Composite Restorations

16
CONSERVATIVE OPERATIVE DENTISTRY Page 1 Lecture: Composite Restorations ___________________________________________________________________________ INTRODUCTION: A. General Components: 1. Historical Development of Dental Composites (1956-2005): a. Unfilled Resins: Preceded by Silicate Cements MMA + PMMA b. Filled Resins: MMA + PMMA/Filler (1950) BISGMA + Macro-Filler (1958) BISGMA + Macro-Filler + Silane BISGMA + Macro-Filler + Silane + (Enamel BA) BISGMA + Micro-Fillers + Silane + (Enamel BA) BISGMA + Midi-Hybrid + Silane + (Enamel BA) BISGMA + Midi-Hybrid + Silane + (Enam/Dent BA) BISGMA + Midi-Hybrid + Silane + (Enam/Dent BA) BISGMA + Midi-Hybrid + Silane + (3-Step Universal BA) BISGMA + Midi Hybrid + Silane + (3-Step Universal BA) (1992) BISGMA + Nano-Hybrid + Silane + (1-or-2-Step Universal BA) (2005) 2. Definition of Composites: a. Dental Composite = Matrix + Filler + Silane + (Bonding Agent ) (1) Matrix = Continuous Phase (2) Filler = Dispersed Phases (3) Silane = Internal Interface Coupling Agent (4) Bonding System = External Interface Coupling Agent Unfinished Composite Surface Finished Composite Surface Enamel Surface Etched Enamel Rods Voids at Margins Silicate Reinforcing Filler Crosslinked Resin Matrix COMPOSITE B. Classification: 1. FILLER Classification Systems: a. Amount of Filler: (Filler 3X as dense as resin) 00 w/o --- 00 v/o --- 10 v/o --- 20 v/o 50 w/o --- 30 v/o --- 40 v/o --- 60 v/o 75 w/o --- 50 v/o 85 w/o --- 70 v/o --- 80 v/o --- 90 w/o 100w/o ---100 v/o (Unfilled Resins, P/F Sealants) (Lightly Filled Sealants) Microfills Flowables Hybrids (Ant) Hybrid Midifills Hybrid Minifills Hybrids (Post), Packables ENAMEL

Transcript of Composite Restorations

Page 1: Composite Restorations

CONSERVATIVE OPERATIVE DENTISTRY Page 1 Lecture: Composite Restorations ___________________________________________________________________________ INTRODUCTION: A. General Components: 1. Historical Development of Dental Composites (1956-2005): a. Unfilled Resins: Preceded by Silicate Cements

MMA + PMMA b. Filled Resins:

MMA + PMMA/Filler (1950) BISGMA + Macro-Filler (1958) BISGMA + Macro-Filler + Silane BISGMA + Macro-Filler + Silane + (Enamel BA) BISGMA + Micro-Fillers + Silane + (Enamel BA) BISGMA + Midi-Hybrid + Silane + (Enamel BA) BISGMA + Midi-Hybrid + Silane + (Enam/Dent BA) BISGMA + Midi-Hybrid + Silane + (Enam/Dent BA) BISGMA + Midi-Hybrid + Silane + (3-Step Universal BA) BISGMA + Midi Hybrid + Silane + (3-Step Universal BA) (1992) BISGMA + Nano-Hybrid + Silane + (1-or-2-Step Universal BA) (2005)

2. Definition of Composites: a. Dental Composite = Matrix + Filler + Silane + (Bonding Agent) (1) Matrix = Continuous Phase (2) Filler = Dispersed Phases (3) Silane = Internal Interface Coupling Agent (4) Bonding System = External Interface Coupling Agent

UnfinishedComposite Surface Finished

Composite SurfaceEnamelSurface

EtchedEnamel Rods

Voids atMargins

SilicateReinforcing FillerCrosslinkedResin Matrix

COMPOSITE

B. Classification: 1. FILLER Classification Systems: a. Amount of Filler: (Filler 3X as dense as resin)

00 w/o --- 00 v/o --- 10 v/o --- 20 v/o 50 w/o --- 30 v/o --- 40 v/o --- 60 v/o 75 w/o --- 50 v/o 85 w/o --- 70 v/o --- 80 v/o --- 90 w/o 100w/o ---100 v/o

(Unfilled Resins, P/F Sealants) (Lightly Filled Sealants) Microfills Flowables Hybrids (Ant) Hybrid Midifills Hybrid Minifills Hybrids (Post), Packables ENAMEL

Page 2: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 2

b. Filler Particle Size (Average): Ranges: (--) Megafill Glass inserts for composites 0.5 - 1 mm (1) Macrofill Large Particle Size (40 µm) 10 - 100 µm (ORIGINAL Composites) (2) Midifill Medium Particle Size (4 µm) 1 - 10 µm (TRADITIONAL; CONVENTIONAL) (3) Minifill Small Particle Size 0.1 - 1 µm (NEW SMALL PARTICLE) (4) Microfill Very Small Part Size (.02 µm) 0.01 - 0.1 µm (MICROFILL; FINE PARTICLE) (--) Nanofill Atomic clusters (0.005 µm) 0.005 - 0.01 µm c. Particle Size Distribution (or Mixture): (1) Hybrids = Mix of two particle size fractions of fillers

(a) Midi-hybrid = Mix of microfillers and midifillers (b) Mini-hybrid (or micro-hybrid) = Mix of microfillers and minifillers (c) Nano-hybrid = Mix of nanofillers and midifillers (or minifillers)

1 µm 0.1 µm 0.01 µm

MINIFILLER

MICROFILLER

d. Method of Filler Loading: (1) Homogeneous Filled Composites: mixture of resin and filler (2) Heterogeneous Filled Composites: mixture of pre-cured composite pieces with resin and filler. (Organic Filler = Pre-Cured Composite Resin Particles) e. Handling Properties or Texture: (1) Flowable Hybrid (2) Conventional Hybrid (3) Packable (Condensable) Hybrid 2. MATRIX Classification System: a. Matrix Composition: (1) BISGMA or BISGMA-like (2) Urethane Dimethacrylate b. Activation Method for Matrix Formation: (1) Auto-Cured (Self-Cured) (2) Visible Light-Cured (QTH, PAC, Laser, LED) (3) Dual-Cured (VL and Self-Cured) (4) Staged-Cure (2 Stages of Visible Light Curing)

Page 3: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 3

SCHEMATIC EXAMPLES A. Different Filler Particle Sizes:

MEGAFILL MACROFILL MIDIFILL MINIFILL MICROFILL NANOFILL

NotShown

NotShown

B. Mixtures of Different Filler Sizes:

HYBRID(MIDIFILL)

HYBRID(MINIFILL)

C. Mixtures of Pre-cured Pieces into Uncured Composite:

Hetero-geneousMIDIFILL

Hetero-geneousMINIFILL

Hetero-geneous

MICROFILL

NotShown

NotShown

HYBRID (NANOFILL)

Page 4: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 4

COMMERCIAL EXAMPLES: Historical Summary of Composites: Codes: Bolded Text = currently available; UF = Unfilled; MA = Macrofill; MD = Midifill; MN = Minifill; MF = Microfill H = Hybrid 1950-1980: SEVRITON UF (Cladius Ash) POLYCAP UF (HD Justi) MERDON-7 -- (LD Caulk) DAKOR -- (LD Caulk) BONFIL -- -- DFR -- (Warner Lambert) POSITE -- (American Consol) CONCISE MA (3M) TD-71 MA (---) ADAPTIC MA (J&J) BLENDANT MA (Kerr) SMILE MA (Kerr) COMPODENT MA (Getz) NATURAL MA (Bosworth) NL-72 MA (Lee Pharmaceuticals) PRESTIGE MA (Lee Pharmaceuticals) EXACT MA (SS White) NUVA-FIL MA (LD Caulk) NUVA-FIL PA MA (LD Caulk) ORATEC DRS MA (American Hospital Supply) PORTRAIT -- (---) CERVIDENT MA (SS White) Creamy ADAPTIC MD (J&J) VYTOL MA (LD Caulk) COSMIC MA (Amalgamated Dental) FOTOFIL MA (IDI Pharmaceuticals) ISOPAST MF (Vivadent) DURAFIL -- (Phasealloy/Kulzer) HEALTHCO -- (Healthco) POWDERLITE -- (---) ISOCAP -- (Vivadent)

1980-1989: ADAPTIC R-O MD (J&J) AURAFIL MD (J&J) COMMAND H (Kerr) COM-ULTRAFINE H (Kerr) DELPHIC -- (Davis, Shottlander, and …) DIAMON-D -- (American Consol) ESTILUX MD (Kulzer) ESTILUX Post. MD (Kulzer) FINESSE MF (LD Caulk) FUL-FIL MD (LD Caulk) HELIOMOLAR MF (Vivadent) HELIOSIT -- (Vivadent) HELIOSTAT -- (Vivadent) HERCULITE H (Kerr) HERCULITE XR H (Kerr) LITE -- (Phasealloy) MIRADAPT MD (J&J) OCCLUSIN MD (ICI and later GC) OPOTOW -- (Opotow Dental) PALAKAV -- (Kulzer) PHASEFILL MF (Phasealloy/Kulzer) PRISMA-FIL H (LD Caulk) PRISMA-FINE H (LD Caulk) PRISMA-Microfine MF (LD Caulk) PROFILE MA (SS White) PROSTHODONT -- (Lee Pharmaceuticals) P-10 MD (3M) P-30 H (3M) P-50 H (3M) RADENT -- (Pascal Company) RADIANT -- (Pascal Company) RALLY -- (Pascal Company) SILAR MF (3M) SILUX MF (3M) SILUX PLUX MF (3M) SIMULATE H (Kerr) SPECTRABOND MD (Den-Mat) SPECTRAFIL -- (Pentron) SUPERFIL MF (Bosworth) SUPERFIL-S MF (Bosworth) ULTRABOND -- (Denmat) UVIO-FIL MD (ESPE Premier) VERITE-L -- (Unitek) VISAR-FIL -- (Den-mat) VISIO-DISPERS MF (ESPE Premier) VISIO-FIL MD (ESPE Premier) VISIO-MOLAR H (ESPE) VISIO-HYBRID H (ESPE)

Page 5: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 5

COMMERCIAL EXAMPLES: Summary of Recent Composites: Codes: Bolded Text = currently available; UF = Unfilled; MA = Macrofill; MD = Midifill; MN = Minifill; MF = Microfill H = Hybrid; H-MD = Midi-Hybrid; H-MN = Mini/Micro Hybrid; H-NF = Nanofill Hybrid F = Flowable; P = Packable 1990-2005: HYBRIDS AELITEFIL H (Bisco) PRISMA A.P.H. H (LD Caulk) BISFIL 2 and 2B H-MD (Bisco) BIS-FIL M H (Bisco) BIS-FIL P H (Bisco) CHARISMA H (Kulzer) CLEARFIL MN (Kuraray) CLEARFIL Post. H (Kuraray) ECUSIT H-MD (DMG Hamburg) EPIC TMPT H (Parkell) HERCULITE XRV H (Kerr) MARATHON H (Denmat) PEKAFILL H (---) PERTAC H (ESPE Premier) PERTAC HYBRID H (ESPE Premier) PERTAC 2 H (ESPE) PRODIGY H (Kerr) RENAMEL H (Cosmodent) RENEW H-MD (Bisco) SCULPT-IT H-MD (Jeneric-Pentron) SYNERGY H-MD (Coltene-Whaledent) TETRIC CERAM H (Ivoclar/Vivadent) T.P.H. Spectrum H (LD Caulk) Z-100 H (3M) FILTEC Z250 H (3M) 2001-2005: MINI/MICRO-HYBRIDS Esthet-X H-MN (Dentsply) POINT 4 H-MN (Kerr) VITALESSENCE H-MN (Ultradent) GRADIA Direct H-MN (GC America) 2002-2005: NANOFILLS Supreme H-NF (3M-ESPE) Simile H-NF (Jeneric-Pentron)

1990-2005: MICROFILLS AMELOGEN MF (Ultradent) DURAFIL VS MF (Kulzer) FILTEK A110 MF (3M-ESPE) HELIOMOLAR MF (Ivoclar/Vivadent) MICRONEW MF (Bisco) PERFECTION MF (Denmat) SUPERLUX MF (DMG Hamburg) 1997-2005: FLOWABLE COMPOSITES: AeliteFlo F (Bisco) Crystal-Essence F (Confi-Dental) Filtek Flow F (3M-ESPE) FloRestore F (Den-Mat) Flow-It F (Jeneric-Pentron) Heliomolar Flow F (Ivoclar/Vivadent) Revolution F (Kerr) True-Look F (Denpac) UltraSealt XT+ F (Ultradent) VersaFlow F (Centrix) Wave Flowable F (Ivoclar/Vivadent) Metafil Flo F (Sun Chemical) 1998-2005: PACKABLE COMPOSITES: Solitaire,Solitaire2 P (Heraeus Kulzer) ALERT Condens. P (Jeneric-Pentron) Surefil P (Dentsply/Caulk) Prodigy Cond. P (Kerr/Sybron) Filtek P60 P (3M-ESPE) Pyramid P (Bisco) Glacier P (SDI) Synergy Compact P (Coltene-Whaledent) Definite P (DegussaP Heliomolar HB P (Ivoclar/Vivadent) 1999-2000: pH CONTROLLING COMPOSITES: Ariston pHc ? Ivoclar/Vivadent

Page 6: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 6

C. Manipulation: 1. Cavity Preparation Considerations: a. Cavity Liners (1) Calcium Hydroxide Cement Liners (use sparingly) (2) Zinc Oxide Eugenol Based Liners (DO NOT USE !!!) (3) Visible Light-Cured Glass Ionomer b. Beveling (for esthetics but do not bevel margins that on functional paths) c. Acid Etching: Liquid 37% H3PO4, Gel 37% H3PO4, PAA, EDTA, Citric Acid d. Bonding Systems (1) Enamel and Dentin Bonding Systems: (2) Universal Bonding Systems (Enamel, Dentin, Metal, Ceramics, GI, …) 2. Product Selection: a. Application: III, IV, V, and I/II b. Activation System: Auto-Cured, Light-Cured, Dual Cured, Staged Curing 3. Shade Guides: a. Color Matching: (1) Match to moist tooth structure (2) Tooth structure changes color with time

VITA SHADE GUIDE

4. Placement: a. Composite Syringes (minimize porosity problems) b. Delrin Instruments or Plastic Coated Instruments (non-stick) c. Alcohol Wipes (help to let instruments release sticky composite) 5. Polymerization Techniques: a. Incremental Additions (<1.5-2.0 mm / dark shades more difficult to cure) b. Curing Cycles (20-40 s historically; depends on curing system) c. Post-curing (Good idea)

Air-Inhibited Layer = 1-5 µm thick superficial layer of resin that does not cure while it is in contact with oxygen from the surrounding air. As soon as an increment of restorative material is added, the air is displaced, the oxygen concentration drops, and the material copolymerizes with the restorative material on top of it.

Page 7: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 7

6. Visible Light-Curing: a. Variables: Output (>300mW/cm2); Wavelength (λ = 474 nm), Distance (≤ 1 mm); Time (20-40s)

Curing EquipmentFactors

ProceduralFactors

RestorationFactors

• Bulb frosting or degradation• Light reflector degradation• Optical filter degradation• Fiber-optic bundle breakage• Light-guide fracture• Tip contamination by resin buildup• Line voltage inconsistences• Sterilization problems• Infection control barriers

• Light tip direction• Access to restoration• DISTANCE from surface• Size of tip• Tip movement• TIME of exposure

• Restoration thickness• Cavity design • Filler - amount and size• Restoration shade• Monomer ratios

b. Equipment Maintenance: (1) Minimum Output Level = 300 mW/cm2 (check with radiometer) (2) Clean curing lights regularly

c. Visible Light-Curing Units: (1) Quartz Tungsten Halogen (3M XL-3000, Kerr/Demetron Optilux 501) (2) Quartz Tungsten Halogen [staged] (ESPE Elipar Highlight, VIP Light) (3) Plasma Arc Light [PAC] (4) Laser Curing Light (5) Light-Emitting Diode Light [LED Light] (ESPE Freelight 2, LEDemetron)

Page 8: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 8

7. Finishing and Polishing: a. COARSE (Gross) Reduction or Finishing = 10-100 µm scratches (1) White Stone, Regular Diamonds (2) Do not use at the margins b. FINE Finishing = 1 -10 µm scratches (1) 6 or 12 fluted carbide finishing burs (e.g., Midwest #7901) (2) Fine Finishing Diamonds (Brasseler) c. Polishing (or Final Finishing): (1) Medium, fine, and superfine discs (3M SOFLEX) = 1-0.1 scratches (2) Finishing strips (3) Composite diamond polishing pastes

Significantmaterialremoval

Originalrough

surface

COARSEfinished

New surfaceapproximatesabrasive size

Polished

Smearing andburnishing to

smoothen surface

FINEfinished

Fine grooves

TWO CRITICAL FACTORS for Finishing and Polishing:(1) Abrasive size(2) Filler particle size

SURFACE ROUGHNESS = RaAverage up-and-down geometry =

20 µm 2 µm 0.2 µm

8. Product Package Notes: a. Components: Shades, Bonding System, F/P equipment, expiration date b. Shelf Life: typically 12 (8-18) months

Page 9: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 9

D. Properties: Structure/Properties vs Clinical Performance 1. Physical Properties: a. Polymerization Shrinkage: Produces marginal gaps --> debonding, microleakage, staining

0 25 50 75 1000

2

3

4

5

CONVERSION (%)

SHR

INK

AG

E (%

)

1

65%Conversion

15-25% =Gellation

50% Filler25% Bis-GMA25% TEGDMA

Flow

Bond Stretching(External Contraction)

Porosity Formation(Internal Contraction)

b. Cyclic Thermal Expansion and Contraction:

Produces marginal fractures --> microleakage, staining (e.g., [3600 µm] [45x10-6 ppm/°C] [50°C] = 7 µm )

2. Chemical Properties: a. Degree of conversion (DC, %) is low (complete = 55-65%; undercured = <55%) b. Characteristics shape-of-cure: c. Limited depth-of-cure (mm):

Curing Light

2. SHAPE-OF-CURE

0 mm

1

2

3

4

3. DEPTH-OF-CURE

Z100Z100

1. DEGREE-OF-CONVERSION

65%

25%

45%

d. Matrix absorption of water and other intraoral fluids e. Adverse reactions of matrix additives - contribute to yellowing

Page 10: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 10

3. Mechanical Properties: a. Tensile Fatigue: produces marginal fractures b. WEAR: Causes loss of composite volume (1) Microfracture Theory (Leinfelder) (2) Hydrolysis Theory (Soderholm) (3) Chemical Degradation Theory (Wu) (4) Protection Hypothesis (Jorgensen, Bayne, and Taylor)

INTER-PARTICLESPACING

FOOD BOLUS

COUPLINGAGENT

MATRIXFILLER

c. Repair: Rebonding failed areas of composite restorations (1) Mechanical roughening of enamel and composite surfaces (2) DBA applied to enamel and composite surfaces (3) Restore surface with new composite 4. Biological Properties: a. Degradation (by esterase, CP) – decomposition into H20 and HCHO b. Desorption – release of BPA, BISGMA, other monomers

Page 11: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 11

MULTIPLE CHOICE STUDY QUESTIONS: (Answers are bolded) The three major components of composite restorative materials are: a. Resin -- Silane -- Filler b. Silane -- Filler -- Bonding System c. Bonding System -- Filler -- Acrylic Resin d. Acid Etchant -- Bonding Agent -- Acrylic Resin e. Acid Etchant -- Bonding Agent -- Filler What is the role of silane in composite? a. Coupling agent b. Bonding agent c. Conditioning agent d. Acid etchant e. Polishing agent Which ONE of the following is NOT a component of bonding agents used with

composite restorations? a. Reinforcing filler b. Inhibitor c. Initiator d. Low MW monomer e. BIS-GMA Which ONE of the following methods is NOT used to categorize composite

restorations? a. Weight percent filler level b. Volume percent filler level c. Method of matrix activation d. Filler particle size (or distribution) e. Composite shade Earlier generations of composites (macrofills) contained which ONE of the following

volume percent levels of filler? a. 30 v/o b. 40 v/o c. 50 v/o d. 60 v/o e. 70 v/o 50 v/o filler corresponds to what w/o filler? a. 25 w/o b. 45 w/o c. 65 w/o d. 75 w/o e. 90 w/o Which ONE of the following products contains the MOST filler? a. Macrofill Composites b. Pit-and-Fissure Sealants c. Microfill Composites d. Heterogeneous Microfills e. Hybrid Composites

Page 12: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 12

Which ONE of the following products contains ONLY very small filler particles? a. Macrofill Composites b. Midifill Composites c. Minifill Composites d. Microfill Composites e. Hybrid Composites Which ONE of the following materials is NOT a commercial composite? a. Delton b. Filtek Z250 c. Prodigy Condensable d. Heliomolar e. Revolution HELIOMOLAR is classified as a: a. Heterogeneous Microfill b. Megafill c. Midifill d. Micro-hybrid d. Flowable SIMILE is classified as a: a. Microfill b. Minifill-Hybrid c. Midifill-Hybrid d. Megafill e. Nanofill-Hybrid Z250 is classified as a: a. Midifill b. Macrofill c. Microfill d. Heterogeneous Microfill e. Midifill Hybrid Which one of the following is a flowable composite? a. Prodigy b. AeliteFlo c. Filtek Z250 d. Surefil e. TPH Spectrum Which one of the following is a packable composite? a. Prodigy b. AeliteFlo c. Filtek Z250 d. Surefil e. Prodigy Which of the following hybrid filler systems would not be clinically practical? a. Macrofill + Microfill b. Midifill + Microfill c. Minifill + Microfill d. Minifill + Nanofill e. Microfill + Nanofill

Page 13: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 13

What does a heterogeneous filler contain? a. Organic and inorganic phases b. Two different inorganic phases c. Porosity within the filler particle d. Crystalline and non-crystalline ceramic phases Which one of the following systems is currently NOT used for curing composites? a. Ultraviolet-light curing b. Visible-light curing c. Chemical curing d. Dual curing e. Very high intensity light curing Which one of the following produces the LEAST depth-of-cure? a. Laser curing b. Very high intensity light curing c. Chemical curing d. Visible-light curing e. Dual curing The typical shelf life of composite restorative materials is: a. 3 months b. 6 months c. 12 months d. 18 months e. 24 months The batch number on the composite package is a code for: a. The date of BISGMA resin manufacture b. The date of glass silanation c. The date of composite manufacture d. The date of transport from the factory e. The date of expiration of the package Microfilled composites are retained principally by: a. Resin tags b. Gross mechanical retention c. Chemical bonding to enamel d. Chemical bonding to dentin e. Chemical bonding to enamel and dentin Which one of the following acids is generally recommended for etching? a. Maleic acid b. Polyacrylic acid c. Tartaric acid d. Phosphoric acid e. EDTA In which of the following categories is dentin bonding of critical importance? a. Class III and IV restorations b. Class V and Erosion-Abrasion Restorations c. Class I and II restorations

Page 14: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 14

Which ONE of the following does not affect the depth-of-cure of double bonds in composites?

a. Method of activation b. Incremental addition c. Post-curing d. Composite Color e. Finishing Procedure What is the reason for choosing a self-curing (or dual curing) composite rather than

light-curing one? a. Large size of the restoration b. Poor access for the curing light c. High level of filler content d. Type of filler in the composite e. Ease of finishing What is the minimum acceptable level for visible curing light outputs? a. 50 mW/cm2 b. 150 mW/cm2 c. 300 mW/cm2 d. 550 mW/cm2 e. 1500 mW/cm2 Which one of the following curing systems has the highest energy output? a. 3M XL 3000 b. ESPE Elipar c. Kerr Demetron 501 d. Caulk Prolite e. Vivadent Vivalux 2 Which one of the following materials is not a retarders or inhibitors of chain reaction

polymerization? a. Eugenol b. Calcium Hydroxide c. Water d. Air e. Hydroquinone What component of air is responsible for producing an “air-inhibited” layer on free

radical initiated acrylic resin systems? a. O2 b. N2 c. NO2 d. H2 e. CO2 Which ONE of the following materials should not be used as a base or liner below a

composite resin restoration? a. Zinc Oxide Eugenol Cement b. Calcium Hydroxide Cement c. Zinc Phosphate Cement d. EBA Modified ZOE Cement e. Polycarboxylate Cement

Page 15: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 15

What is the main reason for avoiding the use of green stones, white stones, or coarse diamond burs for finishing a composite?

a. Heat generation b. Battering of enamel margins c. Poor abrasivity d. Scratch width e. Discoloration of the composite What range of scratches would be considered FINE finishing? a. 100-1000 µm b. 10-100 µm c. 1-10 µm d. 0.1-1 µm e. 0.01-0.1 µm Which ONE of the following “finishing” procedures produces the smoothest surface on

a composite? a. Talc b. Soflex discs c. Finishing strips d. Fine diamonds e. Carbide burs Which ONE of the following “finishing” procedures produces the smoothest surface on

a composite? a. Talc b. Finishing strips c. Diamond finishing burs d. Carbide burs e. Diamond finishing pastes What is the primary problem resulting from polymerization shrinkage? a. Marginal gap formation and microleakage/staining b. Separation of the filler and matrix phases c. Markedly increased water absorption d. More rapid occlusal wear e. Matrix discoloration What is the typical level of polymerization shrinkage for most dental composites? a. < 0.25 % b. 0.25-2.0% c. 2.5-4.0 % d. 6.0-10 % e. 10-12 % What is the percentage conversion for a well-cured composite restoration? a. 100% b. 80-90% c. 65-80% d. 55-65% e. 45-65%

Page 16: Composite Restorations

Dental Materials "Dental Composites: Manipulation" Page 16

What is depth-of-cure possible for an A2 shade of hybrid composite ? a. 5-10 mm b. 4-5 mm c. 2-3 mm d. 1-2 mm e. 1 mm Which of the following MECHANISMS best explains the WEAR of surfaces of posterior

restorations? a. Microfracture Theory b. Hydrolysis Theory c. Chemical Degradation Theory d. Protection Theory What do dental composites produce when they undergo superficial decomposition over

long times? a. Monomers b. Formaldehyde and water c. Acrylic acid d. Bisphenol-A e. Oligomers What is the objective of "rebonding"? a. Repairing voids at margins during composite insertion b. Bonding together of adjacent composites at proximal contacts c. Bonding of composite to glass ionomer cement bases d. Bonding of new over old composite for esthetic improvement e. Re-application of dentin bonding agent DISCUSSION STUDY QUESTIONS: • What classification of composite material (e.g., microfill) would you choose for an

MO restoration in a second molar? Defend your choice in terms of wear resistance. • What is the predominant mechanism of failure in a Class I posterior composite

restoration? • When would you expect to encounter secondary caries with 10 year old posterior

composite resin restorations? • What treatment would you suggest for a partially worn Class III restoration which is

now collecting substantial surface stain? • What is the difference in discoloration mechanisms between older macrofill

composites and microfill composites for anterior Class III restorations? • What composite or combination of composites might be used to restore a deep

Class III preparation? © 2005-2006, Stephen C. Bayne, Chapel Hill, NC 27514. All rights reserved.