Compressor Thermodynamics Rev3

28
Compressor Thermodynamics Methods and Alternatives

description

Compressor

Transcript of Compressor Thermodynamics Rev3

Page 1: Compressor Thermodynamics Rev3

Compressor Thermodynamics

Methods and Alternatives

Page 2: Compressor Thermodynamics Rev3

2 GE Title or job number

11/17/2013

Background

Calculating Volume, SI

The basic equation is 𝑃𝑉 = 𝑛𝑅𝑇𝑍

Where

Z=Compression factor, (no units)

T=Absolute Temperature

R=0.083145, m3 bar/(mol K) (Volume Units)

P=Absolute pressure, bar

Page 3: Compressor Thermodynamics Rev3

3 GE Title or job number

11/17/2013

Process

General Energy Balance

Mixture @ Pi,Ti Output Fluid @ Po,To

F

Work

Heat

1st Law DH=Q+W/e

Page 4: Compressor Thermodynamics Rev3

4 GE Title or job number

11/17/2013

Process

General Energy Balance

Pi= 35 bar Ti= 30 oC

F

Work=??

Efficiency = 80%

Po= 110 bar To= ??

Page 5: Compressor Thermodynamics Rev3

5 GE Title or job number

11/17/2013

Calculating Discharge Conditions: Ideal Gas Single Phase

Step 1 β€’ Note Inlet Pi, Ti

β€’ Calculate Volume (Vi), and Cp, Cv and k=Cp/Cv

Step 2

β€’ Estimate To

β€’ π‘‡π‘œ = π‘‡π‘–π‘ƒπ‘œ

𝑃𝑖

π‘˜βˆ’1

π‘˜

Step 3

β€’ Estimate Ideal Work

β€’ π‘Š β‰ˆ1

πœ–

π‘˜

π‘˜βˆ’1

𝑍𝑖𝑅𝑇𝑖

π‘€π‘Š

𝑃0

𝑃𝑖

π‘˜βˆ’1

π‘˜βˆ’ 1 π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑅 = 8.3145

π‘˜π½

π‘˜π‘šπ‘œπ‘™/𝐾

Page 6: Compressor Thermodynamics Rev3

6 GE Title or job number

11/17/2013

Example: First Calculating Mol Wt

Feed Component MW Zi*mwi

Component mol%

Water 0.00 18.02 0.00

H2S 0.00 34.08 0.00

CO2 0.95 28.01 26.61

N2 8.85 44.01 389.56

Methane 78.96 16.04 1266.70

Ethane 7.75 30.07 233.11

Propane 2.51 44.10 110.78

i-Butane 0.30 58.12 17.35

n-Butane 0.49 58.12 28.50

i-Pentane 0.08 72.15 5.84

n-Pentane 0.07 72.15 5.07

Benzene 0.00 78.11 0.00

Toluene 0.00 92.14 0.00

e-Benzene 0.00 106.17 0.00

o-Xylene 0.00 106.17 0.00

m-Xylene 0.00 Density 106.17 0.00

p-Xylene 0.00 mw kg/m3 106.17 0.00

Hexane 0.02 84.40 670 84.40 1.70

Heptane 0.01 92.60 734 92.60 1.08

Octane 0.00 105.20 760 105.20 0.47

Nonane 0.00 117.70 781 117.70 0.14

Decane 0.00 171.50 800 171.50 0.05

100.00 Stream MW, S 20.87

π‘€π‘Š = π‘π‘–π‘€π‘Šπ‘–

𝑍𝑖

Page 7: Compressor Thermodynamics Rev3

7 GE Title or job number

11/17/2013

Calculating Ideal Gas Version

Step 1 efficiency 0.80 mw kg/kmol 19.64

Pi bar 35.00 Ti C 60.00

Zi - 0.95 Hi J/mol 10516.77

Vi m /kmol 0.76 k=Cpi/Cvi - 1.33

Step 2 Po bar 110.00 To C 169.35

Ideal Work 178.4 info

Page 8: Compressor Thermodynamics Rev3

8 GE Title or job number

11/17/2013

Compressor Modeling

L

The Polytropic Analysis of Centrifugal Compressors

John M. Schultz, Trans. Of the ASME, ASME J. of Engineering for Power, Jan 1962 pp 69-82

The real-gas equations of polytropic analysis are derived in terms of compressibility functions X and Y which supplement the familiar compressibility factor, Z. A polytropic head factor, f, is introduced to adjust test results for deviations from perfect-gas behavior. Functions X and Y are generalized and plotted for gases in corresponding states.

The thermodynamic design and test evaluation of centrifugal compressors is frequently based upon a polytropic analysis employing perfect-gas relations. In many instances real-gas relations would be more accurate, but these are virtually unknown. The purpose of this paper is to derive the real-gas equations of polytropic analysis and to show their application to centrifugal compressor testing and design.

Page 9: Compressor Thermodynamics Rev3

9 GE Title or job number

11/17/2013

The problem in 1962

β€’ Needed a convenient model for the fluid

β€’ Little General Access to Process Simulation Tools β€’ Limitations in Equations of State Methods

β€’ BWR 1940, complex solution β€’ RK 1949, limited application to mixtures β€’ NGA 1958, Equilibrium Ratio Data for Computers

Needed an alternative which could be handled using a slide rule

β€’ Ie: Simple log-log relationships β€’ Utilize Corresponding States Models

Page 10: Compressor Thermodynamics Rev3

10 GE Title or job number

11/17/2013

Classic Algorithm Flange to Flange

Hi,Si,ri,CPi,Cvi

V/F

Hos,Sos,Tos

Feed at P,T

Flash at Pi,Ti

Isentropic Flash at Po

Ho=Hi+(Hos-His)/h

Isenthalpic Flash at Po

Ho,So,To,W V/F

Outputs

Inputs β€’ Efficiency β€’ Composition

Page 11: Compressor Thermodynamics Rev3

11 GE Title or job number

11/17/2013

Schultz Algorithm: Wheel by Wheel

Hi,Si,Vi,CPi,Cvi

V/F,X,Y,n,m,

To

Feed at P,T

Flash at Pi,Ti

Calculate To,Po,Vo

Done Ho,So,To,W

Outputs Inputs β€’ Efficiency β€’ Composition

Page 12: Compressor Thermodynamics Rev3

12 GE Title or job number

11/17/2013

Compressor Modeling

Classic Compressor Algorithm: Polytropic

β€’ 𝑃𝑉𝑛 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

β€’π‘ƒπ‘š

𝑇= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

‒𝑃

π‘›βˆ’1𝑛 βˆ’π‘š

𝑍= π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

Page 13: Compressor Thermodynamics Rev3

13 GE Title or job number

11/17/2013

Schultz shortcut: Linearization

π‘˜ =𝐢𝑝

𝐢𝑣

hp= polytropic efficiency

h𝑝= 𝑉

𝑑𝑃

𝑑𝐻=

𝑉

πœ•π»πœ•π‘ƒ 𝑇

+ 𝐢𝑝𝑑𝑇𝑑𝑃

𝑋 =𝑇

𝑉

πœ•π‘‰

πœ•π‘‡ π‘ƒβˆ’ 1 Z-Factor Charts

π‘Œ = βˆ’π‘ƒ

𝑉

πœ•π‘‰

πœ•π‘ƒ 𝑇

Page 14: Compressor Thermodynamics Rev3

14 GE Title or job number

11/17/2013

Schultz Calculation Strategy: Single Phase

Step 1 β€’ Note Inlet e, Pi, Ti

β€’ Calculate Volume (Vi), k= (Cp/Cv)

Step 2

β€’ Estimate Outlet Temperature, To

β€’ π‘‡π‘œ = π‘‡π‘–π‘ƒπ‘œ

𝑃𝑖

π‘˜βˆ’1

π‘˜

Step 3

β€’ Estimate Average Pressure, 𝑃

β€’ 𝑃 = π‘ƒπ‘–π‘ƒπ‘œ

𝑃𝑖 π‘œπ‘Ÿ 𝑃 =

π‘ƒπ‘œ+𝑃𝑖

2

Page 15: Compressor Thermodynamics Rev3

15 GE Title or job number

11/17/2013

Example: Continue from Previous

Step 1 efficiency 0.80 mw kg/kmol 19.64

Pi bar 35.00 Ti C 60.00

Zi - 0.95 Hi J/mol 10516.77

Vi m /kmol 0.76 k=Cpi/Cvi - 1.33

Pbar from Geometric Mean Pbar from Arithmetic Mean

Step 2 Po bar 110.00 To C 169.35

Ideal Work 178.4 info

Step3 Pbar bar 62.05 Pbar bar 72.50

Page 16: Compressor Thermodynamics Rev3

16 GE Title or job number

11/17/2013

Schultz Calculation Strategy: Single Phase

Step 4

β€’ Estimate Average Temperature, 𝑇

β€’ 𝑇 =π‘‡π‘œ+𝑇𝑖

2

Step 5

β€’ Estimate Average Heat Capacity Ratio, π‘˜

β€’ π‘˜ =π‘˜π‘–+2π‘˜π‘‡ ,𝑃 +π‘˜π‘œ

4

Step 6

β€’ Estimate 𝑋

β€’ 𝑋 =𝑇

𝑉

πœ•π‘‰

πœ•π‘‡ π‘ƒβˆ’ 1 π‘Žπ‘‘ 𝑃 , 𝑇

Page 17: Compressor Thermodynamics Rev3

17 GE Title or job number

11/17/2013

Next Steps: Same Example

Pbar from Geometric Mean Pbar from Arithmetic Mean

Look at effect of averaging models

Step 4 Tbar C 114.68

Step 5 ko - 1.30

ktbar,pbar - 1.31 ktbar,pbar - 1.33

kbar - 1.32 kbar - 1.32

Step 6 dv/dt m /kmol/bar 0.0016 dv/dt m /kmol/bar 0.0014

T/V K*kmol/ m 770.23 T/V K*kmol/ m 902.98

Xbar 0.22 Xbar 0.25

Page 18: Compressor Thermodynamics Rev3

18 GE Title or job number

11/17/2013

Schultz Calculation Strategy: Single Phase

Step 7

β€’ Estimate π‘Œ

β€’ π‘Œ = βˆ’π‘ƒ

𝑉

πœ•π‘‰

πœ•π‘ƒ π‘‡π‘Žπ‘‘ 𝑃 , 𝑇

Step 8

β€’ Estimate π‘š

β€’ π‘š =

π‘˜ βˆ’1

π‘˜ 1

πœ–+𝑋 π‘Œ

1+𝑋 2

Step 9

β€’ Estimate 𝑛

β€’ 𝑛 =1+𝑋

π‘Œ 1

π‘˜ 1

πœ–+𝑋 βˆ’

1

πœ–βˆ’1

Page 19: Compressor Thermodynamics Rev3

19 GE Title or job number

11/17/2013

More Steps

Pbar from Geometric Mean Pbar from Arithmetic Mean

Step 7 dv/dp m /kmol/K -0.01 dv/dp m /kmol/K -0.01

P/V bar*kmol/ m 123.23 P/V bar*kmol/ m 168.80

Ybar 1.02 Ybar 1.02

Step 8 mbar - 0.24 mbar - 0.24

Step 9 nbar - 1.38 nbar - 1.38

Page 20: Compressor Thermodynamics Rev3

20 GE Title or job number

11/17/2013

Schultz Calculation Strategy: Single Phase

Step 10

β€’ Estimate To

β€’ π‘‡π‘œ = π‘‡π‘–π‘ƒπ‘œ

𝑃𝑖

π‘š

Step 11

β€’ Estimate Vo

β€’ π‘‰π‘œ = π‘‰π‘–π‘ƒπ‘œ

𝑃𝑖

βˆ’1

𝑛

Step 12

β€’ Verify n from EOS

β€’ 𝑛 =ln π‘ƒπ‘œ

𝑃𝑖

ln𝑉𝑖

π‘‰π‘œ

Page 21: Compressor Thermodynamics Rev3

21 GE Title or job number

11/17/2013

Step 10 To C 166.18 C 164.56

Step 11 Vo calc m /kmol 0.33 m /kmol 0.33

Step 12 Zo EOS - 0.99 - 0.99

Vo Eos m /kmol 0.33 m /kmol 0.33

nbar - 1.38 - 1.37

Closing Up First Iteration

Pbar from Geometric Mean Pbar from Arithmetic Mean

To C 169.35Previous Estimate

Page 22: Compressor Thermodynamics Rev3

22 GE Title or job number

11/17/2013

Schultz Calculation Strategy: Single Phase

Step 13

β€’ Compare n-values

β€’ Adjust To estimate or subdivide steps and return to step 4

Step 14

β€’ Estimate Work

β€’ π‘Š β‰ˆ1

πœ€

𝑛

𝑛 βˆ’1

𝑍𝑖𝑅𝑇𝑖

π‘€π‘Š

𝑃0

𝑃𝑖

𝑛 βˆ’1

𝑛 βˆ’ 1 β‰ˆ

𝑓

πœ€

𝑛

𝑛 βˆ’1

𝑅

π‘€π‘Šπ‘π‘œπ‘‡π‘œ βˆ’ 𝑍𝑖𝑇𝑖

Step 15 β€’ Done

Page 23: Compressor Thermodynamics Rev3

23 GE Title or job number

11/17/2013

Step 13 New To C 166.18 C 164.56

Step 14 Work kJ/kg 226.72 Work kJ/kg 226.18

Work kJ/kg 226.72 Work kJ/kg 226.18

Ho J/mol 14942.93 Ho J/mol 14857.41

Work kJ/kg 225.38 kJ/kg 221.03

End of First Iteration

Pbar from Geometric Mean Pbar from Arithmetic Mean

Classic

Both Schultz Relations

Slight difference between relations Iterate Further to Close

Difference between β€œClassic” work and Predicted work is related to effect of efficiency on Schultz temperature model

Page 24: Compressor Thermodynamics Rev3

24 GE Title or job number

11/17/2013

Next Iteration

Pbar from Geometric Mean Pbar from Arithmetic Mean

Previous Estimate To C 165.37

Step 2 Po bar 110.00 To C 165.37

Step 3 Pbar bar 62.05 Pbar bar 72.50

Step 4 Tbar C 112.68

Step 5 ko - 1.31

ktbar,pbar - 1.32 ktbar,pbar - 1.33

kbar - 1.32 kbar - 1.33

Step 6 dv/dt m /kmol/bar 0.0016 dv/dt m /kmol/bar 0.0014

T/V K*kmol/ m 771.12 T/V K*kmol/ m 904.17

Xbar 0.23 Xbar 0.26

Step 7 dv/dp m /kmol/K -0.01 dv/dp m /kmol/K -0.01

P/V bar*kmol/ m 124.01 P/V bar*kmol/ m 169.90

Ybar 1.02 Ybar 1.02

Step 8 mbar - 0.24 mbar - 0.24

Step 9 nbar - 1.38 nbar - 1.39

Step 10 To C 166.46 C 164.81

Step 11 Vo calc m /kmol 0.33 m /kmol 0.33

Step 12 Zo EOS - 0.99 - 0.99

Vo Eos m /kmol 0.33 m /kmol 0.33

nbar - 1.38 - 1.37

Step 13 New To C 166.46 C 164.81

Step 14 Work kJ/kg 226.81 Work kJ/kg 226.27

Work kJ/kg 226.81 Work kJ/kg 226.27

Ho J/mol 14958.04 Ho J/mol 14870.88

Work kJ/kg 226.15 kJ/kg 221.71

Page 25: Compressor Thermodynamics Rev3

25 GE Title or job number

11/17/2013

After 3 Iterations (Direct Substitution)

Pbar from Geometric Mean Pbar from Arithmetic Mean

Step 2 Po bar 110.00 To C 165.64

Step 3 Pbar bar 62.05 Pbar bar 72.50

Step 4 Tbar C 112.82

Step 5 ko - 1.31

ktbar,pbar - 1.32 ktbar,pbar - 1.33

kbar - 1.32 kbar - 1.33

Step 6 dv/dt m /kmol/bar 0.0016 dv/dt m /kmol/bar 0.0014

T/V K*kmol/ m 771.06 T/V K*kmol/ m 904.09

Xbar 0.23 Xbar 0.26

Step 7 dv/dp m /kmol/K -0.01 dv/dp m /kmol/K -0.01

P/V bar*kmol/ m 123.96 P/V bar*kmol/ m 169.82

Ybar 1.02 Ybar 1.02

Step 8 mbar - 0.24 mbar - 0.24

Step 9 nbar - 1.38 nbar - 1.39

Step 10 To C 166.44 C 164.80

Step 11 Vo calc m /kmol 0.33 m /kmol 0.33

Step 12 Zo EOS - 0.99 - 0.99

Vo Eos m /kmol 0.33 m /kmol 0.33

nbar - 1.38 - 1.37

Step 13 New To C 166.44 C 164.80

Step 14 Work kJ/kg 226.81 Work kJ/kg 226.26

Work kJ/kg 226.81 Work kJ/kg 226.26

Ho J/mol 14957.01 Ho J/mol 14869.96

Work kJ/kg 226.10 kJ/kg 221.67

Page 26: Compressor Thermodynamics Rev3

26 GE Title or job number

11/17/2013

Converged

Pbar from Geometric Mean Pbar from Arithmetic Mean

Arithmetic mean seems to agree better with rigorous model, but all are within modeling accuracy. Note that enthalpy match is important for process simulators

Step 13 New To C 166.44 C 164.80

Step 14 Work kJ/kg 226.81 Work kJ/kg 226.26

Work kJ/kg 226.81 Work kJ/kg 226.26

Ho J/mol 14957.07 Ho J/mol 14870.01

Work kJ/kg 226.10 kJ/kg 221.67

Rigorous Model To=164.1oC W=219.7kJ/kg

Page 27: Compressor Thermodynamics Rev3

27 GE Title or job number

11/17/2013

If I Integrate Through the Compressor

Choose 7 wheels

Gas

Inlet T Inlet P Discharge P Discharge T Gas Rate Compressibility Gas Density Gas Mol Wt Gas Cp/Cv EnthalpyoC bar bar

oC m3/d Z Tf c,Pf c Tf c,Pf c Tf c,Pf c Change

1 60.00 35.00 41.22 73.8 31.5 0.95 26.11 19.64 1.33 27.28

2 73.76 41.22 48.55 87.9 27.9 0.96 29.47 19.64 1.33 28.60

3 87.92 48.55 57.19 102.5 24.7 0.96 33.24 19.64 1.32 29.97

4 102.48 57.19 67.35 117.4 21.9 0.96 37.49 19.64 1.32 31.42

5 117.43 67.35 79.33 132.8 19.5 0.97 42.24 19.64 1.32 32.94

6 132.77 79.33 93.43 148.5 17.3 0.97 47.56 19.64 1.32 34.55

7 148.49 93.43 110.00 164.5 15.4 0.98 53.49 19.64 1.31 36.18

Sum= 220.95

Page 28: Compressor Thermodynamics Rev3