Components of Pore Water Pressure

download Components of Pore Water Pressure

of 23

Transcript of Components of Pore Water Pressure

  • 8/12/2019 Components of Pore Water Pressure

    1/23

    C O M P O N E N T S O F P O R E W T E R P R E S S U R E

    N D T H E I R E N G I N E E R I N G S I G N I F I C N C E

    y

    J K MITCHELL 1

    U n i v e r s i t y o f C a l i f o r n i a , B e r k e l e y

    A B S T R A C T

    P o r e f l u i d p r e s s u r e s t h a t d e v e l o p w i t h i n s o i l m a s s e s a s a r e s u l t o f b o t h m e c h a n i c a ] a n d

    p h y s i c o - c h e m i c a l e f f e ct s i n f l u e n c e t h e m a g n i t u d e o f th e i n t e r g r a n u l a r o r e f f e c t i v e s t r e ss e s .

    T h e i n t e r g r a n u l a r s t r e s s es c o n t r o l, i n m a n y c a se s, s o il b e h a v i o r i n s h e a r a n d c o m p r e s si o n .

    T h e p h y s i c a l s i g n i f i c a n c e o f p o r e w a t e r p r e s s u r e i n a c o h e s i v e s o i l i s e x a m i n e d i n t e r m s o f

    s e v e r a l c o m p o n e n t s w h i c h c o m b i n e t o g i v e t h e t o t a l p r e s s u r e . A n a n a l y s i s o f fl u id p r e s s u r e s

    a t v a r i o u s p o i n t s w i t h i n a s o i l m a s s b a s e d o n a c o n d i t i o n o f n o f lo w a t e q u i l i b r i u m s h o w s

    t h a t c h a n g e s i n a n y o n e c o m p o n e n t o f t h e t o t a l p r e s s u r e f r o m p o i n t t o p o i n t a r e o f fs e t b y

    c h a n g e s in o t h e r c o m p o n e n t s .

    T h e a n a l y s i s s h o w s t h a t a p o r e p r e s s u r e m e a s u r e m e n t r e fl ec ts in t e r p a r t i c l e r e p u l si v e

    p r e s s u re s a n d w a t e r a d s o r p t i v e f o r c es a s w e l l a s p u r e l y h y d r o s t a t i c p r e s s u r e s a r is i n g t r o m

    m e c h a n i c a l ef fe c ts . T h e i n d i v i d u a l c o m p o n e n t s o f t o t a l p o r e p r e s s u r e a r e n o t d i r e c t l y m e a s u r -

    a b l e e x c e p t i n s p e c ia l s y s te m s . D a t a a r e p r e s e n t e d w h i c h i n d i c a t e t h a t a s i g n if i ca n t p o r t i o n

    o f t h e s w e l l o f a c o m p a c t e d s o i l i s a t t r i b u t a b l e t o w a t e r p r e s s u r e d e f i c i e n c i e s c a u s e d b y

    m e c h a n i c a l a n d c a p i ll a r y c o m p o n e n t s w h i c h a c t i n a d d i t i o n t o o s m o t i c p r e ss u r e c o m p o n e n t s .

    C o m p o n e n t w a t e r p r e s s u r e s a r e r e l a t e d t o s t r e s s e s b e t w e e n p a r t i c l e s . I t i s s h o u a a t h a t

    i n t e r g r a n u l a r p r e s s u r e s a r e d e p e n d e n t o n o s m o t i c a n d a d s o r p t i v e c o m p o n e n t s o f t h e t o t a l

    w a t e r p r e s s u r e .

    I N T R O D U T I O N

    T h e p r i n c i p l e o f e f f e c t i v e s t r e s s i s o n e o f t h e m o s t i m p o r t a n t c o n c e p t s o f

    m o d e r n s o i l m e c h a n i c s . I t h a s b e e n f o u n d u s e f u l a s a b a s i s f o r t h e u n d e r -

    s t a n d i n g o f s t r e s s a n d s t r a i n c h a r a c t e r i s t i c s o f s o i l s a n d h a s b e c o m e i n -

    c r e a s i n g l y i m p o r t a n t i n p r a c t i c a l e n g i n e e r i n g p r o b l e m s . T c r z h a g i 1 9 2 5 ) a p -

    p e a r s t o h a v e b e e n t h e f i r s t t o r e c o g n i z e t h e i m p o r t a n c e o f e f f e c t i v e s t r e s s e s

    w i t h i n s o il m a s s e s . B i s h o p 1 9 6 0 b ) h a s s u m m a r i z e d t h e h i s t o r i c a l d e v e l o p -

    m e n t o f t h e c o n c e p t o f e f f e c t iv e s t r e s s e s i n s o i l m a s s e s a n d h a s c o n s i d e r e d

    t h e t h e o r e t i c a l a s p e c t s o f t h e p r i n c i p l e i n d e t a i l .

    A c c o r d i n g t o t h e p r i n c i p l e o f e f f e c t i v e s t r e s s t h e s t r e n g t h a n d c o m p r e s s i -

    b i l i t y p r o p e r t i e s o f a so i l d e p e n d n o t o n t h e t o t a l s t r e s s a p p l i e d t o t h e s o i l

    1 A s s i s t a n t P r o f es s o r o f C iv il E n g i n e e r i n g a n d A s s i s t a n t R e s e a r c h E n g i n e e r , I n s t i t u t e o f

    T r a n s p o r t a t i o n a n d T r a f f i c E n g i n e e r i n g , U n i v e r s i t y o f C a l i f o r n i a , B e r k e l e y .

    162

  • 8/12/2019 Components of Pore Water Pressure

    2/23

    COMPONENTS OF PORE WATER

    163

    mass, but rather on the difference between the total stress and the stress

    carried by the pore fluid. This difference is termed the effective or inter-

    granular 1 stress and is given, for a sat ura ted soil, by

    - : ~ u 1 )

    where a = the total normal stress,

    and u = the hydr ostati c pressure in the pore fluid.

    Analysis of the forces acting within a soil mass across a surface which

    approximates a plane, but passes through the pore space and points of

    interparticle contact, indicates that the average intergranular force per

    unit area of the horizontal projection of the plane is given by

    a i = a - -

    (1

    - - a c U

    ,

    (2)

    where a c is t he con tac t area of the soil particles per uni t area of the plane.

    Bishop (1960b) has demonstra ted, however, th at a - u controls the volume

    changes of a granular soil independently of the contact area. Bishop also

    points out that whether shear strength depends on a - u alone and not

    on

    a c

    is still a matter for conjecture. In most soils, however, the contact

    area is probably of very small magnitude; thus eqs. (1) and (2) could be

    expected to yield very nearly the same result.

    The validity of the effective stress principle in satura ed cohesionless

    soils has been demonstrated by Bishop and Eldin (1950). The principle has

    been found extremely useful in saturated clays as well; however, as pointed

    out by Lambe (1960), Lambe and Whitman (1959), Seed, Mitchell and Chan

    (1960), Rosenqvist (1959) and others, forces in addition to those arising

    from applied loads and hydrost atic water pressures come into play owing

    to the surface activity of the clay particles. In spite of these additional

    forces, the effective stress principle and information obtained through pore

    water pressure m~asurements c~rrelate well with observed behavior of

    many fine-grained soils. At the same time, pore water pressure studies have

    yielded valuable information relative to soil structure and other physico-

    chemical aspects of soil behavior.

    Recent studies have shown effective stress as stated by eq. (1) to be in-

    adequate to account for the behavior of partially saturated soils. Modi-

    fications of eq. (1) have been made by Bishop (1960a, 1960b, 1960c),

    Jennings (1960), Aitchison (1960), and Croncy and Coleman (1953). The

    expression suggested by Bishop is the most general in that it accounts for

    pore air pressures different from 1 atm, a condition that may easily arise in

    practice. His expression is:

    = a - u , + x ( u a i , . - U w a t e , . ) ,

    (3)

    x It should be noted that intergr~nular stress defined in this manner is not the actual

    stress transmitted between grain contacts, but represents the force carried by the solid

    structure per unit area of the mass.

  • 8/12/2019 Components of Pore Water Pressure

    3/23

    64 NINTH NATIONAL CONFERE NCE ON CLAYS AND CLAY MINERALS

    w h e r e x is a p a r a m e t e r r a n g i n g b e t w e e n 0 in a d r y s o i l a n d 1 i n a s a t u r a t e d

    s o il. S u c h m o d i f i c a t i o n s o f e q . 1 ) a r e n e c e s s a r y s in c e , i n p a r t i a l l y s a t u r a t e d

    s oi ls t h e w a t e r p r e s s u r e a c t s o v e r o n l y a p a r t o f t h e a r e a o f a n y p l a n e t h r o u g h

    the so i l .

    A s i n d i c a t e d b y e q s . 1 ) a n d 3 ) t h e v a l u e o f t h e p o r e p r e s s u r e , u, u s u a l l y

    d e t e r m i n e d b y d i r e ct m e a s u r e m e n t , p l a y s a n e s s en t ia l p a r t i n t h e e v a l u a t i o n

    o f e ff e c ti v e st re s s. I n s y s t e m s w h e r e f o r c es o f a p h y s i c o - c h e m i e a l n a t u r e

    a r e a c t i v e , t h e p h y s i c a l si g n if ic a n c e o f p o r e w a t e r p r e s s u r e m a y b e s o m e w h a t

    d i f f e r e n t t h a n i n s y s t e m s f r e e f r o m p a r t i c l e s u r f a c e f o r c e s . W a t e r l o c a t e d

    w i t h i n t h e c l a y p a r t i c l e f o r c e f i e l d s m a y b e e x p e c t e d t o b e h a v e i n a m a n n e r

    d i f f er e n t f r o m f r e e w a t e r . I t w o u l d s e e m l o g i ca l, t h e r e fo r e , t h a t p o r e w a t e r

    p r e s s u r e s s h o u l d r e f l e c t th e i n f lu e n c e o f t h e s e f o r c e f i e ld s a s w e l l a s s tr e s s e s

    i n d u c e d b y m e c h a n i c a l s t r a in o f t h e s y s t e m . E x p r e s s i o n s h a v e b e e n d e v e l o p e d

    r e l a t in g t h e c h a n g e i n p o r e w a t e r p r e s s u r e t o a c h a n g e i n a p p l i e d t o t a l s t r e s s

    i n t e r m s o f t h e r e l a t i v e c o m p r e s s i b i li t ie s o f t h e s o i l s t r u c t u r e a n d w a t e r

    B i s h o p a n d E l d i n , 1 9 5 0), a n d t o s h e a r a n d v o l u m e t r i c s t r a i n s M a r s a l a n d

    R e s i n e s , 1 9 6 0 ) . F u n d a m e n t a l l y , h o w e v e r , t h e s t r e s s - s t r a i n a n d c o m p r e s s i -

    b i l i t y c h a r a c t e r i st i c s o f a c l a y s o il a r e f u n c t i o n s o f i ts c o m p o s i t i o n a n d i n t e r -

    p a r t i c l e f o r c e s y s t e m s .

    I n t h i s p a p e r t h e p h y s i c a l s ig n i fi ca n c e o f p o r e w a t e r p r e s s u r e is e x a m i n e d

    i n t e r m s o f t h e v a r i o u s c o m p o n e n t s in d u c e d b y m e c h a n i c a l a n d p h y s i c o -

    c h e m i c a l p h e n o m e n a . C o n c l u si o n s a r e d r a w n p e r t i n e n t t o s t u d ie s o f t h e

    e n g i n e e r i n g b e h a v i o r o f s oi l. T h e a n a l y s i s r e li e s h e a v i l y o n t h e s t u d y o f

    t o t a l a n d c o m p o n e n t p o t e n t i a l s o f m o i s t u r e in s o il d e v e l o p e d b y B o l t a n d

    Mil ler 1958) .

    A C K N O W L E D G M E N T S

    T h e a u t h o r i s i n d e b t e d t o h i s c o l l e a g u e s P r o f e s s o r H . B . S e e d , P r o f e s s o r

    C . L . M o n i s m i t h a n d M r . R . B . K r o n e o f t h e U n i v e r s i t y o f C a l i fo r n i a f o r

    t h e i r v a l u a b l e c r it ic i sm s a n d s u g g e s ti o n s .

    T h e d r a w i n g s w e r e p r e p a r e d b y M r . G . D i e r k in g .

    T O T A L A N D C O M P O N E N T P O R E W A T E R P R E S S U R E S

    Total ressure

    I t is c o n v e n i e n t t o c o n s id e r t h e t o t a l p r e s su r e a s t h e s u m o f s e v e r a l

    c o m p o n e n t s m e a s u r e d w i t h r e s p e c t t o a s p e c i f i e d r e f e r e n c e s t a t e , u s u a l l y a

    b o d y o f f re e p u r e w a t e r w i t h a f l a t su r f ac e e x p o s e d t o a t m o s p h e r i c p r e s s u r e

    a n d a t t h e s a m e t e m p e r a t u r e a s t h e w a t e r u n d e r i n v e s t i g a ti o n . I t i s i m -

    p o r t a n t t o n o t e t h a t a t e q u i l i b r i u m t h e t o t a l p r e s s u r e i s t h e s a m e a t e v e r y

    p o i n t a n d f l o w c a n o c c u r o n l y b e t w e e n p o i n t s o f d i f f e r e n t t o t a l p r e s s u r e .

    P o s i t i v e p r e s s u r e s c a u s e a f lo w f r o m t h e p o i n t u n d e r i n v e s t i g a t i o n t o -

    w a r d s t h e r e f e r e n c e p o o l .

  • 8/12/2019 Components of Pore Water Pressure

    4/23

    COMPONENTS O~ PORE W TER

    165

    C o m p o n e n t s o / T o t a l P r e s s u r e

    A n u m b e r o f i n v e s ti g a to r s , e.g. E d l e f s o n a n d A n d e r s o n (1 94 3), B a y e r

    ( 1956 ) , Bo l t a nd M i l l e r ( 1958 ) , L ow a nd D e m i ng ( 1953 ) , L ow ( 1958 ) , M a r -

    s h a l l ( 1 9 5 9 ) , h a v e c o n s i d e r e d t h e t o t a l s o i l m o i s t u r e o r p r e s s u r e i n t e r m s o f

    s e v e ra l c o m p o n e n t s . B o t h m e c h a n i c a l a n d t h e r m o d y n a m i c a n a l y se s h a v e

    b e e n u se d . T h e r e s u l t s a r e g e n e r a l l y s i m i l a r i n f o r m , a l t h o u g h c e r t a i n d if -

    f e r e n c e s i n d e f i n i t i o n a n d d e t a i l h a v e b e e n p o i n t e d o u t b y B o l t a n d F r i s s e l

    (1 96 0) w h o r e v i e w e d t h e p e r t i n e n t l i t e r a t u r e o n s o il m o i s t u r e t h e r m o -

    d y n a m i c s a n d d e r i v e d a g e n e r a l e q u a t i o n o f s o i l m o i s t u r e e q u i l i b r i u m .

    T h e a n a l y s is o f t o t a l a n d c o m p o n e n t p o t e n t i a ls p r e s e n t e d b y B o l t a n d

    Mil ler ( 1 9 5 8 ) i s e a s i l y a d a p t e d f o r t h e p r e s e n t c o n s i d e r a t i o n s o f p o r e w a t e r

    p r e s s u r e a n d i s s u m m a r i z e d e x t e n s i v e l y in a l a t e r s ec t io n . I n t h e p r e s e n t

    p a p e r p r e s su r e s r a t h e r t h a n p o t e n t i a l s a r e c o n s id e r e d , s in c e p r e s s u r e s h a v e

    w i d e a p p l i c a t i o n i n e n g i n e e r i n g p r a c t i c e .

    T h e f o u r c o m p o n e n t s o f t h e t o t a l f lu i d p r e s s u r e ( o r t o t a l h e a d ) u n d e r

    c o n d i t io n s o f c o n s t a n t t e m p e r a t u r e a r e a s s u m e d d u e t o g r a v i t y f o r ce f ie ld s,

    h y d r o s t a t i c p r e s s u r e e f f ec t s, o s m o t i c o r io n i c c o n c e n t r a t i o n d i f f e re n c e e f fe c ts ;

    a n d a d s o r p t i v e f o r c e f ie ld s . A s p o i n t e d o u t b y B o l t a n d F r i s s e l (1 96 0), i n

    a n y b r e a k d o w n o f t h e t o t a l p r e s s u re s in t o c o m p o n e n t s t h e r e i s t h e d a n g e r

    o f c o u n t i n g c e r t a i n e f f e ct s t w i c e a s t h e y m a y b e h i d d e n i n o t h e r t e r m s .

    I t m a y b e , fo r e x a m p l e , t h a t a ri g o r o u s d i v i si o n b e t w e e n o s m o t i c p r e s s u r e s

    a r i s i n g f r o m d o u b l e l a y e r i n t e r a c t i o n s a n d a d s o r p t i v e e f f e c t s c a n n o t b e

    m a d e , t h u s i n v a l i d a t i n g t h e u s e o f s e p a r a t e c o m p o n e n t s f o r t h e s e tw o e ff ec ts .

    T h i s p o s e s n o s e r i o u s p r o b l e m i n t h e p r e s e n t p a p e r , h o w e v e r , s i nc e q u a li -

    t a t i v e r e l a t i o n s a n d c o n c e p t s r a t h e r t h a n r i g o r o u s m a t h e m a t i c a l r e l a t i o n -

    s h i p s a r e de s i r e d .

    (1) Po s i t iona l or e l eva t ion head i .e . grav i t y pres su re z a r i s e s f r o m t h e

    d i ff e re n c e s i n e l e v a t i o n b e t w e e n t w o p o i n t s .

    (2) H y d r os t a t i c p r e s s ur e p a r i s e s f r o m s u c h f a c t o r s a s i n c o m p l e t e s a t u -

    r a t i o n w h i c h l e a d s t o c u r v e d a i r - w a t e r i n t e r f a c e s a n d i n r e a c t i o n t o e x -

    t e r n a l l y a p p l i e d s tr es se s. T h e h y d r o s t a t ic c o m p o n e n t is t h e p u s h i n g o r

    p u l l i n g c o m p o n e n t b e tw e e n p a r ti c le s . I t is t h e p re s s u re t h a t w o u l d be

    r e f l e c t e d b y a p r e s s u r e g a g e i n s e r t e d a t t h e p o i n t i n q u e s t i o n . A s w i l l b e

    s h ow n , th e m a g n i t u d e o f t h e h y d r o s t a t i c c o m p o n e n t is d e p e n d e n t o n t h e

    m a g n i t u d e s o f th e o t h e r p r e s s u r e c o m p o n e n t s a s w e ll a s th e m e c h a n i c a l

    s t re s ses .

    (3) O s m ot i c p r e s s ur e ~ , a r i se s f r o m d i f f e re n c e s i n i o n ic c o n c e n t r a t i o n f r o m

    p o i n t t o p o i n t . T h e c o n c e p t o f o s m o t i c p r e s s u r e i n s o i l s h a s b e e n d e s c r i b e d

    e l s e w he r e , e.g. Bol t a nd M i l l e r ( 1958 ) , L ow ( 1959 ) , L a dd ( 1959 ) .

    I t i s i m p o r t a n t t o k e e p in m i n d t h a t w h e n c o n si d er in g t w o p o i n ts a t d i f-

    f e r e n t i o n ic c o n c e n t r a t i o n s , i f t h e i o n s a r e n o t f r e e t o m o v e , w a t e r w i l l t e n d

  • 8/12/2019 Components of Pore Water Pressure

    5/23

    166 NINTH NATIONAL CONFERENCE ON CLAYS AN]) CLAY MINERALS

    to flow from the point of lower concentration towards the point of higher

    concentration.

    The osmotic pressure between two points of different concentration is

    approximated for dilute solutions by the Van't Hoff equation,

    zt = R T (2: ca -- 22 cl) , (4)

    where R = universal gas constant,

    T = absolute temperature,

    Z , Xc~ = sum of concentra tions of all ionic const ituen ts at points 1

    and 2, respectively.

    It is assumed in the development of eq. (4) that ionic force fields do not

    mutually influence each other.

    (4)

    T h e ads or p t ion p r e s s ur e a

    arises from the attraction of water mole-

    cules by clay surfaces. Bolt and Miller (1958) place attractive soil-water

    forces in two categories:

    a) Short ,range chemical forces, extending only a few molecular layers from the surface,

    caused by local ionic interactions, hydrogen bonds and London van der Waals forces.

    b) Long-range forces, which may be effective beyond 100 ]~, caused by interac tion of

    a water dipole with the electros tatic field originating in a charged soil surface.

    Bolt and Miller consider it reasonable to ignore the effects of short-range

    forces in usual soil-water systems as particle spacings exceed the range of

    influence of these forces. In the view of the author the more usual condition

    for soils encountered in engineering problems is one of essentially particle-to-

    particle (or particle-thin film of water and cations-particle) contact and

    therefore short-range forces should not be neglected. If the short-range

    forces are neglected the adsorptive pressure at any point is given by

    8 - - ]

    a - - d v ) ~ , 5 )

    z

    where e = dielectric constant,

    ~o _- electrical potential at the point.

    The potential ~ may be approximated by means of the Gouy-Chapman

    theory of the double layer. Adequate theories for expression of the short-

    range forces have not yet been developed.

    The total pressure P is given by

    P = z + p + ~ + a , (6)

    where z and p may be either positive or negative and n and a are usually

    negative in soils.

  • 8/12/2019 Components of Pore Water Pressure

    6/23

    COMPONENTS OF PORE W TER

    167

    N E G A T I V E P O I ~ E - W A T E I ~ P R E S S U R E S I N S O I L S

    Before analyzing component and to tal pressures at various points within

    a soil, a few comments and data relative to negative pore pressures will be

    considered as they aid in an understanding of osmotic effects and the in-

    fluence of capillary effects on hydrostatic pressure. It is well known that

    water pressures less than atmospheric exist in soils. Whet her or not pressures

    less than zero absolute i . e . a state of tension in the water) can exist has been

    the subject of considerable dispute in the literature. Aitehison (1960) has

    considered the relative points of view and concludes that there is no satis-

    factory argumen t against the use of a capillary model and the development

    of large wate r tensions fo r describing the behavior of pore water a t pressures

    less than atmospheric.

    The fundamental causes of negative pressures appear to be osmotic and

    adsorptive effects and the surface tension of water. Mechanical factors such

    as a tendency towards straightening of bent particles on load release or a

    tendency towards dilation of the soil structure on shear may also cause

    negative water pressures but, in the final analysis, these effects are all de-

    pendent on the adsorptive forces between water and soil.

    Negative pressures may exist in both saturated and partially saturated

    soils. The principal causes of negative pressures in saturated soils are prob-

    ably osmotic effects, hydrostatic stresses resulting from a dilating tendency

    on shear, and hydrostatic effects resulting from the stresses carried by bent

    particles and distorted particle groups.

    In partially saturated systems the surface tension of water comes into

    play in conjunction with the adsorptive forces at particle surfaces, leading

    to curved air-water interfaces which, in turn, result in additional pressures

    either positive or negative, depending on whether curvature is coneave or

    convex across the interface. It is most convenient to think of this pressure

    as a capillary hydrostatic pressure given by

    2 z / r

    where T is the surface

    tension and r is the radius of curvature of the meniscus.

    It may be readily demonstrated that in partially saturated systems of

    nominal salt content (say 0.05-0.5 N) the osmotic component and the hydro-

    static co mponent due to eapillary effects are of the same order of magn itude

    for menisci of about 0.5 radius of curvatu re. Capillary stresses become

    increasingly effective at smaller pore diameters and for radii of curvature

    of 0.1 or less the y ma y exceed the osmotic pressures by ten times or more.

    Data illustrating a condition where osmotic and hydrostatic tension due

    to mechanical effects are of the same order of magnitude in a partially

    saturated soil are presented in Fig. 1. Samples of an expansive sandy-clay

    soil were prepared to a water content of 17.3 percent, a dry density of

    111.3 lb per ft a and degree of saturation of 90.6 percent, with distilled water

    as the pore fluid. Two methods of eompaetion were used: kneading, which

  • 8/12/2019 Components of Pore Water Pressure

    7/23

    68 NINT~NATIONAL CONFERENCE ON CLAYS AND CLAY V[INERALS

    at this water content induces a dispersed structure, and static, which leads

    to a more floceulent struc ture as dem ons tra ted b y Seed and Chan 1959).

    Samples were then permitted to expand und er a surcharge of 0.1 kg per cm 2

    in solutions of calcium acetate of different concentration. The relation

    between the amoun t of swell and solution concentration in Fig. 1 shows

    A l l s a m p l e s c o m p a c t e d a t a w a t e r o n le n t

    o f 1 7 . 3 t o o d r y d e n $ i t y f l l. 3_ + . 3 I b

    5 O q ~ ~ - S a m p l e s p r e p a r e d y s ta ti c o m p a c t i o n

    ~ / / ~ ( F l oc c u le n t t r uc f ur e )

    4 0

    S a m p l e s p r e p a r e d y k n e a d in g o m p a c ti o n

    / ~ ( i s p e r s e d s t ru c tu r e

    2

    I O

    S u r c h a r g e pr es su re -- , / k g p e r s q c m

    0 o 4 o 8 / 2 1 6 2 0

    C o n c e n t r a t i o n o f C a l c i u m A c e t a t e S o l u t i o n ] /7

    w h i c h S a m p l e s A l l o w e d t o S w e l l - m o l e s p e r l/ t e r

    Fm~RE 1.--Effect of structure and electrolyte concentration of absorbed solution

    on swell of compacted sandy clay.

    that as concentration increases, swell decreases. This is a result of the

    decrease in the difference between the osmotic pressure in the double layers

    between particles and the osmotic pressure of the calcium acetate solution

    with increasing concentration of calcium acetate. Similar results have been

    obtained b y La dd 1959) for anothe r soil. Also evident in Fig. 1 is the

    significant difference between the amount of swell of samples prepared by

    different methods of compaction.

    It may be noted that the present percent swell approaches a constant

    value at the high salt contents, suggesting that osmotic or ionic concen-

    trat ion difference effects have ceased to be an im por tant fact or in influencing

    the amount of swell. It is doubtful that any significant swell would be

    observed in samples immersed in solutions more concentra ted than 2 N

    if osmotic effects were the soIe cause of expansion. Thus, as indicated by

  • 8/12/2019 Components of Pore Water Pressure

    8/23

    C O M P O N E N T S O P O R E W A T E R

    169

    t h e s h a d e d a r e a s i n F ig . 1 , o s m o t i c e f fe c ts p r o b a b l y c a n a c c o u n t f o r s o m e

    0 to 28 9 p e r c e n t s w e ll d e p e n d i n g o n t h e c o n c e n t r a t i o n o f t h e s w e ll in g

    so lu t ion .

    T h e r e m a i n d e r o f t h e s w e l l - - a b o u t 1 p e r c e n t fo r th e s a m p le s p r e p a r e d

    b y k n e a d i n g c o m p a c t i o n a n d 3 + p e r c e n t fo r t h e s a m p le s p r e p a r e d b y

    s ta t ic c o m p a c t i o n - i s p r o b a b l y a t t r i b u t a b l e t o i n i ti a l h y d r o s t a t i c p re s su r e

    d e fi ci en c ie s a r is i n g f r o m a c o m b i n a t i o n o f c a p i ll a r y a n d p a r t i c le d e f o r m a t i o n

    e f fe c t s a n d f r o m w a t e r a d s o r p t i v e f o r c e s a t t h e c l a y p a r t i c l e s u r fa c e s . M e a -

    s u r e m e n t s h a v e c o n s i s t e n t l y s h o w n , e g L a m b e ( 1 9 6 1 ) , t h a t a s - c o m p a c t e d

    p o r e w a t e r t e n s i o n s a r e s i g n if i c an t l y g r e a t e r f o r s t a t i c a l ly c o m p a c t e d t h a n

    f o r k n e a d i n g c o m p a c t e d s a m p l e s o f t h e s a m e s oi l. T h e f l o c c u la t e d s t ru c -

    t u r e s a s so c i a t ed w i t h s t a t i c c o m p a c t i o n l e a d t o m o r e p r o n o u n c e d e f fe c ts

    f r o m b e n t p a r t i c l e s a n d c a p i l l a r y s tr e s s e s ( w h i c h h o l d b e n t p a r t i c l e s i n p l a n e

    u n t i l r e l i e v e d b y e x p o s u r e t o w a t e r ) a s a r e s u l t o f t h e e d g e - t o - f a c e p a r t i c l e

    a s s o c i a t i o n s . I n t h e m o r e d i s p e r s e d k n e a d i n g s t r u c t u r e s t h e l a r g e s h e a r

    s t r a i n s d u r i n g c o m p a c t i o n e n a b l e p a r t i c l e s t o s l i d e i n t o a m o r e p a r a l l e l

    a s s o c i a t io n w i t h a r e s u l t a n t c o n d i t i o n o f l es s p a r t i c l e d i s t o r t i o n . A s a

    r e s u l t , t h e r e l e a s e o f c a p i l l a r y s t r e s s e s i s n o t a c c o m p a n i e d b y l a r g e v o l u m e

    e x p a n s i o n s .

    W a t e r a d s o r p t i v e f o r c e s a t p a r t i c l e s u r f a c e s m a y h a v e c o n t r i b u t e d

    s o m e w h a t t o t h e s w e ll o f t h e s e s a m p l e s s i n ce i t h a s b e e n o b s e r v e d t h a t a n

    i n i t ia l l y a i r- d r i e d s a m p l e w i ll fr e e l y a b s o r b w a t e r f r o m a 9 8 : k p e r c e n t

    r e la t iv e h u m i d i t y a t m o s p h e r e t o a w a t e r c o n t e n t o f a b o u t 2 0 p e rc e n t .

    A s p r e v i o u s l y n o t e d t h e c o m p a c t i o n w a t e r c o n t e n t w a s 1 7 . 3 p e r c e n t f o r

    t h e s e t e s t s .

    A N A L Y S I S O F C O M P O N E N T A N D T O T A L W A T E R

    P R E S S U R E S A T V A R I O U S P O I N T S I N T H E

    S O I L - W A T E R S Y S T E M

    F o l l o w i n g t h e a n a l y s i s o f B o l t a n d M i l l e r ( 19 5 8 ), i t is c o n v e n i e n t t o

    c o n si d er fi rs t a n " i d e a l " c l a y - w a t e r - e l e c t r o l y t e s y s t e m a t e q u il ib r iu m .

    I n F i g . 2 i s sh o w n a s c h e m a t i c r e p r e s e n t a t i o n o f a p a r t o f a s a t u r a t e d

    s o il m a s s c o m p o s e d o f e q u a l l y s p a c e d p a r a l l e l fi a t p l a t e s o f u n i f o r m t h i c k n e ss .

    H y d r o s t a t i c p r e s s u r es d u e t o e x t e r n a l l y a p p l i e d s tr e ss e s m a y b e a c t i n g .

    C o n s i d e r a p i e z o m e t e r i n s e r t e d i n t o t h e m a s s a s s h o w n i n F i g . 2 . T h e

    p i c z o m e t e r c o n t a i n s f l u id t h a t is in e q u i l i b r iu m w i t h , b u t o u t s i d e t h e f o r c e

    f ie ld o f, t h e w a t e r i n t h e d o u b l e l a y e rs . T h e f lu i d le v e l i n t h e p i e z o m e t e r is

    a d j u s t e d s o t h a t a n o - f lo w c o n d i t i o n e x i s ts .

    I f a ll p r e s s u re s a r e m e a s u r e d r e l a t i v e t o a d a t u m o f p u r e w a t e r a t t h e

    sa me e l e v a t ion , t h e n a t p o i n t 1 , F ig . 2 : z --- 0 ; a = 0 , s i nc e th e po in r i s ou t

    o f t h e r a n g e o f a d s o r p t i v e f o r c e f i el d s ; P l = h Y l, w h e r e y ! i s t h e u n i t w e i g h t

    CC ~ 12

  • 8/12/2019 Components of Pore Water Pressure

    9/23

    170 Nr~ TH NATIONAL

    CONFERENCE ON CLAYS AND CLAY :ViINERALS

    o f t h e f lu i d i n t h e p i e z o m e t e r ; a n d ~ : =

    RTfi

    T h u s t h e t o t a l p r e s s u r e a t

    p o i n t 1 i s

    P1 = P : + z~l. 7)

    P o i n t 2 l i e s m i d w a y b e t w e e n t w o c l a y s u r f a c e s s e p a r a t e d b y a d i s t a n c e

    2 d . T h e o r e t i c a l e q u a t i o n s B o l t , 1 95 5) h a v e b e e n d e v e l o p e d e n a b l i n g t h e

    c o m p u t a t i o n o f o s m o t i c p r e s s u re s b e t w e e n i n t e r a c t i n g p l at e s , a n d s o lu -

    t i o n s h a v e b e e n t a b u l a t e d B o l t a n d M i ll er , 1 9 5 5 ; B o l t , 1 9 56 ). T h u s ~ 2

    c a n , i n t h e o r y a t l e a s t , b e e v a l u a t e d .

    0 ~ m m ~

    O

    m

    1 2 d

    t ~ / P o r o u s T ip

    FIOUZ~E 2.--Sch ematic diagram of idealized satu rate d clay -wat er syste m.

    S i n ce V ~ ~ m u s t e q u a l 0 ff s h o r ~ -r a n g e f o r ce s a r e n e g l e c t e d b e c a u s e t h e

    d o u b l e l a y e r is s y m m e t r i c a l a b o u t t h e m i d - p l a n e , t h e n a 2 = 0 , a c c o r d i n g

    t o eq . 5 ). A t e q u i li b r iu m , t h e c o n d i t i o n P ~ = P : m u s t e x i s t , a n d a s s u m i n g

    t h a t t h e e l e v a t i o n o f p o i n t 2 is t h e s a m e a s t h a t o f p o i n t 1 :

    P2 = :r~ P2 = ~: + P l . 8 )

    E q u a t i o n 8) s h ow s t h a t t h e h y d r o s t a t i c p re s s u re c o m p o n e n t s p : a n d ~o2

    m u s t d i ff er b y a n a m o u n t e q u a l t o t h e d i ff e re n c e i n o s m o t i c p re s su r e .

    P o i n t 3 r e p r e s e n t s t h e g e n e r a l c a se o f a p o i n t l o c a t e d b e t w e e n t w o p a r a l l e l

    i n t e r a a t i n g p l a t e s b u t n o t a t t h e c e n t e r l in e . F o r s i m p l i c i ty l e t

    Z3 ~ Z1 ~ 0.

  • 8/12/2019 Components of Pore Water Pressure

    10/23

    C O M P O NE N T S O F P O R E W T E R 171

    T h e a d s o r p t i v e c o m p o n e n t is g i v e n b y e q . 5 ), a n d ~vS a n d ~ s a r e g i v e n

    t h e o r e t i c a l l y b y t h e d o u b l e la y e r e q u a t i o n s . S in c e P s = P x ,

    a s q - ~ s q - ~ ~ = ~ q- 39a 9 (9 )

    E q u a t i o n 9 ) i n d i c a t e s t h a t s i nc e t h e t o t a l p r e s s u r e r e m a i n s t h e s am e

    a t a ll p o i n t s , t h e i n d i v i d u a l c o m p o n e n t s a t p o i n t 3 a s s u m e v a l u e s s u c h t h a t

    t h e i r s u m e q u a l s P z . I f t h e o s m o t i c a n d a d s o r p t i v e c o m p o n e n t s a r e g i v e n

    c o r r e c t l y b y t h e t h e o r e t i c a l e x p r e s s io n s , t h e n t h e h y d r o s t a t i c c o m p o n e n t 10s

    a s s u m e s a v a l u e a p p r o p r i a t e t o s a t i s f y t h e c o n d i t i o n P s = P x .

    FIGURE 3.--Schematic diagram of pa rtly saturated soil containing

    coarse part ic les

    a n d i m p e r f e c t c l a y orientation.

    A n i d e a l c l a y - w a t e r s y s t e m s u c h a s c o n s i d e r e d t o t h i s p o i n t i s r a r e l y , i f

    e v e r , e n c o u n t e r e d in n a t u r e . I n t h e m o r e g e n e r a l ea s e t h e p r e s e n c e o f

    c o a rs e p a r t i c le s a n d t h e i n f lu e n c e o f i n c o m p l e t e s a t u r a t i o n m u s t b e c o n -

    s i de r ed . I n F i g . 3 , i n c o m p l e t e s a t u r a t i o n a n d t h e p r e s e n c e o f c o a rs e p a r -

    t ic le s a r e i n d i c a t e d ; a p i e z o m e t e r w i t h w a t e r l e v e l a d j u s t e d f o r e q u i l i b r i u m

    is s h o w n . A s i n t h e p r e c e d i n g a n a l y s i s, l e t i t b e a s s u m e d t h a t a l l p o i n t s a r e

    a t e s s e n t i a l l y t h e s a m e e l e v a t i o n s o t h a t z c o m p o n e n t s m a y b e n e g l e c t e d .

    P o i n t 4 r e p r e s e n t s a p o i n t i n t h e f l u id i n e q u i l i b r iu m w i t h t h e s a m p l e

    a n d , a s f o r a n i d e a l c l a y w a t e r s y s t e m ,

    P 4 = n 4 + P 4 , ( 1 0 )

    b o t h o f w h i c h a r e m e a s u r a b l e .

    12"

  • 8/12/2019 Components of Pore Water Pressure

    11/23

  • 8/12/2019 Components of Pore Water Pressure

    12/23

    COMPONENTS OF PoRE W TER

    173

    d o u b l e l a y e r a n d a p o i n t i n t h e f ie ld - fr e e r e g io n s . I t w a s a s s u m e d i n t h e

    d e v e l o p m e n t o f e q . 1 6) t h a t t h e a i r p re s s u r e in a l l v o i d s i s t h e s a m e . T h i s

    m a y b e e x p e c t e d i n p a r t i a l l y s a t u r a t e d g r a n u l a r s o il s w h e r e p a r t i c le s u r fa c e

    p h e n o m e n a a r e n e g li g ib l e a n d i n p a r t i a l l y s a t u r a t e d c l ay s c o n t a i n i n g in t e r -

    c o n n e c t e d a i r v o i d s . I f a i r v o i d s a r e i s o l a t e d , h o w e v e r , t h e a i r p r e s s u r e s

    n e e d n o t b e t h e s a m e f r o m p o i n t t o p o i n t . I s o l a t e d a i r v o i d s w o u l d b e

    e x p e c t e d a b o v e s o m e r e l a t i v e l y lo w d e g r e e o f s a t u r a t i o n . T h u s , t h e p r e s su r e

    c o n d it io n s w i t h i n a p a r t i a l ly s a t u r a t e d c l a y a r e u n d o u b t e d l y m u c h m o r e

    c o m p l i c a t e d t h a n t h e p r e c e d i n g a n a l y s i s w o u l d i n d i c a t e .

    S i m i la r r e l a ti o n s m a y b e d e v e lo p e d f o r p o i n t 7 , w h i c h h a s n e g a t iv e

    m e n i s c u s c u r v a t u r e , a n d p o i n t 8 , w h i c h l i e s m i d w a y b e t w e e n p a r a l l e l c l a y

    p l a te s . T h e c u r v a t u r e a n d c o n c e n t r a t i o n a t a n y p o i n t s a r e , o f c o u rs e , d i c-

    t a t e d b y a n u m b e r o f f a c t o r s s u c h a s a r r a n g e m e n t o f p ar t ic l e s , si ze o f p o r e s,

    d e g r ee o f s a t u r a t i o n , m a g n i t u d e o f t h e e l e c t r o l y t e c o n c e n t r a t i o n i n t h e

    s y s t e m a s a w h o l e, a n d w a t e r s t r u c t u r e . I t i s lo g i c al t o a s s u m e t h a t t h e

    a c t u a l v a r i a t i o n s o f r a d i i o f c u r v a t u r e , o s m o t i c p r es s u r e, e t c . , a re s u c h

    t h a t t h e e n e r g y o f t h e s y s t e m i s a m i n i m u m a t e q u i l ib r iu m .

    L I M I T A T I O N S O F T H E A N A L Y S I S

    B o l t a n d M i l le r 1 95 8) p o i n t o u t t h a t t h e e x p a n d i n g l a t t ic e c la y s , e g

    m o n t m o r i l lo n o i d m i n e ra ls , a r e t h e o n l y o n e s t h a t a p p r o a c h t h e p r o p e r ti e s

    a s s u m e d f o r i d e a l c l a y - w a t e r s y s t e m s . O t h e r c l a y m i n e r a l s , s u c h a s t h e

    i ll it e s a n d k a o l i n i t e s , a r e m u c h t h i c k e r , h a v e a m u c h l o w e r s p e c if ic s u r f a c e ,

    m a y d e v i a t e w i d e l y f r o m t h e a s s u m p t i o n o f t h i n f l a t p l a te s , a n d m a y e x h i b i t

    b e h a v i o r t y p i c a l o f b o t h c o a r s e a n d f i n e p a r t i c l e s . I n a d d i t i o n t e r r a c e d

    r a t h e r t h a n p l a n a r s u r f a c e s m a y e x i s t , c o m p l i c a t i n g t h e d e t e r m i n a t i o n o f

    in t e r pa r t i . c le sp a c ing .

    T h e G o u y - C h a p m a n t h e o r y o f th e d o u b l e l a y e r is i ts e lf s e v e r el y l im i t e d

    i n a p p l i c a t i o n b e c a u s e o f t h e r e s t r i c t i n g a s s u m p t i o n s r e q u i r e d f o r t h e

    s o l u t io n o f t h e d i f f e re n t i a l e q u a t i o n s . A l t h o u g h i t h as b e e n r a t h e r c o n c lu -

    s i v e ly d e m o n s t r a t e d t h a t c e r t a i n c l a y p a r t ic l e s m a y b e . p o si ti v el y c h a r g e d a t

    t h e i r e d g e s , t h e e f f e c t o f t h i s r e v e r s a l o f c h a r g e f r o m s u r f a c e t o e d g e i s n o t

    c o n s i d e re d i n t h e t h e o r y . T h e f a c t s t h a t m o s t n a t u r a l s o fts a r e m o r e o r l es s

    r a n d o m m i x t u r e s o f s e v e ra l e l e c tr o l y te s a n d m i n e r a ls a n d t h a t t h e c l a y

    p l a t es a r e n o t l i k e l y t o b e a r r a n g e d i n a p r e c i s e l y u n i f o r m p a r a l le l a r r a y

    a r e f u r t h e r c o m p l i c a t i n g f a c t o r s . I n a d d i t i o n , i n t e r p a r t i c l e s p a c i n g s a r e

    g e n e r a l l y s m a l l , p o s s i b l y i n t r o d u c i n g p r e s s u r e s i n t h e w a t e r n o t a c c o u n t e d

    f o r b y e x i s t in g t h e o r i es .

    T h e a d s o r p t i v e c o m p o n e n t s w e r e f o u n d in m o s t c a s es t o b e z e ro . I n a c t u -

    a l i ty t h is w o u l d p r o b a b l y n o t b e t h e c as e. I t i s m o r e l i k e ly t h a t a c o m p o n e n t

    o f t h e a d s o r p t i v e f o r c e f ie ld s w o u l d b e a c t i v e a t a l l p o i n t s b e t w e e n t w o

    a d j a c e n t p a r t i c le s , e v e n a t p o i n t s w h e r e t h e e l e c t r ic f i el d s t r e n g t h i s z e r o .

    I t i s q u i t e p o s s i b l e t h a t w a t e r i s a d s o r b e d b y t h e f o r m a t i o n o f h y d r o g e n

  • 8/12/2019 Components of Pore Water Pressure

    13/23

    174 N r ~ NA~ONAL C O~ER~,~C E ON C r .~ys A~D C r ~Y MI ~m~ALS

    b o n d s w i t h p a r t i c l e s u r f a c e s o r b y o t h e r m e c h a n i s m s n o t r e l a t e d t o t h e

    e l e c tr i c f ie ld . N o w h e r e i n t h e a n a l y s i s h a s t h e e f fe c t o f i n t e r p a r t i c l e a t t r a c t i v e

    f o r ce s o n w a t e r p r e s s u r e b e e n c o n s i d e r e d . T h e r e i s n o r e a s o n t o b e l i e v e t h a t

    v a n t i er W a a l s a n d o t h e r a t t r a c t i v e f o r c e s k r i o w n t o e x i s t b e t w e e n p a r t i c l e s

    g o e n t i r e ly u n f e lt b y t h e w a t e r p h a s e .

    T h u s , w h i l e q u a n t i t a t i v e a p p l i c a b i l i t y o f t h e r e l a t i o n s h i p s i n d i c a t e d b y

    t h e a b o v e a n a l y s i s h a s b e e n d e m o n s t r a t e d f o r c e r t a i n h i g h l y i d e a l i z e d

    s y s t e m s B o l t , 19 5 6) , d i r e c t a p p l i c a t i o n o f t h e r e s u l t s t o s o ft s o f t h e t y p e

    e n e o u n t e r e d b y t h e e n g i n e e r h a s b e e n u n s u c c e s s f u l M i t c h el l, 19 6 0) . T h e r e

    a r e, h o w e v e r, se v e r a l f u n d a m e n t a l c o n c e p t s t h a t e m e r g e fr o m s u c h a n

    a n a ly s is t h a t m a y a i d i n t h e u n d e r s t a n d i n g o f c l a y b e h a v i o r w h e n c o n s i d e r ed

    o n a p u r e l y q u a l i t a t i v e b a si s.

    C O N C L U S I O N S F R O M T H E N L Y S I S

    T h e a n a l y s i s o f c o m p o n e n t a n d t o t a l w a t e r p r e s s u r e s l e a d s t o t h e f o l l o w .

    i n g c o n c l u s io n s r e l a t i v e t o t h e u n d e r s t a n d i n g o f t h e s i gn i fi c an c e o f p o r e

    p r e s s u r e m e a s u r e m e n t s i n f i n e - g r a i n e d s o f t s .

    1 ) T h e t o t a l w a t e r p r e s s u r e i n a s o f t - w a t e r s y s t e m a t e q u i l i b r i u m i s

    e v e r y w h e r e t h e s a m e a n d m a y c o n s is t o f a n y o n e o r a c o m b i n a t i o n o f

    s e v e r a l c o m p o n e n t p re s s u re s . A t a g i v e n d e n s i t y e x t e r n a l fo r c e s m u s t u s u a l l y

    b e a p p l i e d t o t h e s o f t m a s s o r w a t e r p h a s e i n o r d e r t o m a i n t a i n a n o - fl o w

    e q u i l i b r i u m c o n d i t i o n w h e n t h e l i q u i d p h a s e i s i n c o n t a c t w i t h e x t e r n a l

    w a t e r .

    2 ) T h e t o t a l p r e s s u r e i s m e a s u r a b l e a n d g i v e n b y e q . 7 ) f o r t h e c a se

    o f n o e l e v a t i o n h e a d .

    3) D o u b l e l a y e r i n t e ra c t i o n s a n d t h e c o n s e q u e n t r e p u l si o n b e t w e e n

    o p p o s i n g p a r t i c l e s a r e r e fl e c t e d b y t h e o s m o t i c p re s s u r e .

    4) A t e q u i l i b ri u m t h e c o m p o n e n t w a t e r p r es s u re s v a r y f r o m p o i n t t o

    p o i n t i n s u c h a w a y t h a t t h e t o t a l w a t e r p r e ss u r e r e m a i n s c o n s t a n t .

    5 ) A i r - w a t e r i n t e rf a c e s o f b o t h n e g a t i v e a n d p o s i t i v e c u r v a t u r e m a y

    e x i s t i n t h e s a m e s o f t - w a t e r s y s t e m . I n t e r f a c e c u r v a t u r e t h a t r e s u lt s f r o m

    a n e q u i l i b r i u m b e t w e e n s u r f a c e t e n s i o n , a d s o r p t i v e f o r c e s , a m o u n t o f

    a v a i la b l e w a t e r a n d s y s t e m g e o m e t r y is re f le c t ed b y a c h a n g e i n h y d r o s t a t i c

    p r e s s u r e f r o m t h e v a l u e e x i s t i n g b e n e a t h a f l a t a i r - w a t e r i n t e r f a c e .

    T H E P H Y S I C L S I G N I F I C N C E O F P O R E

    P R E S S U R E S S M E S U R E D I N S O I L M E C H N I C S

    T E S T S

    O n t h e b a s is o f t h e p r e s s u re c o n c e p t s d e v e l o p e d in t;h e p r e c e d i n g s e c t i o n

    i t is o f i n t e r e s t t o a t t e m p t a n i n t e r p r e t a t i o n o f t h e p h y s i c a l s i gn i fi c an c e o f

    p o r e w a t e r p r e s su r es a s u s u a l l y m e a s u r e d d u r i n g s t r e n g t h a n d c o m p r e ss i o n

  • 8/12/2019 Components of Pore Water Pressure

    14/23

    C O M P ON E N T S O F P o R E W T E R 175

    t e s ts o n c l ay s . S a t u r a t e d c l a y s o n l y w il l b e c o n s i d e r e d . P o r e p r e s s u r e s

    c o m m o n l y a r e m e a s u r e d b y a s en s i n g e l e m e n t u s u a l ly e i t h e r a p o r o u s t i p

    i n s e r t e d w i t h i n t h e s a m p l e o r a p o r o u s s t o n e a t t h e b a s e o f t h e s a m p l e )

    w h i c h is c o n n e c t e d t o a m e a s u r i n g d e v i c e, a s s h o w n ~ c h e m a t i ca l l y i n F i g . 4 .

    C o n n e c ti o n i s m a d e f r o m t h e s a m p l e t h r o u g h t h e p o r o u s s to n e t o a n u l l

    = / ~ O 0 -3

    I ~ IL ~ o - = O e v ] o fo r S t r e s s

    .B

    ample

    s e a l e d t h / n

    r u b b e rm e m b r o n e

    I ~ - I / - N u l l

    I ~ . ~ A ~ p o n t

    ~ T q p r e s s u r e c o n t r o /

    - - ~ M e ~ u ~

    FIaUR 4. Schematic diagram of trlaxlal test arrangement with null point po r

    pressure measuring system.

    b a l a n c e p o i n t , A . T h e w a t e r l ev e l is m a i n t a i n e d a t p o i n t A t h r o u g h o u t t h e

    t e s t ; t h e p o s i t i v e o r n e g a t i v e h y d r o s t a t i c p r e s s u r e , ~ o x, r e q u i r e d t o m a i n t a i n

    t h e l e v e l a t A i s t a k e n a s t h e p o r e w a t e r p r e s s u re w i t h in t h e s a m p l e ; t h i s

    v a l u e o f p r e s s u r e i s s u b s t i t u t e d f o r u i n e q . 1 ) .

    L e t p o i n t C b e s o m e r e p r e s e n t a t i v e p o i n t b e t w e e n p a r t i c l e s . I f t h e

    s y s t e m i s i n e q u i l i b r iu m , t h e n t h e t o t a l p r e s s u r e a t a l l p o i n t s i s t h e s a m e

    a n d P A = P c . T h e c o m p o n e n t s o f t o t a l p r e s su r e a t p o i n t A a r e p x g i v e n

    b y t h e a p p l i ed b a c k p r e s su r e , a n d t h e o s m o t i c p r e s su r e a t A , ~ , w h i c h

    d e p e n d s o n t h e c o m p o s i t i o n o f t h e f l u i d a t p o i n t A . T h e o s m o t i c p r e s s u re

    a t C i s d e t e r m i n e d b y t h e d o u b l e l a y e r c o n d i t i o n s w h i c h , i n t u r n , a r e

    d e p e n d e n t o n t h e e l e c tr i c f ie ld s t r e n g t h f r o m t h e p a r t i c l e s u rf a c es a n d t h e

  • 8/12/2019 Components of Pore Water Pressure

    15/23

    176

    I~INTH ~T TION L CONFERENCE ON CL YS ND CL Y

    MINERALS

    a m o u n t a n d t y p e o f e l e c tr o l y te i n t h e s a m p l e . T h e h y d r o s t a t i c p r e s s u r e P c

    m u s t h a v e a v a l u e a p p r o p r i a t e t o s a t is f y th e c o n d i ti o n PA = Pc; t h u s

    Pc + ~c T ac = PA + ~A , 17)

    a n d i f p u r e w a t e r i s u s e d i n t h e m e a s u r i n g s y s t e m ,

    7~ = 0 , a n d PA ~P c +7cc +ac 18)

    I t w o u l d th u s a p p e a r t h a t m e a s u r e d p o r e w a t e r p r e s su r e i n cl u d es t h e

    h y d r o s t a t i c p r e s s u r e , t h e o s m o t i c p r e s s u r e a n d t h e a d s o r p t i v e p r e s s u r e

    b e t w e e n p a r t i c l e s . D u r i n g a s h e a r o r c o n s o l i d a t i o n t e s t , p o r e p r e s s u r e

    m e a s u r e m e n t s s h o u l d r e fl e c t t h e n e t e f f e c t o f c h a n g e s i n t h e v a r i o u s c o m -

    p o n e n t s . I t s h o u l d b e n o t e d a l so t h a t t h e p r e s s u r e c o m p o n e n t s m a y v a r y

    f r o m p o i n t t o p o i n t w i t h i n t h e s a m p l e . T h u s t h e h y d r o s t a t i c c o m p o n e n t ,

    w h i c h i s t h e o n e t h a t i s f e l t b y t h e p a r t i c l e s i n t h e s e n s e o f a t h r u s t w h i c h

    i n fl u e nc e s t h e s t a t i c e q u i l i b r iu m o f t h e s t r u c t u r e , i s a v a r y i n g q u a n t i t y

    t h r o u g h o u t t h e s a m p l e .

    I n t h e d e v e l o p m e n t o f e q s. 1 7) a n d 1 8) i t w a s a s s u m e d t h a t t h e s a m p l e

    w a s i n e q u i l i b r i u m w i t h t h e m e a s u r i n g s y s t e m . T h i s i m p l i e s n o t o n l y a

    c o n d i t i o n o f n o -f l o w b u t a ls o c o m p l e t e o s m o t i c e q u i l i b r iu m . S u c h a c o n -

    d i t io n w i l l e x i s t o n l y if t h e e l e c t r o l y t e c o n c e n t r a t i o n i n t h e p o r o u s s t o n e

    a n d m e a s u r i n g s y s t e m i s t h e s a m e a s th e f r ee e le c t r o ly t e c o n c e n t r a t io n o f

    t h e s a m p l e . I f p u r e w a t e r is u se d i n t h e m e a s u r i n g s y s t e m t h e n e q u i l ib r i u m

    w i l l e x i s t i n i t i a l l y i f t h e c l a y c o n t a i n s o n l y s u f f i c i e n t e l e c t r o l y t e t o j u s t

    s a t i s fy d o u b l e l a y e r r e q u i r e m e n t s a n d n o e x c e ss . O t h e r w i s e t h e m e a s u r i n g

    s y s t e m s h o u l d c o n t a i n e l e c t ro l y t e of t h e s a m e t y p e a n d c o n c e n t r a t i o n a s t h e

    f r e e s a l t i n t h e c l a y f o r e q s . 1 7) a n d 1 8) t o b e v a l i d .

    I f , a s i s u s u a l , a c l a y c o n t a i n i n g f r e e s a lt is c o n n e c t e d t o a m e a s u r i n g

    s y s t e m c o n t a i n i n g S a l t - f r e e w a t e r t h e n e q u i l i b r i u m w i l l n o t b e r e a c h e d

    w i t h in a n y c o n v e n i e n t t e s t p e r io d . T h e r e w i ll b e a n a b r u p t e l e c tr o l y t e

    c o n c e n t r a t i o n c h a n g e i n p a s s i n g f r o m t h e s a m p l e to t h e p o r o u s s t o n e . S in c e

    t h e s t o n e c a n n o t r e s t r i c t t h e m o v e m e n t o f t h e f r ee s a l t ~ on s t h e r e w i ll b e a

    s lo w d if f us io n o f i o n s t h r o u g h t h e s t o n e u n t i l t h e f r ee s a l t c o n c e n t r a t i o n i n

    b o t h t h e s a m p l e a n d t h e s y s t e m i s t h e s a m e . T h i s p r o ce s s is e x t r e m e l y s lo w

    a n d m a y t a k e w e e k s o r m o n t h s t o r e a c h c o m p l e t io n . S e v e r a l t e s t s w e r e r u n

    w h e r e i n 0 .5 N N a C 1 a n d p u r e w a t e r w e r e p l a c e d o n o p p o s i t e s id e s o f a

    s a t u r a t e d f in e p o r o u s s t o n e o f a b o u t 0 . 4 in . t h ic k n e s s . N o s a l t w a s d e t e c t a b l e

    o n t h e w a t e r s i de o f t h e s t o n e a f t e r a 2 4 h r p e r i o d . S i n c e t h e p o r o u s s t o n e

    w a s n o t i m p e r m e a b l e t o i o n s , h o w e v e r , t h e r e w a s n o m e a s u r a b l e o s m o t i c

    p r e s s u r e a c r o s s t h e s t o n e .

    I n v i e w o f t h e s e c o n s i d e r a t i o n s , t h e r e f o r e , e q s . 1 7) a n d 1 8) w i ll n o t

    b e c o r r e c t i n m o s t c a se s. T h e o s m o t i c p r e s s u r e t e r m , ~ c , m a y b e v is u a l i z e d

    a s c o n s is t in g o f t w o c o m p o n e n t s , ~ c d u e t o t h e c o n c e n t r a t i o n o f f r ee

    s a l t, a n d ~ lcr c a u s e d b y t h e a d d i t i o n a l i o n s n e e d e d a t p o i n t C i n o r d e r t o

  • 8/12/2019 Components of Pore Water Pressure

    16/23

    COMPOnEnTS OF Po RE W TER

    177

    s a t i s fy d o u b l e l a y e r r e q u i r e m e n t s . T h e d o u b l e l a y e r io n s a r e n o t f r e e t o

    d i ff u se i n t o t h e m e a s u r i n g s y s t e m ; t h e r e fo r e , o s m o t i c p r e s s u r e ~ w i ll b e

    r e f le c t ed b y P A T h e o s m o t i c p r e s s u r e ~ d u e t o e x c e s s s a l t w i l l n o t in f l u e n c e

    t h e v a l u e o f p A . T h u s , e q . ( 18 ) w o u l d b e

    P A ~ - P c ~ 'c ' + a c = P B , (19)

    w h e r e ~ i s a n o s m o t i c p r e s s u r e d u e t o a d i ff e re n c e i n s a lt c o n c e n t r a t i o n

    f r o m p o i n t C a n d a p o i n t o u t o f th e p a r t i c le f o r ce fie ld s, b u t c o n t a i n i n g

    f r e e s a l t, s u c h a s p o i n t B i n F i g . 4 . T h u s , i f p o i n t s A a n d B a r e a t t h e s a m e

    e l e v a t i o n t h e p o r e p r e s s u r e m e a s u r e m e n t g i v e s t h e t o t a l p r e s s u r e a t C

    r e l a t i v e t o a f l u i d c o n t a i n i n g f r e e s a l t i n e q u i l i b r i u m w i t h t h e c l a y ;

    i . e .

    t h e

    p r e s s u r e a t O re l a t i v e t o B . T h i s i s p r e c i s e ly t h e p r e s s u r e d e s i re d i n p r a c t i c e

    s i n c e t h e h y d r o s t a t i c p r e s s u r e s t h a t d e v e l o p r e l a t i v e t o t h e i n s i t u p o r e f l u id

    w h e n a c l a y is s h e a r e d o r c o m p r e s s e d a r e t h e o n e s t h a t w i ll i n fl u en c e t h e

    e f f e c t i ve s t r e s s e s .

    T h e f o r e g o i n g c o n s i d e r a t i o n s s h o u l d h o l d t r u e r e g a r d l e s s o f t h e s a l t c o n -

    t e n t o f t h e m e a s u r i n g s y s t e m s o l o n g as a n a p p r e c i a b l e q u a n t i t y o f s a l t

    a n d w a t e r d o e s n o t d i f f us e i n o r o u t o f t h e s a m p l e b e f o r e o r d u r i n g a t e st .

    I f a s i g n i f i c a n t a m o u n t o f f r e e s a l t d i f f u s e s o u t o f t h e s a m p l e s a n d i n t o t h e

    m e a s u r i n g s y s t e m , f o r e x a m p l e , t h e r e w i l l b e a c h a n g e i n t h e d o u b l e l a y e r

    o s m o t i c p r e s s u r e , g o , s i n c e d o u b l e l a y e r c o n c e n t r a t i o n s a r e e x t r e m e l y

    s e n s it i v e t o f r e e s a l t c o n t e n t o f t h e c l a y . I t w o u l d a p p e a r d e s i r a b le , t h e r e -

    f o r e , t o t e s t s a m p l e s a s s o o n a s p o s s i b l e a f t e r p l a c i n g t h e m i n c o n t a c t w i t h

    t h e m e a s u r i n g s y s t e m , t o k e e p t h e v o l u m e o f w a t e r i n th e m e a s u r i n g s y s t e m

    t o a m i n i m u m , a n d t o p r e v e n t t h e f lo w o f f lu id b e t w e e n s a m p l e a n d m e a -

    s u r i n g s y s t e m , i n o r d e r t o m a i n t a i n t h e o r i g i n a l s a l t c o n c e n t r a t i o n s a t a l l

    p o i n t s w i t h i n t h e s a m p l e . F o r l o n g t e r m t e s t i n g e q u a l c o n c e n t r a t i o n s o f

    f r e e s a l t i n b o t h t h e m e a s u r i n g s y s t e m s a n d s a m p l e w o u l d b e d e s i r a b l e .

    T e s t s a r e c u r r e n t l y in p r o g r e s s w h i c h a r e d e s i g n e d t o e s t a b li s h t h e v a -

    l i d i ty o f t h e s e c o n c lu s io n s . T h e l i m i t e d d a t a o b t a i n e d t h u s f a r w o u l d t e n d

    t o s u p p o r t t h e c o n c lu s io n t h a t t h e m e a s u r e d p o r e p re s su r e s a r e i n d e p e n d e n t

    o f s a l t c o n c e n t r a t i o n i n t h e m e a s u r i n g s y s t e m .

    P H Y S I C L I N T E R P R E T T I O N O F E F F E C T I V E

    S T R E S S

    I t w a s p o i n t e d o u t a t t h e o u t s e t o f t h i s p a p e r t h a t f o rc e s o t h e r t h a n t h o s e

    d u e s o l e ly t o a p p l i e d s t re s s e s a n d p u r e l y h y d r o s t a t i c w a t e r p r e s s u r e s a r e

    a c t i v e i n f i n e - g r a i n e d s o i l s . T h e a n a l y s i s o f c o m p o n e n t a n d t o t a l w a t e r

    p r e s s u re s i n d i c a te s t h a t s o m e o f t h e s e a d d i t i o n a l f o r c e s ar e re f l e c te d t h r o u g h

    t h e p r e s s u r e s d e v e l o p e d i n t h e f l u i d p h a s e . T h e c o n c e p t o f e f f e c t i v e s t r e s s

    m a y b e e x a m i n e d i n t h e l i g h t o f t h e s e f in d i n g s. M e c h a n i s t i c a p p r o a c h e s

    t o t h e e x p r e s s i o n o f e f f e c t i v e s t r e s s e s i n t e r m s o f i n t e r p a r t i c l e f o r c e s a s w e l l

  • 8/12/2019 Components of Pore Water Pressure

    17/23

    178 NINTI~INATIONALCONFERENCE ON CLAYSAND CLA YMINERALS

    a s a p p li e d f o rc e s h a v e b e e n p r e s e n t e d b y L a m b e (1 96 0), L a m b e a n d W h i t -

    m a n ( 19 59 ) a n d S e e d , M i t c h e ll a n d C h a n ( 19 6 0), a m o n g o t h e r s , a l l l e a d i n g

    t o f i n a l e x p r e s s i o n s o f t h e s a m e g e n e r a l f o r m . A n a l t e r n a t i v e a p p r o a c h b a s e d

    o n t h e a n a l y s i s o f w a t e r p r e s s u r e i s p o s s ib l e .

    C l a y p a r t i c l e s a r e a s s u m e d t o b e e s s e n t i a l l y i n c o n t a c t w i t h t h e t y p i c a l

    p a r t i c l e a s s o c i a ti o n b e i n g c o r n e r- o r e d g e - t o - fa c e a s s h o w n i n F i g . 5. W h e t h e r

    t h e c o n t a c t s a r e m i n e r a l - t o - m i n e r a l o r t h e r e i s s o m e f e w A n g s t r 6 m s s e p a r a-

    t i o n w i t h t h e i n t e r v e n i n g s p a c e f il le d w i t h a d s o r b e d w a t e r a n d c a t i o n s is

    X ~ . . . . . . . . . . . . ~

    p / , / , o f l e n g t h ~

    FIauI~E 5. Idealize d representation of forces betwe en cla y particles.

    n o t k n o w n . I t d o e s n o t s e em u n r e a s o n a b le , h o w e v e r , t h a t s o m e t y p e o f

    s o li d o r s e m i s o li d c o n t a c t e x i s ts . A c o m p l e t e l y s a t u r a t e d s y s t e m i s as s u m e d .

    I t is r e c o g n iz e d t h a t n o s h a r p b o u n d a r y , s u c h a s s h o w n b y t h e d o t t e d l i ne ,

    s e p a r a t e s f r e e a n d b o u n d w a t e r . S u c h a li n e i s s h o w n o n l y t o a i d i n t h e

    d e f i n i ti o n o f a s u r f a c e o f l e n g t h l t h r o u g h w h i c h s li p m u s t o c c u r if t h e

    i n t e r p a r t i c l e b o n d i s t o f a i l i n s h e a r .

    I n e x a m i n i n g t h e s t a t i c e q u i l i b r i u m o f t h i s c o n d i t i o n t h e f o r c e s t o b e

    c o n s i d e r e d , F i g . 5 , a r e :

    a ~ t h e a p p l i e d a v e r a g e e x t e r n a l st re s s.

    A =

    t h e n e t p h y s i c o - c h e m i c a l a t t r a c t i v e f o r c e b e t w e e n p a r t i c le s . I t i s

    a s s u m e d t h a t a t t r a c t io n s p r e d o m i n a t e in t h e c o n t a c t z o n e a n d a r e

    r e s p o n s i b le f o r t r u e c o h e s i o n i n c l a y s . T h e s e fo r c e s m a y a r is e f r o m

    v a n d e r W a a l s a t t r a c t i o n , c e m e n t a t i o n , c a ti o n l in k a g es , h y d r o g e n

    b o n d s a n d o t h e r m e c h a n is m s . R e p u l s i v e fo r c es m a y a ls o b e a c t iv e i n

    t h e i n t e r p a r t ic a l c o n t a c t z o n e ; A i s t a k e n a s t h e e x c e ss o f a t t r a c t i o n

    o v e r r e p u l s io n .

    p = t h e h y d r o s t a t i c c o m p o n e n t of t h e t o t a l p o r e w a t e r p r es s u re .

    T h e h y d r o s t a t i c p r e s s u r e 1o a t a n y p o i n t b e t w e e n c l a y p a r ti c l e s is r e l a t e d

    t o t h e h y d r o s t a t i c p r es s u r e in t h e f lu i d a t a p o i n t o u t o f t h e p a r t i c l e f o r c e

    f i e ld s P B ; a c c o r d in g to e q . ( 19 ),

    PB = P + ~ + a , (20)

  • 8/12/2019 Components of Pore Water Pressure

    18/23

    C o ~ o ~ v . ~ T S O r P o R WATER 179

    w h e r e ~ i s t h e o s m o t i c p r e s s u r e a t t h e p o i n t b e t w e e n p a r ti c l e s r e l a t i v e t o

    t h e o s m o t i c p r e s s u r e a t a p o i n t o u t s i d e o f t h e p a r t i c l e f o r c e fi el ds , a n d a i s

    t h e a d s o r p t i v e c o m p o n e n t of w a t e r p r es s u re . B o t h ~ a n d a a r e n e g a t i v e

    c o m p o n e n t s ; t h a t is , t h e h i g h e r c o n c e n t r a t i o n o f i o ns b e t w e e n c l a y p a r -

    t ic l es r e s u l t i n g f r o m i n t e r a c t i n g d o u b l e l a y e r s a n d t h e a d s o r p t i v e p r e s su r e

    t e n d t o d r a w f r e e w a t e r i n . T h e e f f e c t o f t h e s e p r e s s u r e s t h e n i s t o k e e p

    p a r t i c l e s a p a r t . T h e y m a y b e c o n s i d e r e d a s o n e t e r m R , t h e i n t e r p a r t i c l e

    r e p u l s i v e p r e s s u r e d u e t o t h e p h y s i c o - c h e m i c a l e f fe c ts i n t r o d u c e d b y t h e

    s u r f ac e a c t i v i t y o f t h e c l a y p a rt i c le s . T h u s e q . (2 0) b e c o m e s :

    p ~ = p + R ,

    b u t s i n c e t h e p r e s s u r e IvB = ~o x, t h e m e a s u r e d p r e s s u r e , a n d p x i s c o n -

    v e n t i o n a ll y te r m e d u w e o b t a i n

    u = p

    F u r t h e r , s in c e R i s a n e g a t iv e c o m p o n e n t w e m a y w r i te

    u = 2 - - R . (21)

    E x a m i n a t i o n o f t h e s t a t i c e q u i l i b r i u m o f t h e p a r t ic l e s , F i g . 5 , s h o w s

    a a + A = T a + C ,

    w h e r e a ' is t h e e f f e c ti v e a r e a c o v e r e d b y t h e p a r t i c l e s a n d G i s t h e c o n t a c t

    f o r c e b e t w e e n p a r t i c l e s .

    C o n v e r t i n g f o r c e s t o s t re s s e s g i v e s

    a + A / a = p + C / a .

    I t m a y b e n o te d t h a t C ] a i s n o w t h e a c t u a l s t r e s s t r a n s m i t t e d b e t w e e n

    p a r t ic l e s p e r u n i t a r e a o f t h e m a s s ; i .e. t h e t r u e i n t e r g r a n u l a r s t r e s s , ~ .

    l

    L e t t i n g A ' / a ' = A a n d p = u + R , w e o b t a i n a + A = u + R + a , o r

    = q + A - - u + R ) . 22)

    T h i s e x p r e ss io n , d e v e l o p e d f r o m a c o n s i d e r a t io n o f p o r e w a t e r p r e s su r e

    c o m p o n e n t s , is o f t h e s a m e g e n e r a l f o r m a s p r e v i o u s l y d e ri v e d e x p r e s s io n s

    f o r i n t e r g r a n u l a r s t r e ss ( L a m b e a n d W h i t m a n , 1 9 59 ; L a m b e 1 9 6 0 ; S e ed ,

    M i t c h e l l , a n d C h a n , 1 9 6 0 ) . R e l a t i o n s s u c h a s ( 2 2 ) u n f o r t u n a t e l y a r e q u i t e

    l i m i te d in t h e i r a p p l i c a t i o n ; n o t o n l y b e c a u s e o f t h e a s s u m p t i o n s a n d

    a p p r o x i m a t i o n s u s e d i n t h e i r d e v e l o p m e n t , b u t a l s o b e c a u s e m e t h o d s a r e

    n o t a v a i l a b l e f o r t h e q u a n t i t a t i v e d e t e r m i n a t i o n o f t h e q u a n t i t ie s A , R

    a n d a ' .

    F i g u r e 6 h a s b e e n p r e p a r e d t o i l l u s tr a t e t h e v a r i o u s in t e r re l a ti o n s h ip s t h a t

    e x i s t b e t w e e n a p p l i e d , p o r e w a t e r , a n d i n t e r g r a n u l a r p r e s s u r es . F o u r p o s s i b l e

    s o il c o n d i t i o n s a r e i n d i c a t e d w i t h t h r e e c a s e s o f m e a s u r e d f l u id p r e s s u r e

    s h o w n f o r e a c h c o n d i t i o n . T h e u = 0 c as e r e f e r s t o a m e a s u r e d p o r e w a t e r

  • 8/12/2019 Components of Pore Water Pressure

    19/23

    18 NI~T~I ~ATIONAL CONFERENCE ON CLAYS AND CLAY MINERALS

    i t ~ ~ r ~

    ~ ~ ~ .~

    ~ ~ ~ ~

  • 8/12/2019 Components of Pore Water Pressure

    20/23

    COMPONENTS O PORE W TER

    181

    pressure of O, the a = 0 case refers to an equilibrium maintained by stressing

    the fluid that communicates with the sample, and the general case refers

    to the usual condition of both an applied normal stress and a measured

    pore pressure. Complete saturation and the same void ratio are assumed

    for each case.

    Fig. 6(~) represents an ideal c lay-w ate r syst em composed of parallel

    particles, not in contact, with no attractive forces active. Three possibilities

    exist for main tain ing equilibrium. As indica ted by the u = 0 case the to tal

    pressure of the pore fluid can be increased to zero by the application of a

    normal stress a to the sample, which must be carried entirely by the pore

    fluid since particles do not contact. The applied pressure induces a positive

    hydrostatic component in the pore water which balances the negative

    repulsive component. A second possibility is to decrease the total pressure

    of the free wate r to a value of -- R as indica ted by the a = 0 case. The third

    possibility consists of adjusting the total water pressures inside and outside

    the sample to the same value by applying a combination of normal pressure,

    aa, and stress to the free water, h y . Of course, an infinite number of aa

    and h y combinations can be found so that equilibrium will be maintained,

    and the u = 0 and a = 0 cases are actually special cases of the general case.

    The values of the various pressure terms listed under the diagrams in

    Fig. 6 can be deduced readily from a consideration of the pressures shown

    on the diagram, the type of soil structure depicted, and an analysis of the

    statics of equilibrium. It ma y be seen tha t for the ideal syst em of Fig. 6 (a)

    R is measurable.

    Fig. 6(b) represents a coarse system with insignificant R components

    and contact between particles. Contact areas between particles have been

    assumed to be insignificant. Conditions (a) and (b) are combined in Fig. 6 (c)

    where a mixed system with particles in contact and electrical repulsion

    forces active, but no attractive forces, is shown. It may be noted that a

    portion of the applied normal stress a must be carried by the water in order

    to bring the total water pressure to zero. Only the difference ~ -- R can be

    effective in creating an intergranular pressure ~.

    The mos t general case is shown in Fig. 6 (d). I t is evident from a con-

    sideration of the relationship shown under the figure that the intergranular

    stress is increased by the amount of the attractive pressure A. The general

    equation for equilibrium for the general case, Fig. 6(d), is of the same

    form as eq. (22) where h y corresponds to u.

    There arises from the analysis a further point of considerable interest;

    namely, what is the true meaning of effective stress in a clay? It is obvious,

    as shown by eq. (22), t ha t in a soil with significant electrical repulsive

    and attractive forces, the intergranular pressure is not simply the difference

    between the total applied pressures and the measured pore water pressures.

    Lambe and W hi tman (1959) have considered this point in considerable detail.

  • 8/12/2019 Components of Pore Water Pressure

    21/23

    8 2 N IN TI I N A T I O N A L C O ~ F E I~ E N C E Olq ~ K Y S A N D C L A Y M I~ E I~ A LS

    T h e p o s s i b i l it y e x i s ts t h a t e f fe c t iv e s t re s s es a n d i n t e r g r a n u l a r s t re s s es a r e

    n o t s y n o n y m o u s i n c l a y s. S ee d , M i t c h e ll a n d C h a n ( 19 6 0) s u g g e s t t h a t

    s t r e n g t h s h o u l d b e a f u n c t i o n o f t r u e i n t e r g r a n u l a r p r e s s ur e , a n d L a m b e

    a n d W h i t m a n (1 95 9) p o i n t o u t t h a t t h e o b s e r v e d b e h a v i o r of e x p a n s i v e c la y s

    d o e s n o t c o r r e l a te w e ll w i t h e f fe c t iv e s tr e ss a s d e f i n e d b y t h e d i f fe r e n ce b e t w e e n

    a p p l i e d p r e s s u re s a n d m e a s u r e d p o r e w a t e r p r e s s u r e. I t i s b y n o m e a n s s u r e ,

    o n t h e o t h e r h a n d , t h a t t r u e i n t e r g r a n u l a r s t re s s c o m p l e t e l y c o n t ro l s b e-

    h a v i o r i n f i n e - g r a i n e d s o i l s . F o r e x a m p l e , v o i d r a t i o - p r e s s u r e r e l a t i o n s h i p s

    f o r e v e n h i g h l y p l a s t ic s o ft s, w h e r e R a n d A f o r c e s m a y b e o f a p p r e c i a b l e

    m a g n i t u d e , h a v e b e e n f o u n d t o c o r r e la t e w e l l w i t h a n e f fe c t iv e s t re s s

    d e f i n e d a s t h e d i f fe r e n c e b e t w e e n t o t a l a p p l i e d s t re s s es a n d o b s e r v e d p o r e

    w a t e r p r e s s u r es . C o m p l e t e c l a r i fi c a t i o n o f t h e p r o b l e m o f t h e s i g n i fi c a n c e

    o f i n t e r g r a m f l a r a n d e f fe c t iv e s t re s s e s i n f i n e - g ra i n e d so ft s m u s t a w a i t t h e

    r e s u l t s o f f u t u r e r e s e a r c h .

    S U M M A R Y A N D C O N C L U S I O N S

    I t h a s b e e n t h e o b j e c t i v e o f t h i s p a p e r t o e x a m i n e t h e p h y s i c a l si g ni -

    f ic a n c e o f p o r e w a t e r p r e s s u r e i n c la y s a n d t o p o i n t o u t s o m e i m p l i c a t io n s

    p e r t i n e n t t o s oi l e n g in e e ri n g . T o t a l p o r e w a t e r p r e s s u re m a y b e c o n v e n i e n t l y

    c o n s i d e r e d t o c o n s i s t o f t h e c o m b i n e d e f f e c t o f f o u r c o m p o n e n t s ; e le -

    v a t i o n , h y d r o s t a t i c p r e s s u re , a p r e s s u r e d u e t o t h e a d s o r p t i v e f o r c e f ie ld s

    o f c l a y p ar t ic l e s, a n d a n o s m o t i c p r e s su r e a r i s in g f r o m t h e p r e s e n c e o f di s-

    s o l v e d sa l ts a n d i n t e r p a r t i c l e d o u b l e l a y e r e f fe c ts . D a t a a r e p r e s e n t e d w h i c h

    i n d i c a t e a s i g n i fi c a n t p o r t i o n o f t h e s w e l l o f a c o m p a c t e d s o i l o n e x p o s u r e

    t o w a t e r i s a t t r i b u t a b l e t o w a t e r p r e s s u r e d e fi c ie n c ie s c a u s e d b y m e c h a n i c a l

    a n d c a p i l l a r y e f fe c t s w h i c h a c t i n a d d i t i o n t o t h e p r e s s u r e d e f ic i en c i es

    a r is i n g f r o m d o u b l e l a y e r i n t e r a c ti o n s .

    A n a n a l y s is o f t h e p r e s s u r e s a t v a r i o u s p o i n t s i n a c l a y , b a s e d o n t h e

    c o n d i t i o n t h a t a t e q u i l i b r i u m ( no flo w ) t h e t o t a l p r e s su r e i s e v e r y w h e r e

    t h e s a m e , s h o w s t h a t c h a n g es i n a n y o n e c o m p o n e n t fr o m o n e p o i n t t o

    a n o t h e r a r e o f fs e t b y c h a n g e s i n t h e o t h e r s .

    I t m a y b e c o n c l u d e d f r o m t h e a n a ly s is t h a t a p o r e w a t e r p r e s s u re m e a s -

    u r e m e n t i n a s o il t e s t r e f l e ct s i n t e r p a r t i c l e re p u l s i v e p r es s u r e s ( o s m o t i c

    p r e s s u r e s ) a n d w a t e r a d s o r p t i v e f o r c e s a s w e l l a s p u r e l y h y d r o s t a t i c p r e s -

    s u r e s a r i s i n g f r o m m e c h a n i c a l e f f e c t s . T h e i n d i v i d u a l c o m p o n e n t s o f t h e

    t o t a l p r e s s u re a r e n o t m e a s u r a b l e , h o w e v e r , e x c e p t i n s p e c ia l s y s t e m s , a n d

    l i m i t a ti o n s i n t h e o r y p r e v e n t t h e d i r e c t c o m p u t a t i o n o f t h e s e co m p o n e n t s .

    A p h y s i c a l i n t e r p r e t a t i o n o f e f f ec t iv e s t re s s is a t t e m p t e d b y r e l a t i n g

    c o m p o n e n t w a t e r p r e s s u r e s t o s t r e s s e s b e t w e e n p a r t i c l e s . I t i s s h o w n t h a t

    t h i s a p p r o a c h l e ad s t o a r e l a ti o n s h i p o f t h e s a m e g e n e r a l f o r m a s e x p r e s s io n s

    f o r i n t e r g r a n u l a r p r e s s u re s p r e v i o u s l y d e v e l o p e d u s i n g d i f f e r e n t a p p r o a c h e s .

    M o d e l s a r e p r e s e n t e d i l l u s t r a t i n g t h e i n t e r r e l a t i o n s h i p b e t w e e n c o m p o n e n t

  • 8/12/2019 Components of Pore Water Pressure

    22/23

    C O M P O N E N T S O F 19 RE W A T E R

    1 8 3

    w a t e r p r e s s u r e s , t o t a l w a t e r p r e s s u re , t o t a l a p p l i e d p r e s s u r e a n d i n t e r -

    g r a n u l a r p r e s s u r e i n c l a y s .

    I t i s t o b e e x p e c t e d t h a t c o n t i n u e d r e s e a r c h w i l l l e a d t o i m p r o v e d u n d e r -

    s t a n d i n g o f t h e f o r c e s a c t i v e i n a c l a y - w a t e r s y s t e m a n d a i d i n t h e d e t e r -

    m i n a t i o n o f t h e t r u e i n t e r g r a n u l a r p r e s s u r e s i n a s o i l m a s s a n d t h e e v a l -

    u a t i o n o f t h e t r u e e f f e c t i v e s t r e s s ; i .e . t h e s t r e s s c o n t r o l l i n g s o i l b e h a v i o r .

    R E F E R E N E S

    Aitch ison , G. D. (1960) Re la t ion sh ip o f mois tu re s t ress and e f fec t ive s t ress func t ions in un-

    sa tu rd ted so i l s . P rec .

    C o n f e r e n c e o n P o r e P r e s s u r e s a n d S u c t i o n i n 8 o i l s :

    Bu t t e r wo r th s ,

    L o n d o n , p p . 1 8 - 2 3 .

    Baye r , L . D. (1956) S o i l P h y s i c s : J o h n W i l e y & S o n s, I n c . , Ne w Y o r k , 3 r d e d . , 48 9 p p .

    B i s h o p, A .W . ( 19 60 a) T h e m e a s u r e m e n t o f p o r e p r e s s u re i n t h e t r i a x i a l t e s t . Prec . Con .

    ] er en ce o n P o r e P r e s s u r e a n d S u c t l o ~ i ~ S o i l s :

    Bu t t e r w o r th s , L o n d o n , p p . 5 2- 6 0 .

    Bishop , A. W . (1960b) Th e p r inc ip le o f e f fec t ive s t ress :

    No rweg i an Geotechniea l Ins t i t u t e

    Oslo, Pub. 32, pp. 1-5 .

    Bishop , A. W . (1960e) Fa c to rs con t ro l l ing the s t reng th o f pa r t i a l ly sa tu ra t ed cohes ive soi ls .

    Prec . A S C E Research Con/e rence on t he Shear S t rengt h e l Cohes ive So i l s : Bo ulder , Colorado.

    In p ress .

    B i s h op , A . W . a n d E ld in , G . ( 1 9 5 0) Un d r a in e d t r i a x i a l t e s t s o n s a tu r a t e d s o il s a n d t h e i r

    s ign if icance in the genera l theo ry o f shea r s t reng th :

    Geotechnlque

    v. 2, pp. 13-32.

    Bo l t , G . H . ( 1 9 55 ) An a ly s is o f t h e v a l i d i t y o f t h e Go u y - C h a p m a n th e o r y o f t h e e l e c t ri c

    d o u b le l a y e r : J . Col l o i d Se i . v. 10, p. 206.

    Bo l t , G . H . ( 1 9 5 6 ) P h y s i c a l - c h e m ic a l a n a ly s i s o f t h e c o m p r e s s ib i li t y o f p u r e c l a y :

    Gee.

    technique v. 6 , no. 2 , pp. 86-93.

    Bol t , G. H . and Fr i s se l , ]~ I. J . (1960) The rm odyn am ics o f so i l m ois tu re : N e t h e r la n d s J . A g r .

    S e i . v. 8 , no. 1 , pp. 57-78.

    Bol t , G. H. and Mi l le r , R . D. (1955) Compress ion s tud ies o f i ll i t e suspens ions : Soi l Sc i . Soc .

    A m e r . P r e c . v. 19, pp. 285-288.

    Bo l t , G . H . a n d M i l l er , R . D . ( 1 9 58 ) Ca l c u l a ti o n o f t o t a l c o m p o n e n t p o t e n t i a l s o f wa t e r i n

    so i l :

    Tra ns . Am er . Geophys . Un .

    v. 39, no. 5, pp. 917-928.

    Croney, D. and Coleman , J . D. (1953) So i l m ois tu re suc t ion p roper t ie s and the i r bea r ing

    o n t h e m o i s tu r e d i s t r i b u t i o n i n s o i ls :

    P r e c . 3 r d I n t . C o n f . o n S o i l M e c h . a n d F o u n d . E n g .

    v. 1 , pp. 13-18.

    E d le f so n , N . E . a n d An d e r s o n , A . B . ( 1 9 43 ) T h e r m o d y n a m ic s o f s o i l m o i s tu r e : H i l g a r d i a

    v. 15, pp. 31-298.

    Hi]f , J .W . (1956) An inv es t iga t ion o f pore wa te r p ressu res in com pac ted cohes ive so i l s:

    U . S . B u r e a u o / R e c l a m a t i o n D e n v e r C o lo ra d o T e c h . M e m o r a n d u m 654, 109 pp.

    Jenn ings , J . E . (1960) A rev ised e f fec t ive s t ress law fo r use in the p red ic t ion o f the beha v io r

    o f u n s a tu r a t e d s o il s .

    Prec . Con/e rence on P ore Pressure s an d Suc t i on i n So i l s :

    Bu t t e r wo r th s ,

    London , pp . 24 -28 .

    Ladd , C. C. (1959) Mechan ism s o f swe l l ing by com pac ted c lay :

    H i g h w a y R e s ea rc h B o a r d B u l l .

    245, pp. 10-26.

    Lam be , T . W . (1960) A mechan is t ic p ic tu re o f shea r s t reng th in c lay .

    P r e c . A S C E R e s e a r c h

    Con/erence on Shear Strength e l Cohesive Soi l s : Boulder , Colorado. In press .

    L a m b e , T . W . ( 1 9 61 ) Re s id u a l p o r e p r e ss u r es i n c o m p a c t e d c l a y : i n

    5 t h I n t . C o n / . o / S o i l

    M e c h . a n d F o u n d . E n g . . P a r i s J u l y 1 9 6 1 .

    L a m b e , T . W . a n d W h i tm a n , R . V . ( 1 9 5 9) T h e r o l e o f e ff e c t iv e s t re s s i n t h e b e h a v io r o f

    expans ive so i l s :

    Prec . 1s t Annual Col orado So i l Mechani c s Coa/ e renve

    pp . 33-66 .

  • 8/12/2019 Components of Pore Water Pressure

    23/23

    1 8 ~ I ~ IN T H N A T I O N A L C O N F E R E N C E O N C L A Y S A N D C L A Y M I N E R A L S

    L o w , P . F . ( 1 9 58 ) M o v e m e n t a n d e q u i l i b r i u m o f w a t e r i n s o il s y s t e m s a s e f f e c te d b y s o il -

    w a t e r f o r c e s : Hi g hw ay Research Board Spec i a l Repo r t 4 0 , p p . 5 5 - 6 4 .

    L o w , P . F . ( 19 59 ) D i s cu s s io n t o P h y s i c a l - C h e m i c a l p r o p e r t i e s o f s o il s: I o n e x c h a n g e

    p h e n o m e n a , b y T a y lo r , A . W . : Am er . Soe . C i v i l Engi neers Proc . p a p e r 2 01 0, p p . 7 9 - 8 9 .

    L o w , P . F . a n d D e m i n g , J . H . ( 19 53 ) M o v e m e n t a n d e q u i l i b r iu m o f w a t e r i n h e te r o g e n e o u s

    s y s t e m s w i t h s p e c i a l r e f e r e n c e t o s o i l s : Soi l Sc i . v . 7 5 , p p . 1 8 7 - 2 0 2 .

    M a r s a l , R . J . a n d R e s in e s , J . S . ( 19 60 ) P o r e p r e s s u r e a n d v o l u m e t r i c m e a s u r e m e n t s i n s h e a r

    t e s t s . Proc . ASCE Research Con/erence on the Shear Strength of Cohesive Soi l s : B o u l d e r ,

    C o l o r a d o . I n p r e s s .

    M a r s h a l l , T . J . ( 19 5 9) R e l a t i o n s b e t w e e n w a t e r a n d s o i l; Com. Bureau So i l s Tech . Comm.

    N o . 5 0 , C . A . B . H a r t e n d e n , 9 1 p p .

    M i t c h e l l, J . K . ( 19 6 0) T h e a p p l i c a t i o n o f c o l l o i d a l t h e o r y t o t h e c o m p r e s s i b i l i t y o f c la y s .

    Proc . Semi nar on In t e rpar t i c l e Forces i n C l ay -Wat e r -E l ec t ro l y t e Sy s t ems: C o m m o n w e a l t h

    S c i e n t i f i c a n d I n d u s t r i a l R e s e a r c h O r g a n i z a t i o n , M e l b o u r n e , p p . 2 . 9 2 - 2 . 9 7 .

    R o s e n q v i s t , L T h . ( 1 95 9 ) P h y s i c o - c h e m i c a l p r o p e r t i e s o f s o i ls : S o i l - w a t e r s y s t e m s : A m e r .

    Soc . Civ i l Eng ineers Proc . p a p e r 2 0 0 0 , p p . 3 1 - 5 3 .

    S e ed , H . B . a n d C h a n , C . K . (1 95 9) S t r u c t u r e a n d s t r e n g t h c h a r a c t e r i s t ic s o f c o m p a c t e d

    c l a y s : Amer . Soc . C i v i l Engi neers Proc . p a p e r 2 2 1 6 , p p . 8 7 - 1 2 8 .

    S e e d , H . B . , M i t c h e l l, J . K . a n d C h a n , C . K . ( 19 6 0) T h e s t r e n g t h o f c o m p a c t e d c o h e s i v e

    soi l s : Proc . A.S.C.E. Research Con]. on Shear Strength o[ Cohesive Soi l s : B o u l d e r , C o l o r a d o .

    I n p r e s s .

    T e r z a g h i , K . ( 1 9 2 5 } Erdbaumechani k au[ Bodenphys i ka l i scher Grundl age : D u e t i c k e , W e i n ,

    399 pp .