Compuertas lógicas

9
Universidad Técnica de Ambato Circuitos Combinacionales Un circuito combinacional, como su nombre lo sugiere es un circuito cuya salida depende solamente de la "combinación" de sus entradas en el momento que se está realizando la medida en la salida. Analizando el circuito, con compuertas digitales, que se muestra (ver el diagrama) se ve que la salida de cada una de las compuertas que se muestran, depende únicamente de sus entradas. La salida F (salida final o total del circuito) variará si alguna de las entradas A o B o las dos a la vez cambian. Los circuitos de lógica combinacional son hechos a partir de las compuertas básicascompuerta AND, compuerta OR, compuerta NOT. También pueden ser construidos con compuertas NAND, compuertas NOR, compuerta XOR, que son una combinación de las tres compuertas básicas. La operación de los circuitos combinacionales se entienden escribiendo las ecuaciones booleanas y sus respectivas tablas de verdad. Circuitos Integrados El circuito Integrado (IC), es una pastilla o chip muy delgado en el que se encuentran una cantidad enorme de dispositivos microelectrónicas interactuadas, principalmente diodos y transistores, además de componentes pasivos como resistencias o condensadores. El primer Circuito Integrado fue desarrollado en 1958 por el Ingeniero Jack St. Clair Kilby, justo meses después de haber sido contratado por la firma Texas Instruments. Los elementos más comunes de los equipos electrónicos de la época eran los llamados “tubos de vacío”, las lámparas usadas en radio y televisión y el transistor de germanio (Ge). En el verano de 1958 Jack Kilby se propuso cambiar las cosas. Entonces concibió el primer circuito electrónico cuyos componentes, tanto los activos como los pasivos, estuviesen dispuestos en un solo pedazo de material, semiconductor, que ocupaba la mitad de espacio de un clip para sujetar papeles. El 12 de Septiembre de 1958, el invento de Jack Kilby se probó con éxito. El circuito estaba fabricado sobre una pastilla cuadrada de germanio (Ge), un elemento químico metálico y cristalino, que medía seis milímetros por lado y contenía apenas un transistor, tres resistencias y un condensador. El éxito de Kilby supuso la entrada del mundo en la microelectrónica. El aspecto del circuito integrado era tan nimio, que se ganó el apodo inglés que se le da a las astillas, las briznas, los pedacitos de algo: chip. En el año 2000 Jack Kilby fue galardonado con el Premio Nobel de Física por la contribución de su invento al desarrollo de la tecnología de la información. Los circuitos integrados fueron posibles gracias a descubrimientos experimentales que demostraron que los semiconductores pueden realizar las funciones de los tubos de vacío o circuitos de varios transistores. La integración de grandes cantidades de diminutos transistores en pequeños chips fue un enorme avance sobre la ensamblaje manual de los tubos de vacío (válvulas) y circuitos utilizando componentes discretos. La capacidad de producción masiva de circuitos integrados, con fiabilidad y facilidad de agregarles complejidad, impuso la estandarización

Transcript of Compuertas lógicas

Page 1: Compuertas lógicas

Universidad Técnica de Ambato

Circuitos Combinacionales

Un circuito combinacional, como su nombre lo sugiere es un circuito cuya salida depende solamente de la "combinación" de sus entradas en el momento que se está realizando la medida en la salida.

Analizando el circuito, con compuertas digitales, que se muestra (ver el diagrama) se ve que la salida de cada una de las compuertas que se muestran, depende únicamente de sus entradas.

La salida F (salida final o total del circuito) variará si alguna de las entradas A o B o las dos a la vez cambian.

Los circuitos de lógica combinacional son hechos a partir de las compuertas básicascompuerta AND, compuerta OR, compuerta NOT.

También pueden ser construidos con compuertas NAND, compuertas NOR, compuerta XOR, que son una combinación de las tres compuertas básicas.

La operación de los circuitos combinacionales se entienden escribiendo las ecuaciones booleanas y sus respectivas tablas de verdad.

Circuitos Integrados

El circuito Integrado (IC), es una pastilla o chip muy delgado en el que se encuentran una cantidad enorme de dispositivos

microelectrónicas interactuadas, principalmente diodos y transistores, además de componentes pasivos como resistencias

o condensadores. El primer Circuito Integrado fue desarrollado en 1958 por el Ingeniero Jack St. Clair Kilby, justo meses

después de haber sido contratado por la firma Texas Instruments. Los

elementos más comunes de los equipos electrónicos de la época eran

los llamados “tubos de vacío”, las lámparas usadas en radio y

televisión y el transistor de germanio (Ge). En el verano de 1958 Jack

Kilby se propuso cambiar las cosas. Entonces concibió el primer

circuito electrónico cuyos componentes, tanto los activos como los

pasivos, estuviesen dispuestos en un solo pedazo de material,

semiconductor, que ocupaba la mitad de espacio de un clip para

sujetar papeles.

El 12 de Septiembre de 1958, el invento de Jack Kilby se probó con

éxito. El circuito estaba fabricado sobre una pastilla cuadrada de germanio (Ge), un elemento químico metálico y cristalino,

que medía seis milímetros por lado y contenía apenas un transistor, tres resistencias y un condensador. El éxito de Kilby

supuso la entrada del mundo en la microelectrónica. El aspecto del circuito integrado era tan nimio, que se ganó el apodo

inglés que se le da a las astillas, las briznas, los pedacitos de algo: chip.

En el año 2000 Jack Kilby fue galardonado con el Premio Nobel de Física por la contribución de su invento al desarrollo de

la tecnología de la información. Los circuitos integrados fueron posibles gracias a descubrimientos experimentales que

demostraron que los semiconductores pueden realizar las funciones de los tubos de vacío o circuitos de varios transistores.

La integración de grandes cantidades de diminutos transistores en pequeños chips fue un enorme avance sobre la

ensamblaje manual de los tubos de vacío (válvulas) y circuitos utilizando componentes discretos. La capacidad de

producción masiva de circuitos integrados, con fiabilidad y facilidad de agregarles complejidad, impuso la estandarización

Page 2: Compuertas lógicas

Universidad Técnica de Ambato

de los circuitos integrados en lugar de diseños utilizando transistores que pronto dejaron obsoletas a las válvulas o tubos de

vacío.

Existen dos ventajas principales de los circuitos integrados sobre los circuitos convencionales: coste y rendimiento. El bajo

coste es debido a que los chips, con todos sus componentes, son impresos como una sola pieza por fotolitografía y no

construidos por transistores de a uno por vez.

Algunos de los circuitos integrados más avanzados son los microprocesadores, que son usados en múltiples artefactos,

desde ordenadores hasta electrodomésticos, pasando por los teléfonos móviles. Los chips de memorias digitales son otra

familia de circuitos integrados que son de importancia crucial para la moderna sociedad de la información. Mientras el coste

del diseño y desarrollo de un circuido integrado complejo es bastante alto, cuando se reparte entre millones de unidades de

producción el coste individual, por lo general, se reduce al mínimo. La eficiencia de los circuitos integrados es alta debido a

que el pequeño tamaño de los chips permite cortas conexiones que posibilitan la utilización de lógica de bajo consumo

(como es el caso de los TTL y CMOS) en altas velocidades de conmutación.

Las estructuras de los microchips se volvieron más y más pequeñas. Los fabricantes tuvieron éxito al duplicar el número de

transistores en un chip cada 18 meses, tal como lo predijo la ley de Moore. Sin embargo, a medida que los tamaños se han

reducido a escalas de átomos, los fabricantes se están acercando cada vez más a los límites de la miniaturización. Ha

llegado el tiempo de probar acercamientos completamente nuevos. Para esto, los investigadores están actualmente

buscando soluciones tales como el uso de pequeños “mini tubos de grafeno”, los cuales esperan utilizar en los microchips

del futuro. Tan sólo ha pasado medio siglo desde el inicio de su desarrollo y ya se han vuelto ubicuos. De hecho, muchos

académicos creen que la revolución digital impulsada por los circuitos integrados es una de los sucesos más destacados de

la historia de la humanidad.

Existen tres tipos de circuitos integrados:

Circuito monolítico:

La palabra monolítico viene del griego y significa “una piedra”. La palabra es apropiada porque los componentes son parte

de un chip. El Circuito monolítico es el tipo más común de circuito integrado, ya que desde su intervención los fabricantes

han estado produciendo los circuitos integrados monolíticos para llevar a cabo todo tipo de funciones. Los tipos

comercialmente disponibles se pueden utilizar como amplificadores, reguladores de voltaje, conmutadores, receptores de

AM, circuito de televisión y circuitos de ordenadores. Pero tienen limitadores de potencia. Ya que la mayoría de ellos son

del tamaño de un transistor discreto de señal pequeña, generalmente tiene un índice de máxima potencia menor que 1W.

Están fabricados en un solo monocristal, habitualmente de silicio, pero también existen en germanio, arseniuro de galio,

silicio-germanio, etc.

Circuito híbrido de capa fina:

Son muy similares a los circuitos monolíticos, pero además, contienen componentes difíciles de fabricar con tecnología

monolítica. Muchos conversores A/D – D/A se fabricaron en tecnología híbrida hasta que progresos en la tecnología

permitieron fabricar resistencias precisas.

Circuito híbrido de capa gruesa:

Se apartan bastante de los circuitos monolíticos. De hecho suelen contener circuitos monolíticos sin cápsula (dices),

transistores, diodos, etc., sobre un sustrato dieléctrico, interconectados con pistas conductoras. Las resistencias se

depositan por serigrafía y se ajustan haciéndoles cortes con láser. Todo ello se encapsula, tanto en cápsulas plásticas

como metálicas, dependiendo de la disipación de potencia que necesiten. En muchos casos, la cápsula no está

“moldeada”, sino que simplemente consiste en una resina epoxi que protege el circuito. En el mercado se encuentran

circuitos híbridos para módulos de RF, fuentes de alimentación, circuitos de encendido para automóvil, etc.

Clasificación de los Circuitos Integrados:

-SSI (Small ScaleIntegration) pequeño nivel: inferior a 12.

-MSI (Medium ScaleIntegration) medio: 12 a 99.

-LSI (LargeScaleIntegration) grande: 100 a 9999.

Page 3: Compuertas lógicas

Universidad Técnica de Ambato

-VLSI (Very Large Scale Integration) muygrande: 10 000 a 99 999.

-ULSI (Ultra LargeScaleIntegration) ultra grande: igual o superior a 100 000.

En cuanto a las funciones integradas, existen dos clasificaciones fundamentales de circuitos integrados (IC):

Circuitos integrados analógicos:

Pueden constar desde simples transistores encapsulados juntos, sin unión entre ellos, hasta dispositivos completos como

amplificadores, osciladores o incluso receptores de radio completos.

-Circuitos integrados digitales: Pueden ser desde básicas puertas lógicas hasta los más complicados microprocesadores.

Éstos son diseñados y fabricados para cumplir una función específica dentro de un sistema. En general, la fabricación de

los circuitos integrados es compleja ya que tienen una alta integración de componentes en un espacio muy reducido de

forma que llegan a ser microscópicos. Sin embargo, permiten grandes simplificaciones con respecto a los antiguos

circuitos, además de un montaje más rápido.

Limitaciones de los circuitos integrados:

Existen ciertos límites físicos y económicos al desarrollo de los circuitos integrados. Son barreras que se van alejando al

mejorar la tecnología, pero no desaparecen. Las principales son:

Disipación de potencia-Evacuación del calor:

Los circuitos electrónicos disipan potencia. Cuando el número de componentes integrados en un volumen dado crece, las

exigencias en cuanto a disipación de esta potencia, también crecen, calentando el sustrato y degradando el

comportamiento del dispositivo. Además, en muchos casos es un comportamiento regenerativo, de modo que cuanto

mayor sea la temperatura, más calor producen, fenómeno que se suele llamar “embalamiento térmico” y como

consecuencia, el llamado “efecto avalancha”, y que si no se evita, llega a destruir el dispositivo. Los amplificadores de audio

y los reguladores de tensión son proclives a este fenómeno, por lo que suelen incorporar “protecciones térmicas”.

Los circuitos de potencia, evidentemente, son los que más energía deben disipar. Para ello su cápsula contiene partes

metálicas, en contacto con la parte inferior del chip, que sirven de conducto térmico para transferir el calor del chip al

disipador o al ambiente. La reducción de resistividad térmica de este conducto, así como de las nuevas cápsulas de

compuestos de silicona, permiten mayores disipaciones con cápsulas más pequeñas. Los circuitos digitales resuelven el

problema reduciendo la tensión de alimentación y utilizando tecnologías de bajo consumo, como TTL o CMOS. Aun así en

los circuitos con más densidad de integración y elevadas velocidades, la disipación es uno de los mayores problemas,

llegándose a utilizar experimentalmente ciertos tipos de criostatos. Precisamente la alta resistividad térmica del arseniuro

de galio es su talón de Aquiles para realizar circuitos digitales con él.

Capacidades y autoinducciones parásitas:

Este efecto se refiere principalmente a las conexiones eléctricas entre el chip, la cápsula y el circuito donde va montada,

limitando su frecuencia de funcionamiento. Con pastillas más pequeñas se reduce la capacidad y la autoinducción de ellas.

En los circuitos digitales excitadores de buses, generadores de reloj, etc., es importante mantener la impedancia de las

líneas y, todavía más, en los circuitos de radio y de microondas.

Límites en los componentes:

Los componentes disponibles para integrar tienen ciertas limitaciones, que difieren de las de sus contrapartidas discretas:

Resistencias:

Son indeseables por necesitar una gran cantidad de superficie. Por ello sólo se usan valores reducidos y, en tecnologías

digitales, se eliminan casi totalmente.

Condensadores:

Sólo son posibles valores muy reducidos y a costa de mucha superficie. Como ejemplo, en el amplificador operacional

uA741, el condensador de estabilización viene a ocupar un cuarto del chip.

Bobinas:

Page 4: Compuertas lógicas

Universidad Técnica de Ambato

Sólo se usan en circuitos de radiofrecuencia, siendo híbridos muchas veces. En general no se integran.Los circuitos más

usados son los resonantes (bobina-condensador; bien en serie o en paralelo), que actualmente son sustituidos por cristales

de cuarzo

Compuertas lógicas

Dentro de la electrónica digital, existe un gran número de problemas a resolver que se repiten normalmente. Por ejemplo,

es muy común que al diseñar un circuito electrónico necesitemos tener el valor opuesto al de un punto determinado, o que

cuando un cierto número de pulsadores estén activados, una salida permanezca apagada. Todas estas situaciones pueden

ser expresadas mediante ceros y unos, y tratadas mediante circuitos digitales. Los elementos básicos de cualquier circuito

digital son las compuertas lógicas.

En el presente trabajo se intenta dar una definición de lo que es un álgebra de boole; se tratan las funciones booleanas,

haciendo una correlación con las fórmulas proposicionales. Asimismo, se plantean dos formas canónicas de las funciones

booleanas, que son útiles para varios propósitos, tales como el de determinar si dos expresiones representan o no la

Lógica Positiva

En esta notación al 1 lógico le corresponde el nivel más alto de tensión y al 0 lógico el nivel más bajo, pero que ocurre

cuando la señal no está bien definida. Entonces habrá que conocer cuáles son los límites para cada tipo de señal (conocido

como tensión de histéresis), en este gráfico se puede ver con mayor claridad cada estado lógico y su nivel de tensión.

Lógica Negativa

Aquí ocurre todo lo contrario, es decir, se representa al estado "1" con los niveles más bajos de tensión y al "0" con los

niveles más altos.

Por lo general se suele trabajar con lógica positiva, la forma más sencilla de representar estos estados es como se puede

ver en el siguiente gráfico.

Compuertas Lógicas Sencillas

Las compuertas lógicas son dispositivos que operan con aquellos estados lógicos mencionados en lo anterior y funcionan

igual que una calculadora, de un lado ingresas los datos, ésta realiza una operación, y finalmente, te muestra el resultado.

Page 5: Compuertas lógicas

Universidad Técnica de Ambato

Cada una de las compuertas lógicas se las representa mediante un Símbolo, y la operación que realiza (Operación lógica)

se corresponde con una tabla, llamada Tabla de Verdad, veamos la primera.

Compuerta NOT

Se trata de un inversor, es decir, invierte el dato de entrada, por ejemplo; si pones su entrada a 1 (nivel alto) obtendrás en

su salida un 0 (o nivel bajo), y viceversa. Esta compuerta dispone de una sola entrada. Su operación lógica es s igual a a

invertida

Compuerta AND

Una compuerta AND tiene dos entradas como mínimo y su operación lógica es un producto entre ambas, no es un producto

aritmético, aunque en este caso coincidan.*Observa que su salida será alta si sus dos entradas están a nivel alto*

Compuerta OR

Al igual que la anterior posee dos entradas como mínimo y la operación lógica, será una suma entre ambas... Bueno, todo

va bien hasta que 1 + 1 = 1, el tema es que se trata de una compuerta O Inclusiva es como a y/o b*Es decir, basta que una

de ellas sea 1 para que su salida sea también 1*

Compuerta OR-EX o XOR

Es OR EXclusiva en este caso con dos entradas (puede tener más) y lo que hará con ellas será una

suma lógica entre a por b invertida y a invertidapor b.*Al ser O Exclusiva su salida será 1 si una y sólo una de sus entradas

es 1*

Compuertas Lógicas Combinadas

Al agregar una compuerta NOT a cada una de las compuertas anteriores los resultados de sus respectivas tablas de

verdad se invierten, y dan origen a tres nuevas compuertas llamadas NAND, NOR y NOR-EX. Veamos ahora como son y

cuál es el símbolo que las representa...

Compuerta NAND

Page 6: Compuertas lógicas

Universidad Técnica de Ambato

Responde a la inversión del producto lógico de sus entradas, en su representación simbólica se reemplaza la compuerta

NOT por un círculo a la salida de la compuerta AND.

Compuerta NOR

El resultado que se obtiene a la salida de esta compuerta resulta de la inversión de la operación lógica o inclusiva es como

un no a y/o b. Igual que antes, solo agregas un círculo a la compuerta OR y ya tienes una NOR.

Compuerta NOR-EX

Es simplemente la inversión de la compuerta OR-EX, los resultados se pueden apreciar en la tabla de verdad, que bien

podrías compararla con la anterior y notar la diferencia, el símbolo que la representa lo tienes en el siguiente gráfico.

Buffer's

En realidad no realiza ninguna operación lógica, su finalidad es amplificar un poco la señal (o refrescarla si se puede decir).

Como puedes ver en el siguiente gráfico la señal de salida es la misma que de entrada.

Tabla de Verdad

La tabla de verdad es un instrumento utilizado para la simplificación de circuitos digitales a través de su ecuación booleana.

Todas las tablas de verdad funcionan de la misma manera sin importar la cantidad de columnas que tenga y todas tienen

siempre una columna de salida (la última columna a la derecha) que representa el resultado de todas las posibles

combinaciones de las entradas.

El número total de columnas en una tabla de verdad es la suma de las entradas que hay + 1 (la columna de la salida).

El número de filas de la tabla de verdad es la cantidad de combinaciones que se pueden lograr con las entradas y es igual

a 2n, donde n es el número de columnas de la tabla de verdad (sin tomar en cuenta la columna de salida)

Page 7: Compuertas lógicas

Universidad Técnica de Ambato

Ejemplo: en la siguiente tabla de verdad hay 3 columnas de entrada, entonces habrán: 23 = 8 combinaciones (8 filas)

Un circuito con 3 interruptores de entrada (con estados binarios "0" o "1"), tendrá 8 posibles combinaciones. Siendo el

resultado (la columna salida) determinado por el estado de los interruptores de entrada.

Los circuitos lógicos son básicamente un arreglo de interruptores, conocidos como "compuertas lógicas"

(compuertasAND, NAND, OR, NOR, NOT, etc.). Cada compuerta lógica tiene su tabla de verdad.

Si pudiéramos ver con más detalle la construcción de las "compuertas lógicas", veríamos que son circuitos constituidos por

transistores, resistencias, diodos, etc., conectados de manera que se obtienen salidas específicas para entradas

específicas

La utilización extendida de las compuertas lógicas, simplifica el diseño y análisis de circuitos complejos. La tecnología

moderna actual permite la construcción de circuitos integrados (ICs) que se componen de miles (o millones) de compuertas

lógicas.

Diseño de circuitos convencionales

Enunciado del problema

Se desea controlar dos bombas B1 y B2 de acuerdo con el nivel de líquido existente en un depósito. Su funcionamiento es

el siguiente:

cuando el nivel de líquido está comprendido entre los dos sensores (depósito con nivel medio), “c” y “d” debe funcionar la

bomba B1, o B2 si el sensor de temperatura de la bomba B1, “a” se ha activado. La bomba se parará cuando se supere el

valor máximo marcado por el sensor “d”;

si el nivel de agua está por debajo del nivel mínimo marcado por el sensor “c” arrancarán las dos bombas;

en caso de funcionamiento anormal de los sensores de nivel (activado el sensor “d” y no el “c”), las dos bombas se pararán.

Además, ambas bombas poseen sendos sensores de temperatura “a” y “b” para B1 y B2 respectivamente, de forma que

cuando la temperatura de alguno de ellos supera el valor marcado por el sensor de temperatura dicha bomba se parará.

Implementar dicha función con el mínimo número de puertas NAND.

Page 8: Compuertas lógicas

Universidad Técnica de Ambato

Solución

Para la resolución del problema planteado se supondrá que el nivel lógico “1” corresponde al nivel alto de tensión y el nivel

lógico “0” al nivel bajo.

Tabla de verdad

c d a b B1 B2

0 0 0 0 1 1

0 0 0 1 1 0

0 0 1 0 0 1

0 0 1 1 0 0

0 1 0 0 0 0

0 1 0 1 0 0

0 1 1 0 0 0

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 1 0 0

1 1 0 0 0 0

1 1 0 1 0 0

1 1 1 0 0 0

1 1 1 1 0 0

Para obtener las expresiones lo más simplificadas posible se recurre a los mapas de Karnaugh. Puesto que se implementa

con puertas NAND, se utiliza la primera forma canónica.

Bomba B1

c d

a b 0 0 0 1 1 1 1 0

0 0 1 0 0 1

Page 9: Compuertas lógicas

Universidad Técnica de Ambato

0 1 1 0 0 1

1 1 0 0 0 0

1 0 0 0 0 0

Bomba B2

c d

a b 0 0 0 1 1 1 1 0

0 0 1 0 0 0

0 1 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 1

Implementación del circuito

En el laboratorio se dispone de los módulos Logitronic-3 de Alecop formados por circuitos lógicos de la familia CMOS.

Estos módulos poseen puertas NAND de 2 y 4 entradas.

Puesto que una entrada al aire para una puerta CMOS no se sabe a que estado lógico corresponde, cuando necesitamos

sólo 3 de las entradas disponibles conectamos la que no se utilice a nivel alto (“1” lógico) de modo que la función, en este

caso, no se ve afectada.

Las salidas (B1 y B2) se conectan a sendos LEDs para indicar visualmente su estado. Al comprobar con un polímetro las

tensiones correspondientes a cada uno de los estados lógicos se obtiene que un “1” lógico son 4,24V y un “0” lógico son

0,00V.