m a t i c a l l y p la c e w a l l s a t t h e e d g e s o ft h e r oo f. T h e d e c i s io n a b o u t w h i c h w a l l s a r e s o l i d a n d w h i c h a r e o p e n i s h a n d l e db y lo g ic al v a r i a b l e s w i t h i n t h e p r o g r a m s . T h i s i n p u t m e t h o d a l lo w s g e o m e t r yd a t a t o b e c r e a t e d q u i c k ly b y h a n d , w i t h o u t t h e n e e d f o r a p r e - p r o c e s s o r . I t h a sb e e n u s e d f or o t h e r p r o b l e m s i n v o lv i n g m u l t i p l e b u i ld i n g s o f ir r e g u l a r s h a p e .A la r g e a m o u n t o f e f fo r t h a s b e e n e x p e n d e d i n o p t i m i s i n g t h e p r e s e n tp r o g r a m s fo r u s e o n v e c to r p ro c e s s in g c o m p u t e r s . T h e c o m p u t e r u s e d f or t h em a i n c a l c u l a t io n s is a C r a y Y - M P 2 / 2 1 6. T h e o r i g i n a l a l g o r i t h m u s e d t h e T r i-

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    5/12

    1633

    D i a g o n a l M a t r i x A l g o r i t h m ( T D M A ) in o n e o f t h e t h r e e d i m e n s i o n s , c o u p l e d w i t hS u c c e s si v e O v e r - R e l a x a t i o n (S O R ) in t h e o t h e r t w o d i m e n s i o n s . T h e d i r e c t io n i nw h i c h t h e T D M A w a s t a k e n w a s v a r i e d i n t h e m a n n e r o f t h e A l t e r n a t i n gD i r e c ti o n I m p l i c i t ( A D I) m e t h o d . B u t t h e m e t h o d d i f fe r e d f ro m t h e s t a n d a r d A D Im e t h o d i n t h a t n o o p e r a t o r s p l i t ti n g w a s a p p li e d ; s o t h e n u m b e r o f s w e e p s f o re a c h e q u a t i o n d i d n o t h a v e t o b e a m u l t i p l e o f t h r e e . F a s t e s t c o n v e r g en c e w a sf o u n d t o o c cu r w h e n f o u r s w e e p s w e r e u s e d ~ br t h e p r e s s u r e c o r re c ti o n e q u a t i o na n d o n e s w e e p o n e a c h o f t h e o t h e r e q u a t i o n s .

    P r e s s u r e c o e ff ic ie n ts w e r e c a l c u l a te d i n a p o s t - p r o c e s s in g p r o g r a m t h a t i sq u i t e d i s ti n c t f r o m t h e m a i n p r o g r a m s . M e a n p r e s s u r e c o e ff ic ie n ts w e r ec a l c u l a t e d f r o mmCp = 2 P / (p V2) - CP0 (1 )w h e r e P i s t h e m e a n p r e s s u r e , p i s t h e d e n s i t y , V i s t h e a p p r o a c h v e l o c i t y a tb u i l d i n g h e i g h t a n d C Po i s a r e f e r e n c e p r e s s u r e c o e ff ic ie n t. T h e r e f e r e n c ep r e s s u r e c o e f f ic i e n t w a s o b t a i n e d b y s e t t i n g t h e m e a n p r e s s u r e c o e f fi c ie n t t o ze r oa t a p o i n t w e l l a w a y f ro m t h e b u i l d i n g . R . m . s . p r e s s u r e c o e f f ic i e n ts w e r ec a l c u l a t e d f r o mc i , ff i 2 [ k / 3 + 0 . s 1 6 I C p I V o ] / v " (2 )w h e r e V 0 a n d k 0 a r e t h e v a l u e s o f v e l o c it y a n d k i n t h e a p p r o a c h f lo w a t t h eh e i g h t a t w h i c h C ~ i s r e q u i r e d .

    T h e e x p r e s s i o n i n E q . 2 i s a n a p p r o x i m a t i o n c o n s i s t i n g o f t w o c o m p o n e n t s .T h e p a r t p r o p o r t i o n a l t o k i s a s s o c i a t e d w i t h s m a l l - s c a l e l o ca l p r e s s u r ef l u c t u a t i o n s i n f l o w f r e e o f m e a n v e l o c it y g r a d i e n t s a s d i s c u s s e d b y H i n z e [7 ].T h e p a r t c o n t a i n i n g V 0 i s a ' q u a s i - s t e a d y ' t e r m a s s o c i a te d w i t h t h e a m p l i f ic a t io no f u p w i n d p r e s s u r e f l u c tu a t i o n s b y v e lo c it y g r a d i e n t s i n t h e flo w .

    3 . R E S U L T S3 .1 T e x a s T e c h B u i l d i n g

    M e a n a n d r . m . s , p r e s s u r e c o e f f i c i e n t s , m e a n v e l o c i t i e s a n d t u r b u l e n t k i n e t i ce n e r g i e s w e r e c a l c u l a t e d f o r a p p r o a c h f lo w s a t a n g l e s o f 0 ( p a r a l l e l t o t h e l o n gs ide o f t he bu i l d ing ) t o 90 i n 10 i n t e rv a l s . A fa i r l y co a r se g r i d o f 26 x 29 x 14w i t h v a r i a b l e g r i d i n t e r v a l s is u s e d . V e l o c it y v e c t o r p l o t s a n d c o n t o u r p l o t s o fp r e s s u r e a n d k h a v e b e e n p r o d u c e d a l o n g a l a r g e n u m b e r o f s li ce s t h r o u g h a n dn e a r t h e b u i l d i n g f o r e a c h a p p r o a c h f l ow a n g le . M a n y h a v e n o t y e t b e e n

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    6/12

    1634p u b l i s h e d a n d a r e a v a i l a b l e f r o m t h e f ir s t a u t h o r .

    C o m p u t e d m e a n a n d r . m . s , p r e s s u r e c o e ff ic i en t s o n t h e l i n e o f i n t e r s e c t io n o ft h e c e n t r a l p l a n e o f t h e b u i l d i n g w i t h t h e b u i l d i n g s u r fa c e h a v e b e e n p l o t te d f o re a c h of" t h e t e n a p p r o a c h f l ow a n g l es . T h e s e w e r e c o m p a r e d w i t h r e s u l t s f r o mf u ll s c a le a n d w i n d t u n n e l e x p e r i m e n t s f o r a p p r o a c h f lo w a n g l e s o f 0, 6 0 a n d 9 0 .T h o s e f ro m t h e 9 0 d e g r e e a p p r o a c h a n g l e a r e i n c l u d e d i n F i g u r e 2 .

    C

    ~5I

    I

    !

    t" q

    A

    M e a n P r e ss u re C o e f f i c ie n t , T h e t a = 9 0~, Computa t ionx Ful l Sca le W i n d T u n n e l

    B C D E

    ~5R M . S . P r e s s u r e C o e f f i c i e n t , T h e t a = 9 0

    ' ~ C om puta t ionx F u l l S c a le

    ~ k B C D EF i g u r e 2 . P r e s s u r e c o e f f i ci e n ts f o r t h e T e x a s T e c h B u i l d i n g .

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    7/12

    1635T h e c o m p u t e d m e a n p r e s s u r e c o e f f i c i e n t s a g r e e v e r y w e l l w i t h b o t h f u l l - s c a l ea n d w i n d t u n n e l d a t a , p a r t i c u l a r l y o n t h e f r o n t a n d b a c k f a c e s w h e r e t h ec o m p u t e d p r e s s u r e c o e f f i c i e n t s f a l l b e t w e e n t h o s e m e a s u r e d i n t h e w i n d t u n n e la n d f u l l s c a le . T h e a g r e e m e n t a t t h e t o p o f t h e b u i l d i n g i s a l s o g o od .T h e c o m p u t e d r . m . s , p r e s s u r e c o e f f i c i e n t s a g r e e f a i r l y w e l l w i t h t h e f u l l - s c a l ea n d w i n d t u n n e l r e s u l t s b u t t e n d t o b e s li g h t ly to o lo w o v er t h e w h o l e o f t h eb u i l d i n g s u r f a c e . A s i m i l a r l e v e l o f a g r e e m e n t i s f o u n d f o r f l o w s a t o t h e ra p p r o a c h a n g l e s .

    3 .2 M o b i l e T a i l E n c l o s u r e

    I n t h e c a l c u l at io n s , a n a p p r o a c h f lo w f or a n a t m o s p h e r i c b o u n d a r y l a y e r w i t h ar o u g h n e s s l e n g t h o f 0 .0 1 m w a s u se d . T h e J e n s e n N u m b e r ( s t r u c t u re h e i g h t /r o u g h n e s s l e n g t h ) i s a s ig n i f i c a n t s c a l i n g n u m b e r f o r w i n d l o a d s o n l o w - r i ses t r u c t u r e s ; i n t h e p r e s e n t c as e t h e J e n s e n N u m b e r i s a b o u t 2 50 0. T h e R e y n o l d sN u m b e r ( i n e r t i a l fo rces in t h e f l o w / v i s co u s fo rces ) is a l s o s i g n i f i ca n t fo r fl o wa r o u n d b o d i e s w i t h c u r v e d s u r f a c e s . F o r w i n d f lo w a r o u n d f u l l- s c a l e s t r u c t u r e sw i t h c u r v e d s u r f a c e s o f l a r g e d i a m e t e r , t h e R e y n o l d s N u m b e r i s v e r y l a r g e ( m u c hl a r g e r t h a n c a n b e o b ta i n e d w i t h w i n d t u n n e l t e st s) . F o r th e c o m p u t a t i o n s o f t h ep r e s e n t r e p o r t , t h e R e y n o l d s N u m b e r i s e ff e c ti v el y i n f i n it e , s i n c e v is c o u s s t r e s s e si n t h e f lo w a r e n e g l e c t e d i n c o m p a r i s o n w i t h t h e t u r b u l e n t s t re s s e s.

    - 0 . 6 1' ~ -0.44.o . , ,

    C P , ' s + X + 0 .6 i ~ I 2 0 i n t e r v a l "

    - 0 . 3 2

    0,17

    ~-0.14

    F i g u r e 3 . E x t e r n a l m e a n p r e s s u r e c o ef fi ci en ts o n t h e S t r a r c h M o b i l e T a i lE n c l o s u r e

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    8/12

    1636C a l c u l a t i o n s o f e x t e r n a l p r e s s u r e c o ef fi ci en t s w e r e m a d e f o r a s t r u c t u r e w i t hb o t h e n d s c l o s e d a n d w i t h o n e e n d o p e n , b a s e d o n t h e m e a n w i n d s p e e d a t t h et o p o f t h e s t r u c t u r e , T h o s e fo r b o t h e n d s c lo s e d a r e s h o w n i n F i g u r e 3 . T h ev a l u e s i n F i g u r e 3 w e r e c o m p u t e d a t p o i n t s a l o n g t h e c e n t r e - l in e o f t h e s t r u c t u r e .

    T h e p o i n t s o f c o m p u t a t i o n w e r e a t t h e c e n t r e s o f t h e w a l l o r a n g u l a r r o o f s e c to r ss h o w n i n F i g u r e 3 .T h e m a x i m u m p o si t iv e p r e s s ur e c oe ff ic ie nt ( + 0 . 6 9) o c c u r s a b o u t h a l f w a y u p

    t he s tr uc tu r e o f t he l ow er p ar t o f t he a rc h e d r oo f. T h e m i n i m u m ( m a x i m u mnegative) pressure coefficient (-0.61) occ urs at th e crest of the roof. O n theleew ard si de of the structure, the pressure coefficients ha ve fairly uni for mnegative values, as expected for a fully separated w a k e region.

    T h e r e a r e n o f u ll -s c al e d a t a a v a i la b l e t o c o m p a r e t h e c o m p u t e d p r e s s u r e s w i t h.H o w e v e r , t h e c o m p u t a t i o n a l m e t h o d i s c u r r e n t l y b e i n g a p p l i e d t o o t h e r c u r v e dr o of s t r u c t u r e s fo r w h i c h s o m e f u ll -s c al e a n d w i n d t u n n e l m e a s u r e m e n t s a r ea v a i l a b l e .

    3 .3 T y p i c a l A r c h e d - r o o f B u i l d i n gT h e g e o m e t r ic v a r i a b l e s t h a t a r e r e l e v a n t to t h e w i n d l o a d i n g o f a r c h e d - r o o fb u i l d i n g s a r e t h e s p a n , t h e l e n g t h , t h e ri se , a n d t h e h e i g h t o f t h e e a v e s . M a n yd i f fe r e n t g e o m e t r i c a l c o n f i g u r a t i o n s h a v e b e e n e x a m i n e d b y t h e a u t h o r s . T h e

    r e s u l t s f r o m a ty p i c a l c o n f i g u r a t i o n w i t h a r i s e / s p a n r a t i o o f 0 . 2 , a l e n g t h ,' ~ p a nr a t i o o f 1 .0 , a n d a n e a v e s h e i g h t / r i s e r a t i o o f 0 . 4 5 a r e p r e s e n t e d h e r e .F o r t h e c o m p u t a t i o n t h e J e n s e n N u m b e r i s 5 0 0. F o r a s t r u c t u r e h e i g h t o f 1 0m e t r e s , a J e n s e n N u m b e r o f 5 0 0 c o r r e s p o n d s to a s u r f a c e r o u g h n e s s l e n g t h o f

    0 .0 2 m e t r e s . T h i s is e q u i v a l e n t to T e r r a i n C a t e g o r y 2 i n t h e A u s t r a l i a n S t a n d a r d[8].

    Figures 4a, 4b a nd 4c s h o w the co mp ut ed external pressure coefficients n theb u i l d i ng f or a p p r o a c h w i n d a n g l e s of 4 5, 0 a n d 9 0 d e g r e e s r e sp e ct i ve l y f r o m t h en o r m a l t o t h e a x i s o f t h e a r c h. B e c a u s e o f s y m m e t r y , v a l u e s o n o n e h a l f o n l y a r es h o w n f or a p p r o a c h a n g l e s o f 0 a n d 9 0 .

    F o r t h e 0 c a s e, p o s i t iv e p r e s s u r e c o e f f ic i e n ts o c c u r o n t h e w i n d w a r d w a l l a n dt h e w i n~ :l w ar d e d g e o f t h e r oo f, w i t h n e g a t i v e v a l u e s o v e r t h e r e s t o f t h es t r u ct u r e . T h e h i g h e s t m a g n i t u d e n e g a t iv e v a l u e s o cc u r j u s t u p w i n d o f t h e a p e xto the r ogf .

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    9/12

    1637

    a )

    -0.31

    +0.07

    -0.72

    -1.02-0.67

    - 0 . 6 0

    -0.04

    -0.52

    -0.11

    -0.65

    , ~ . + 0 . 2 2

    -0.20

    -0.63

    , ~ i - + 0 - 13

    -0.28

    -0.57

    -0.50

    +0.01

    -0.29

    - 0 . 6 5

    + 0 . 010 . 5 0

    , ,

    0 . 6 1 /-0 .50

    -0,35

    -0.35-0 .29

    b)

    F i g u r e 4 . A r e a - a v e r a g e d e x t e r n a l p r e s s u r e c o e f f ic i e n ts f o r t h e t y p ic a l a r c h e d - r o o fb u i ld in g . A p p r o ac h w in d an g le s ar e : a ) 45 , b ) 0 , c ) 90 .

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    10/12

    1638

    +0.27

    +0.40

    -0.39

    -1.13

    -0.42

    -0.29

    -0.26-0.29

    -0.29

    -0.26

    -0.33

    c)

    Figu re 4 (Cont .)Fo r an app roach wind ang le o f 45" , pos i t ive p ress u res on ly occu r nea r t hew i n d w a rd c o rn e r o f t h e b u i ld i n g . T h e n e g a t i v e p r e s s u re s o n t h e ro o f a n d w a l lsa re gen e ra l ly h ighe r t ha n those ob ta ined fo r t he 0 case , w i th pa r t i cu l a r ly h ighsuc t ions occu r r ing a long the w indw ard en d o f t he a rch roo f.E x c e p t f o r t h e w i n d w a rd w a l l , n e g a t i v e p r e s s u re s o c c u r e v e ry w h e re fo r t h eapproach w ind ang le o f 90 Ag a in ve ry h igh suc t ions occu r a long the w indw ard

    e d g e o f t h e ro of, u n d e rn e a t h t h e s e p a ra t i n g - r e a t t a c h i n g flo w .In gene ra l , fo r bu i ld ing8 wi th l en g th / span ra t io s o f un i ty o r l e s s , t he co m pu tedva lues o f ex t e rn a l p re ssu re coe ff ic ien ts a re s ign i f i can t ly l ower in m ag n i tu de t ha nt h o s e o b t a i n e d f ro m t h e c u r r e n t A u s t r a l i a n S t a n d a rd , e s p e c ia l ly fo r t h e n e g a t i v ep res su re coe ff ic ien ts . A gree m en t is much be t t e r a t ve ry la rge l eng th / spa n ra t io s .

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    11/12

    1639CONCLU S I O N S

    Th e m e t h o d o f u s i n g c o m p u t e r m o d e l l in g in p l a c e o f w i n d t u n n e l m o d e l l in g inp re d i c t i n g w i n d p re s s u re s o n b u i l d i n g s u rf a c e s h a s b e e n s h o w n t o b e v a li d . Th ea c c u rac y o f t h e p r e d i c ti o n s o f p r e s s u re s o n t h e Te x a s Te c h b u i l d i n g i s v e ry g o od .Th e u s e o f c o m p u t e r m o d e l l i n g i n p ro v i d i n g p re s s u re c o ef fi ci en ts o n a v a r i e t y o fa r c h e d - ro o f b u i l d i n g s h a s l e d t o p r e d i c ti o n s t h a t c a n a n d h a v e b e e n u s e d i n t h edes ign o f such bu i ld ings .

    W e h a v e s h o w n t h a t t h e m e t h o d s a p p l i e d i n b u i l d i n g c o d e s fo r a r c h e d - ro o fb u i l d i n g s a r e g oo d w h e n t h e l e n g t h / s p a n r a t i o o f t h e b u i l d i n g is l arg e . B u t t h e ya re v e ry c o n s e rv a t i v e w h e n t h e l e n g t h / s p a n r a t io o f t h e b u i l d i n g is s m a l l .

    A C K N O W L E D G E M E N TT h e a u t h or s w i s h t o a c k n o w l e d g e t h e p e r mi s s i on o f S t r a rc h I n t e r n at i o n al L t d

    t o p u b l i s h s o m e r e s u lt s o f t h e c o m p u t a t i o n s c a r r i e d o u t o n b e h a l f o f th a tC o m p a n y , a n d t h e c o o p er a t i on o f D r P e t e r K e y d u r i n g t h e pro ject .

    R E F E R E N C E S1. Lev i tan , M .L. , Holm es, J .D. , M ehta , K.C. and V ann , W .P. 1989, 'F ie ld-

    m eas ure d p re ssu res on the Texas Tech Bu i ld ing ' , 8 th Co lloq. Indus t . Aerodyn . ,A a c h e n , W .G e rm a n y , 4 -7 S e p t.2 . S u r r y , D. 19 89 , ' P r es s u r e m e a s u r e m e n t s o n t h e T e x a s T e ch B u i l d i n g - w i n dtunne l measu remen t s and compar i sons wi th fu l l sca l e ' , 8 th Co l loq . Indus t .Aerodyn . , Aach en , W .Germ any , 4 -7 Sep t .3 . Pa tankar , S .V . , 1980 , Num erical Heat Transfer an d F luid Flow, H e m i s p h e r e ,N e w Y o rk.4 . Pate rson , D.A. 1986, Computat ion of w ind f lows ov er three.dimensionalbuildings, P h D Th e s i s , U n i v e r s i t y o f Q u e e n s l a n d , B r i s b a n e .5. P a t e rs o n , D . A . a n d A p e lt , C . J . 1 9 8 9 , ' S i m u la t i o n o f w i n d f l o w s a r o u n d t h re e -

    dim ens iona l buildings', l d g & E n v i r on . , 4, 39-50.6 . Gosm an , A .D. an d Ide r i ah , F . J .K . 1976, 'TEACH-T: A gen era l com pute rp ro g ra m fo r t w o -d i m e n s i o n a l , t u rb u l e n t , r e c i r c u l a t i n g f l o w s ' , D e p a r t m e n t o fM echan ica l Eng inee r ing , Im per i a l Co l l ege , London .

  • 8/3/2019 Computation of Wind Pressures on Low-rise Structures

    12/12

    1640

    7. Hinze, J.O., 1959, T u r b u l e n c e, a n I n t r o d u c t i o n t o i t r M e c h a n i s m a n d T h e o r y,McGraw-Hill, New York.

    8. Standards Australia, 1989, S A A L o a d i n g C o d e, P a r t 2 W i n d l o a d s . AustralianSta nda rd ASl170.2 - 1989.