Computability Theory · 2019. 2. 12. · Bibliography [1] Wilhelm Ackermann, Zum Hilbertschen...

26
STUDENT MATHEMATICAL LIBRARY Volume 62 Computability Theory Rebecca Weber

Transcript of Computability Theory · 2019. 2. 12. · Bibliography [1] Wilhelm Ackermann, Zum Hilbertschen...

  • STUDENT MATHEMAT ICAL L IBRARYVolume 62

    ComputabilityTheory

    Rebecca Weber

  • Computability Theory

    http://dx.doi.org/10.1090/stml/062

  • Computability Theory

    Rebecca Weber

    STUDENT MATHEMAT ICAL L IBRARYVolume 62

    American Mathematical SocietyProvidence, Rhode Island

  • Editorial Board

    Gerald B. FollandRobin Forman

    Brad G. Osgood (Chair)John Stillwell

    2000 Mathematics Subject Classification. Primary 03Dxx;Secondary 68Qxx.

    For additional information and updates on this book, visitwww.ams.org/bookpages/stml-62

    Library of Congress Cataloging-in-Publication Data

    Weber, Rebecca, 1977–Computability theory / Rebecca Weber.

    p. cm. — (Student mathematical library ; v. 62)Includes bibliographical references and index.ISBN 978-0-8218-7392-2 (alk. paper)1. Recursion theory. 2. Computable functions. I. Title.

    QA9.6.W43 2012511.3′52—dc23

    2011050912

    Copying and reprinting. Individual readers of this publication, and nonprofitlibraries acting for them, are permitted to make fair use of the material, such as tocopy a chapter for use in teaching or research. Permission is granted to quote briefpassages from this publication in reviews, provided the customary acknowledgment ofthe source is given.

    Republication, systematic copying, or multiple reproduction of any material in thispublication is permitted only under license from the American Mathematical Society.Requests for such permission should be addressed to the Acquisitions Department,American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected].

    c© 2012 by the American Mathematical Society. All rights reserved.The American Mathematical Society retains all rightsexcept those granted to the United States Government.

    Printed in the United States of America.

    ©∞ The paper used in this book is acid-free and falls within the guidelinesestablished to ensure permanence and durability.

    Visit the AMS home page at http://www.ams.org/

    10 9 8 7 6 5 4 3 2 1 17 16 15 14 13 12

  • Contents

    Chapter 1. Introduction 1

    §1.1. Approach 1

    §1.2. Some History 4

    §1.3. Notes on Use of the Text 6

    §1.4. Acknowledgements and References 7

    Chapter 2. Background 9

    §2.1. First-Order Logic 9

    §2.2. Sets 15

    §2.3. Relations 21

    §2.4. Bijection and Isomorphism 29

    §2.5. Recursion and Induction 30

    §2.6. Some Notes on Proofs and Abstraction 37

    Chapter 3. Defining Computability 41

    §3.1. Functions, Sets, and Sequences 41

    §3.2. Turing Machines 43

    §3.3. Partial Recursive Functions 50

    §3.4. Coding and Countability 56

    §3.5. A Universal Turing Machine 62

    v

  • vi Contents

    §3.6. The Church-Turing Thesis 65§3.7. Other Definitions of Computability 66

    Chapter 4. Working with Computable Functions 77

    §4.1. The Halting Problem 77

    §4.2. The “Three Contradictions” 78§4.3. Parametrization 79

    §4.4. The Recursion Theorem 81§4.5. Unsolvability 85

    Chapter 5. Computing and Enumerating Sets 95

    §5.1. Dovetailing 95§5.2. Computing and Enumerating 96

    §5.3. Aside: Enumeration and Incompleteness 102§5.4. Enumerating Noncomputable Sets 105

    Chapter 6. Turing Reduction and Post’s Problem 109

    §6.1. Reducibility of Sets 109

    §6.2. Finite Injury Priority Arguments 115§6.3. Notes on Approximation 124

    Chapter 7. Two Hierarchies of Sets 127

    §7.1. Turing Degrees and Relativization 127§7.2. The Arithmetical Hierarchy 131

    §7.3. Index Sets and Arithmetical Completeness 135

    Chapter 8. Further Tools and Results 139

    §8.1. The Limit Lemma 139§8.2. The Arslanov Completeness Criterion 142

    §8.3. E Modulo Finite Difference 145

    Chapter 9. Areas of Research 149

    §9.1. Computably Enumerable Sets and Degrees 149

    §9.2. Randomness 155§9.3. Some Model Theory 169

  • Contents vii

    §9.4. Computable Model Theory 174

    §9.5. Reverse Mathematics 177

    Appendix A. Mathematical Asides 189

    §A.1. The Greek Alphabet 189

    §A.2. Summations 190

    §A.3. Cantor’s Cardinality Proofs 190

    Bibliography 193

    Index 199

  • Bibliography

    [1] Wilhelm Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann.99 (1928), no. 1, 118–133 (German).

    [2] Klaus Ambos-Spies, Carl G. Jockusch Jr., Richard A. Shore, and Robert I. Soare,An algebraic decomposition of the recursively enumerable degrees and the coin-cidence of several degree classes with the promptly simple degrees, Trans. Amer.Math. Soc. 281 (1984), no. 1, 109–128.

    [3] Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Sla-man, Comparing DNR and WWKL, J. Symbolic Logic 69 (2004), no. 4, 1089–1104.

    [4] Klaus Ambos-Spies and Antońın Kučera, Randomness in computability theory,Computability Theory and its Applications (Boulder, CO, 1999), 2000, pp. 1–14.

    [5] M. M. Arslanov, Some generalizations of a fixed-point theorem, Izv. Vyssh.Uchebn. Zaved. Mat. 5 (1981), 9–16 (Russian).

    [6] M. M. Arslanov, R. F. Nadyrov, and V. D. Solov′ev, A criterion for the complete-ness of recursively enumerable sets, and some generalizations of a fixed pointtheorem, Izv. Vysš. Učebn. Zaved. Matematika 4 (179) (1977), 3–7 (Russian).

    [7] C. J. Ash and J. Knight, Computable Structures and the Hyperarithmetical Hi-erarchy, Studies in Logic and the Foundations of Mathematics, vol. 144, North-Holland Publishing Co., Amsterdam, 2000.

    [8] Jon Barwise (ed.), Handbook of mathematical logic, with the cooperation of H. J.Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra, Studies in Logic and theFoundations of Mathematics, Vol. 90, North-Holland Publishing Co., Amsterdam,1977.

    [9] Charles H. Bennett and Martin Gardner, The random number Omega bids fair tohold the mysteries of the universe, Scientific American 241 (1979), no. 5, 20–34.

    [10] George S. Boolos, John P. Burgess, and Richard C. Jeffrey, Computability andLogic, 4th ed., Cambridge University Press, Cambridge, 2002.

    [11] Gregory J. Chaitin, Information-theoretic characterizations of recursive infinitestrings, Theoret. Comput. Sci. 2 (1976), no. 1, 45–48.

    [12] G. J. Chaitin, Incompleteness theorems for random reals, Adv. in Appl. Math.8 (1987), no. 2, 119–146.

    193

  • 194 Bibliography

    [13] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength ofRamsey’s theorem for pairs, J. Symbolic Logic 66 (2001), no. 1, 1–55.

    [14] Alonzo Church, An Unsolvable Problem of Elementary Number Theory, Amer.J. Math. 58 (1936), no. 2, 345–363. Reprinted in [18].

    [15] , A note on the Entscheidungsproblem, J. Symbolic Logic 1 (1936), no. 1,40–41. Correction in J. Symbolic Logic 1 No. 3 (1936), 101–102. Reprinted in [18].

    [16] Robert L. Constable, Harry B. Hunt, and Sartaj Sahni, On the computationalcomplexity of scheme equivalence, Technical Report 74–201, Department of Com-puter Science, Cornell University, Ithaca, NY, 1974.

    [17] Nigel Cutland, Computability: An introduction to recursive function theory,Cambridge University Press, Cambridge, 1980.

    [18] Martin Davis (ed.), The Undecidable: Basic papers on undecidable propositions,unsolvable problems and computable functions, Raven Press, Hewlett, N.Y., 1965.

    [19] Martin Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80(1973), 233–269.

    [20] , Why Gödel didn’t have Church’s thesis, Inform. and Control 54 (1982),no. 1-2, 3–24.

    [21] , American logic in the 1920s, Bull. Symbolic Logic 1 (1995), no. 3, 273–278.

    [22] Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic Randomness and Com-plexity, Theory and Applications of Computability, Springer, New York, 2010.

    [23] Bruno Durand and Alexander Zvonkin, Kolmogorov complexity, Kolmogorov’sHeritage in Mathematics, 2007, pp. 281–299.

    [24] A. Ehrenfeucht, J. Karhumäki, and G. Rozenberg, The (generalized) Post cor-respondence problem with lists consisting of two words is decidable, Theoret.Comput. Sci. 21 (1982), no. 2, 119–144.

    [25] Herbert B. Enderton, A Mathematical Introduction to Logic, 2nd ed., Har-court/Academic Press, Burlington, MA, 2001.

    [26] Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek(eds.), Handbook of Recursive Mathematics. Vol. 1: Recursive Model Theory,Studies in Logic and the Foundations of Mathematics, vol. 138, North-Holland,Amsterdam, 1998.

    [27] Richard M. Friedberg, Two recursively enumerable sets of incomparable degreesof unsolvability (solution of Post’s problem, 1944), Proc. Nat. Acad. Sci. U.S.A.43 (1957), 236–238.

    [28] , Three theorems on recursive enumeration. I. Decomposition. II. Max-imal set. III. Enumeration without duplication, J. Symb. Logic 23 (1958), 309–316.

    [29] Péter Gács, Every sequence is reducible to a random one, Inform. and Control70 (1986), no. 2-3, 186–192.

    [30] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica undverwandter Systeme I, Monatsh. Math. Phys. 38 (1931), no. 1, 173–198 (German).An English translation appears in [18].

    [31] S. S. Gončarov, The number of nonautoequivalent constructivizations, AlgebraLogika 16 (1977), no. 3, 257–282, 377 (Russian); English transl., Algebra Logic16 (1977), no. 3, 169–185.

    [32] , The problem of the number of nonautoequivalent constructivizations,Algebra Logika 19 (1980), no. 6, 621–639, 745 (Russian); English transl., AlgebraLogic 19 (1980), no. 6, 404–414.

    [33] S. S. Gončarov and V. D. Dzgoev, Autostability of models, Algebra Logika 19(1980), no. 1, 45–58, 132 (Russian); English transl., Algebra Logic 19 (1980),no. 1, 28–37.

  • Bibliography 195

    [34] Eitan Gurari, An Introduction to the Theory of Computation, Computer Sci-ence Press, 1989. Available at http://www.cse.ohio-state.edu/~gurari/theory-bk/theory-bk.html.

    [35] Petr Hájek and Pavel Pudlák, Metamathematics of First-Order Arithmetic, Per-spectives in Mathematical Logic, Springer-Verlag, Berlin, 1993.

    [36] Valentina S. Harizanov, Computability-theoretic complexity of countable struc-tures, Bull. Symbolic Logic 8 (2002), no. 4, 457–477.

    [37] David Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), no. 10,437–479.

    [38] Denis R. Hirschfeldt, André Nies, and Frank Stephan, Using random sets as or-acles, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 610–622.

    [39] Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker thanRamsey’s theorem for pairs, J. Symbolic Logic 72 (2007), no. 1, 171–206.

    [40] Jeffry Lynn Hirst, Combinatorics in Subsystems of Second Order Arithmetic,Ph.D. Thesis, The Pennsylvania State University, 1987.

    [41] John E. Hopcroft, Turing Machines, Scientific American 250 (1984), no. 5, 86–98.

    [42] C. G. Jockusch Jr., M. Lerman, R. I. Soare, and R. M. Solovay, Recursively enu-merable sets modulo iterated jumps and extensions of Arslanov’s completenesscriterion, J. Symbolic Logic 54 (1989), no. 4, 1288–1323.

    [43] Carl G. Jockusch Jr. and Robert I. Soare, Π01 classes and degrees of theories,Trans. Amer. Math. Soc. 173 (1972), 33–56.

    [44] S. C. Kleene, General recursive functions of natural numbers, Math. Ann. 112(1936), no. 1, 727–742. Reprinted in [18].

    [45] Peter M. Kogge, The Architecture of Symbolic Computers, McGraw-Hill Seriesin Supercomputing and Parallel Processing, McGraw-Hill, 1990.

    [46] A. N. Kolmogorov, On tables of random numbers, Sankhyā Ser. A 25 (1963),369–376.

    [47] , Three approaches to the definition of the concept “quantity of informa-tion”, Problemy Peredači Informacii 1 (1965), no. vyp. 1, 3–11 (Russian); Englishtransl., Probl. Inf. Transm. 1 (1965), 1–7.

    [48] Julia F. Knight, Degrees coded in jumps of orderings, J. Symbolic Logic 51(1986), no. 4, 1034–1042.

    [49] Leon G. Kraft, A Device for Quantizing, Grouping, and Coding Amplitude Mod-ulated Pulses, Electrical Engineering Master’s Thesis, MIT, Cambridge, MA, 1949.

    [50] Shira Kritchman and Ran Raz, The surprise examination paradox and the secondincompleteness theorem, Notices Amer. Math. Soc. 57 (2010), no. 11, 1454–1458.

    [51] Antońın Kučera, Measure, Π01-classes and complete extensions of PA, RecursionTheory Week (Oberwolfach, 1984), 1985, pp. 245–259.

    [52] Antońın Kučera and Sebastiaan A. Terwijn, Lowness for the class of randomsets, J. Symbolic Logic 64 (1999), no. 4, 1396–1402.

    [53] A. H. Lachlan, Lower bounds for pairs of recursively enumerable degrees, Proc.London Math. Soc. (3) 16 (1966), 537–569.

    [54] Steffen Lempp, Manuel Lerman, and Reed Solomon, Embedding finite latticesinto the computably enumerable degrees—a status survey, Logic Colloquium ’02,2006, pp. 206–229.

    [55] L. A. Levin, Laws on the conservation (zero increase) of information, and ques-tions on the foundations of probability theory, Problemy Peredači Informacii 10(1974), no. 3, 30–35 (Russian); English transl., Probl. Inf. Transm. 10 (1974),206–210.

  • 196 Bibliography

    [56] Ming Li and Paul Vitányi, An Introduction to Kolmogorov Complexity and itsApplications, 2nd ed., Graduate Texts in Computer Science, Springer-Verlag, NewYork, 1997.

    [57] Peter Linz, An Introduction to Formal Languages and Automata, 2nd ed., Jonesand Bartlett Publishers, 1997.

    [58] Wolfgang Maass, Recursively enumerable generic sets, J. Symbolic Logic 47(1982), no. 4, 809–823 (1983).

    [59] A. Markoff, On the impossibility of certain algorithms in the theory of associa-tive systems, C. R. (Doklady) Acad. Sci. URSS (N.S.) 55 (1947), 583–586.

    [60] Donald A. Martin, Classes of recursively enumerable sets and degrees of unsolv-ability, Z. Math. Logik Grundlagen Math. 12 (1966), 295–310.

    [61] Yu. V. Matijasevič, On recursive unsolvability of Hilbert’s tenth problem, Logic,Methodology and Philosophy of Science, IV (Proc. Fourth Internat. Congr.,Bucharest, 1971), 1973, pp. 89–110.

    [62] Yuri Matiyasevich and Géraud Sénizergues, Decision problems for semi-Thuesystems with a few rules, 11th Annual IEEE Symposium on Logic in ComputerScience (New Brunswick, NJ, 1996), 1996, pp. 523–531.

    [63] Russell Miller, The Δ02-spectrum of a linear order, J. Symbolic Logic 66 (2001),no. 2, 470–486.

    [64] A. A. Mučnik, On the unsolvability of the problem of reducibility in the theoryof algorithms, Dokl. Akad. Nauk SSSR (N.S.) 108 (1956), 194–197 (Russian).

    [65] Roman Murawski, Recursive Functions and Metamathematics: Problems ofCompleteness and Decidability, Gödel’s Theorems, Synthese Library, vol. 286,Kluwer Academic Publishers Group, Dordrecht, 1999.

    [66] André Nies, Lowness properties and randomness, Adv. Math. 197 (2005), no. 1,274–305.

    [67] , Computability and Randomness, Oxford Logic Guides, vol. 51, OxfordUniversity Press, Oxford, 2009.

    [68] Piergiorgio Odifreddi, Classical Recursion Theory: The theory of functions andsets of natural numbers, with a foreword by G. E. Sacks, Studies in Logic and theFoundations of Mathematics, vol. 125, North-Holland Publishing Co., Amsterdam,1989.

    [69] Rózsa Péter, Über den Zusammenhang der verschiedenen Begriffe der rekursivenFunktion, Math. Ann. 110 (1935), no. 1, 612–632 (German).

    [70] , Konstruktion nichtrekursiver Funktionen, Math. Ann. 111 (1935), no. 1,42–60 (German).

    [71] Emil L. Post, Finite combinatory processes. Formulation I, J. Symbolic Logic 1(1936), no. 3, 103–105. Reprinted in [18].

    [72] , Recursively enumerable sets of positive integers and their decision prob-lems, Bull. Amer. Math. Soc. 50 (1944), 284–316. Reprinted in [18].

    [73] , A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc.52 (1946), 264–268.

    [74] , Recursive unsolvability of a problem of Thue, J. Symbolic Logic 12(1947), 1–11.

    [75] Hartley Rogers Jr., Theory of Recursive Functions and Effective Computability,2nd ed., MIT Press, Cambridge, MA, 1987.

    [76] C.-P. Schnorr, A unified approach to the definition of random sequences, Math.Systems Theory 5 (1971), 246–258.

    [77] J. C. Shepherdson and H. E. Sturgis, Computability of recursive functions, J.Assoc. Comput. Mach. 10 (1963), 217–255.

  • Bibliography 197

    [78] J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. (2) 69 (1959), 644–653.

    [79] Richard A. Shore, Nowhere simple sets and the lattice of recursively enumerablesets, J. Symbolic Logic 43 (1978), no. 2, 322–330.

    [80] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Perspectives inMathematical Logic, Springer-Verlag, Berlin, 1999.

    [81] Douglas Smith, Maurice Eggen, and Richard St. Andre, A Transition to AdvancedMathematics, 3rd ed., Brooks/Cole Publishing Company, Wadsworth, Inc., 1990.

    [82] Robert I. Soare, Recursively Enumerable Sets and Degrees: A Study of Com-putable Functions and Computably Generated Sets, Perspectives in Mathemati-cal Logic, Springer-Verlag, Berlin, 1987.

    [83] Robert Solovay, Draft of paper (or series of papers) on Chaitin’s work, May,2004. Unpublished notes.

    [84] S. Tennenbaum, Non-Archimedean models for arithmetic, Notices Amer. Math.Soc. 6 (1959), 270.

    [85] A. M. Turing, On computable numbers, with an application to the Entschei-dungsproblem, Proc. Lond. Math. Soc. (2) 42 (1937), 230–265. A correction ap-pears in Proc. Lond. Math. Soc. (2), 43 (1937), 544–546. Both reprinted in [18].

    [86] Jean van Heijenoort, From Frege to Gödel: A Source Book in MathematicalLogic, 1879–1931, Harvard University Press, Cambridge, Mass., 1967.

    [87] Sérgio B. Volchan, What is a random sequence?, Amer. Math. Monthly 109(2002), no. 1, 46–63.

    [88] Judson Chambers Webb, Mechanism, Mentalism, and Metamathematics: An es-say on finitism, Synthese Library, vol. 137, D. Reidel Publishing Co., Dordrecht,1980.

    [89] Alfred North Whitehead and Bertrand Russell, Principia Mathematica, Vol. 1–3,Cambridge University Press, 1910–1913. Second edition, strongly edited, 1927.

    [90] D. Zambella, On sequences with simple initial segments, University of Amster-dam ILLC technical report ML-1990-05, 1990.

    [91] A. K. Zvonkin and L. A. Levin, The complexity of finite objects and the basingof the concepts of information and randomness on the theory of algorithms,Uspehi Mat. Nauk 25 (1970), no. 6(156), 85–127 (Russian).

  • Index

    ∅′, 129, see also halting set1-randomness, 159

    1-reduction, 133

    Ackermann function, 53

    alphabet, 87

    and, logical, 9

    antecedent, 10

    antisymmetry, 22

    arithmetic

    Peano, 173, 175, 183

    Robinson, 104, 173

    second-order, 178

    standard model, 104, 173

    arithmetic transfinite recursion, 183

    arithmetical

    completeness, 133

    comprehension axiom, 183

    hierarchy, 131

    arity, 103, 170

    Arslanov completeness criterion,143

    associativity, 33

    automorphism, 30

    of a lattice, 147

    axiom of a production system, 88

    axiomatizable, 163

    base case, 31

    Berry’s paradox, 163

    bijection, 30

    binary sequence, 43, 157

    binary string, 43, 157

    bit-flip, 46

    Boolean algebra, 147

    bounding, 186

    BΠ0n, 186

    BΣ0n, 186

    c.e., see computably enumerable

    capping, 150, 153

    cardinality, 20, 25, 191

    Cartesian product, 16

    Chaitin’s Ω, 165

    characteristic function, 43

    Church-Turing thesis, 65

    closure operator, 33

    co-c.e., 102

    code, 56

    of a Turing machine, 59

    codomain, 29

    cofinite, 106

    coinfinite, 106

    complement, 17

    completeness theorem, 103, 172

    composition, 51

    via indices, 80

    comprehension, 179

    arithmetical, 183

    Π11, 184

    199

  • 200 Index

    recursive, 179

    computable

    function, 65

    set, 96

    computable model theory, 174

    computably (in)separable sets, 101,136, 175

    computably categorical, 176

    computably enumerable set, 97

    relativized, 129

    conjunction, 9

    consequent, 10

    contradiction, 10

    countable, 20

    countably infinite, 20

    cupping, 150, 153

    low, 151

    De Morgan’s Laws

    for predicate logic, 10

    for sets, 19

    decidable, 85

    definability, 147, 150

    degree, see Turing degree

    degree invariance, 154

    diagonalization, 63, 105, 190

    diagonally non-recursive, 185

    disjoint, 16

    disjoint union, 101

    disjunction, 10

    domain

    of a function, 29

    of quantification, 13

    domination, 64

    dovetailing, 96

    E, 146, 153E∗, 146effective, 97

    effective countability, 56, 62

    embedding, 150

    enumeration of Turing machines, 60

    equality

    for partial functions, 42

    for sets, 15, 19

    equivalence class, 25

    equivalence relation, 25

    equivalence, logical, 11

    finite difference, 114, 145first-order theory, 173

    fixed-point theorem, 81function

    Ackermann, 53

    characteristic, 43computable, 65

    equality, 42pairing, 57

    partial, 42

    partial recursive, 54primitive recursive, 50

    Gödel’s incompleteness, 105, 145,163, 178

    graphgeneral mathematical, 33

    of a function, 29, 100, 113of a relation, 24, 27

    greatest lower bound, 28

    halting probability, 165halting set, 78, 99, 114, 128, 129,

    133

    relativized, 129

    high set, 154

    implication, logical, 10

    incompleteness theorem, 105, 145,163, 178

    independent sentence, 104index, 60

    index set, 82, 86, 135

    induction, 179on N, 31

    on recursively defined sets, 35inductive step, 31

    injection, 29

    injury, 116, 121internal state, 44

    interpretation, 103, 170intersection, 16, 18

    interval, 158

    invariance, 147for degrees, 154

    isomorphism, 29

    join, 101, 127, 128, 130, 146jump, 129

  • Index 201

    omega, 130

    K, 78, see also halting set

    K(σ), 159

    K-trivial, 169KC Theorem, 161

    Kolmogorov complexity

    plain, 167

    prefix-free, 159

    Kraft inequality, 160, 166

    lambda calculus, 69

    language, 103, 170

    lattice, 146

    complemented, 146distributive, 146

    embedding, 150

    nondistributive, 152

    least upper bound, 28

    left-c.e. set, 125, 166

    limit lemma, 139limit, discrete, 41, 140

    linear order, 27, 176

    low basis theorem, 183

    low for random, 169

    low set, 130, 140

    noncomputable, 142lower bound, 28

    maximal set, 154

    measure, 158meet, 128, 146

    model, 103, 170, 180

    modular arithmetic, 26

    modulus, 140

    lemma, 140

    μ, 55

    negation, 10, 15

    nondeterministic Turing machine,68

    nonstandard model, 104, 174, 175nonuniformity, see uniformity

    not, 10

    Ω, 165or, logical, 10

    oracle, 109

    finite, 111

    notation, 111oracle Turing machine, 109orbit, 147overspill, 175

    padding lemma, 60pairing function, 57parameter, 180

    parametrization, 79partial computable functions, 65partial function, 42

    argument for allowing, 55, 62

    partial order, 27partition, 26Peano arithmetic, 173, 175

    in reverse math, 183permutation, 30ϕe, 60Π11 comprehension axiom, 184

    pigeonhole principle, 186plain Kolmogorov complexity, 167poset, 27Post correspondence system, 91

    Post’s problem, 115, 120Post’s theorem, 134power set, 16, 192predicate, 13

    prefix-freeKolmogorov complexity, 159Turing machine, 158

    primitive recursion, 51

    priority, 116, 117, 121product, Cartesian, 16production, 87

    normal, 88semi-Thue, 88

    projection, 51

    quantifiers, 13alternation of, 131collapsing like, 133

    quotient structure, 25, see alsoTuring degree, E∗

    randomness, 155, 159and Turing degree, 165

    for finite strings, 159relative, 168

    range, 29

  • 202 Index

    read/write head, 44

    recursion theorem, 81

    with parameters, 142

    recursive, 96

    recursive comprehension axiom,179

    recursive definition

    of a function, 35

    of a set, 33

    reduction property, 100

    reflexivity, 22

    relation, 21

    relative randomness, 168

    relativization, 128

    requirement, 106, 117

    injury, 116

    priority, 116

    satisfaction, 107

    restriction, 112, 157

    reverse mathematics, 177

    Rice’s theorem, 82

    Robinson arithmetic, 104, 173

    nonstandard model, 174

    s-m-n theorem, 79, 82, 84

    relativized, 128

    satisfaction, 107

    second-order arithmetic, 178

    second-order theory, 173, 178

    semantics, 103, 172

    semi-Thue system, 88, 92

    sentence, 13

    sequence, 43, 157

    set, 15

    arithmetical, 131

    bi-immune, 124

    computable, 96

    computably enumerable, 97

    creative, 145

    d.c.e., 125

    high, 154

    left-c.e., 125, 166

    low, 130, 140

    maximal, 154

    productive, 145

    simple, 106, see also simple set

    simple set, 106, 117, 146, 164

    effectively, 145

    incomplete, 120, 142

    nowhere, 153

    promptly, 151

    solvable, 85

    soundness theorem, 103, 172

    splitting theorem, 153

    stage bounding

    notation, 96, 100, 111

    use of, 111, 118, 121, 136

    standard model, 104, 173

    string, 43, 157

    structure, 170

    computably categorical, 176

    subset, 16

    successor, 51

    surjection, 30

    symmetric difference, 114, 136, 144,145

    symmetry, 22

    syntax, 103, 172

    tape, 44

    tautology, 10

    theorem of a production system, 88

    theory, 170

    first-order, 173

    second-order, 173, 178

    total computable functions, 65

    total order, 27

    transitive closure, 27

    transitivity, 22, 147

    truth table, 12

    tuple, 16

    Turing completeness, 114

    Turing degree, 127, 149

    and randomness, 165

    c.e., 128, 149

    Turing equivalence, 112

    Turing jump, 129

    Turing machine, 44

    busy beaver, 78

    code of, 59

    enumeration of, 60

    index of, 60

    nondeterministic, 68

    nonstandard, 67

    oracle, 109

    prefix-free, 158

  • Index 203

    universal, 62Turing reduction, 112

    unbounded search, 54uncountable, 21undecidable problem, see

    unsolvable problemuniformity, 3, 61, 80, 85, 86, 97,

    101, 104, 108, 110, 112, 128,130, 177

    main discussion of, 3, 61, 86, 97,108, 110

    union, 16, 18universal Turing machine, 62universe, 16

    of a model, 170unlimited register machine, 73unsolvable problem, 85

    halting problem, 78, see alsohalting set

    in behavior of Turing machines,77, 78, 86

    index sets, 82, 87solutions to Post correspondence

    systems, 92word problem for groups, 90word problem for semi-Thue

    systems, 89word problem for Thue systems,

    90upper bound, 27use, 111

    of divergent computations, 111

    We, 100weak jump, 114, 143

    relativized, 130

    weak König’s lemma, 181, 182weak weak König’s lemma, 185without loss of generality, 39witness, 118word, 87word problem

    for groups, 90for semi-Thue systems, 89

  • Selected Titles in This Series

    62 Rebecca Weber, Computability Theory, 2012

    61 Anthony Bonato and Richard J. Nowakowski, The Game of Copsand Robbers on Graphs, 2011

    60 Richard Evan Schwartz, Mostly Surfaces, 2011

    59 Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, AlexSchwendner, Dmitry Vaintrob, and Elena Yudovina, Introduction toRepresentation Theory, 2011

    58 Álvaro Lozano-Robledo, Elliptic Curves, Modular Forms, and TheirL-functions, 2011

    57 Charles M. Grinstead, William P. Peterson, and J. Laurie Snell,Probability Tales, 2011

    56 Julia Garibaldi, Alex Iosevich, and Steven Senger, The ErdősDistance Problem, 2011

    55 Gregory F. Lawler, Random Walk and the Heat Equation, 2010

    54 Alex Kasman, Glimpses of Soliton Theory, 2010

    53 Jǐŕı Matoušek, Thirty-three Miniatures, 2010

    52 Yakov Pesin and Vaughn Climenhaga, Lectures on Fractal Geometryand Dynamical Systems, 2009

    51 Richard S. Palais and Robert A. Palais, Differential Equations,Mechanics, and Computation, 2009

    50 Mike Mesterton-Gibbons, A Primer on the Calculus of Variations andOptimal Control Theory, 2009

    49 Francis Bonahon, Low-Dimensional Geometry, 2009

    48 John Franks, A (Terse) Introduction to Lebesgue Integration, 2009

    47 L. D. Faddeev and O. A. Yakubovskĭi, Lectures on QuantumMechanics for Mathematics Students, 2009

    46 Anatole Katok and Vaughn Climenhaga, Lectures on Surfaces, 2008

    45 Harold M. Edwards, Higher Arithmetic, 2008

    44 Yitzhak Katznelson and Yonatan R. Katznelson, A (Terse)Introduction to Linear Algebra, 2008

    43 Ilka Agricola and Thomas Friedrich, Elementary Geometry, 2008

    42 C. E. Silva, Invitation to Ergodic Theory, 2008

    41 Gary L. Mullen and Carl Mummert, Finite Fields and Applications,2007

    40 Deguang Han, Keri Kornelson, David Larson, and Eric Weber,Frames for Undergraduates, 2007

    39 Alex Iosevich, A View from the Top, 2007

    38 B. Fristedt, N. Jain, and N. Krylov, Filtering and Prediction: APrimer, 2007

    37 Svetlana Katok, p-adic Analysis Compared with Real, 2007

    36 Mara D. Neusel, Invariant Theory, 2007

  • SELECTED TITLES IN THIS SERIES

    35 Jörg Bewersdorff, Galois Theory for Beginners, 2006

    34 Bruce C. Berndt, Number Theory in the Spirit of Ramanujan, 2006

    33 Rekha R. Thomas, Lectures in Geometric Combinatorics, 2006

    32 Sheldon Katz, Enumerative Geometry and String Theory, 2006

    31 John McCleary, A First Course in Topology, 2006

    30 Serge Tabachnikov, Geometry and Billiards, 2005

    29 Kristopher Tapp, Matrix Groups for Undergraduates, 2005

    28 Emmanuel Lesigne, Heads or Tails, 2005

    27 Reinhard Illner, C. Sean Bohun, Samantha McCollum, and Theavan Roode, Mathematical Modelling, 2005

    26 Steven J. Cox, Robin Forman, Frank Jones, Barbara Lee Keyfitz,Frank Morgan, and Michael WolfSix Themes on Variation, 2004

    25 S. V. Duzhin and B. D. Chebotarevsky, Transformation Groups forBeginners, 2004

    24 Bruce M. Landman and Aaron Robertson, Ramsey Theory on theIntegers, 2004

    23 S. K. Lando, Lectures on Generating Functions, 2003

    22 Andreas Arvanitoyeorgos, An Introduction to Lie Groups and theGeometry of Homogeneous Spaces, 2003

    21 W. J. Kaczor and M. T. Nowak, Problems in Mathematical AnalysisIII, 2003

    20 Klaus Hulek, Elementary Algebraic Geometry, 2003

    19 A. Shen and N. K. Vereshchagin, Computable Functions, 2003

    18 V. V. Yaschenko, Editor, Cryptography: An Introduction, 2002

    17 A. Shen and N. K. Vereshchagin, Basic Set Theory, 2002

    16 Wolfgang Kühnel, Differential Geometry, 2002

    15 Gerd Fischer, Plane Algebraic Curves, 2001

    14 V. A. Vassiliev, Introduction to Topology, 2001

    13 Frederick J. Almgren, Jr., Plateau’s Problem, 2001

    12 W. J. Kaczor and M. T. Nowak, Problems in Mathematical AnalysisII, 2001

    11 Mike Mesterton-Gibbons, An Introduction to Game-TheoreticModelling, 2001

    10 John Oprea, The Mathematics of Soap Films: Explorations with Maple�,2000

    9 David E. Blair, Inversion Theory and Conformal Mapping, 2000

    For a complete list of titles in this series, visit theAMS Bookstore at www.ams.org/bookstore/.

  • AMS on the Webwww.ams.orgSTML/62

    For additional informationand updates on this book, visit

    www.ams.org/bookpages/stml-62

    What can we compute—even with unlimited resources? Is everything within reach? Or are computations necessarily drastically limited, not just in practice, but theoreti-cally? These questions are at the heart of computability theory.

    The goal of this book is to give the reader a fi rm grounding in the fundamentals of computability theory and an overview of currently active areas of research, such as reverse mathematics and algorithmic randomness. Turing machines and partial recur-sive functions are explored in detail, and vital tools and concepts including coding, uniformity, and diagonalization are described explicitly. From there the material continues with universal machines, the halting problem, parametrization and the recursion theorem, and thence to computability for sets, enumerability, and Turing reduction and degrees. A few more advanced topics round out the book before the chapter on areas of research. The text is designed to be self-contained, with an entire chapter of preliminary material including relations, recursion, induction, and logical and set notation and operators. That background, along with ample explanation, exam-ples, exercises, and suggestions for further reading, make this book ideal for independent study or courses with few prerequisites.