Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

54
1 Comparative Growth Study of Toxic and NonToxic Microcystis aeruginosa Strains under Oxidative Stress Conditions by Neil Rajput A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirement for the degree of Honors Baccalaureate of Science in Microbiology (Honors Scholar) Presented May 15, 2014 Commencement June 2014

Transcript of Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

Page 1: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  1  

     

Comparative  Growth  Study  of  Toxic  and  Non-­‐Toxic  Microcystis  aeruginosa  Strains  under  Oxidative  Stress  Conditions  

 by    

Neil  Rajput          

A  PROJECT    

submitted  to    

Oregon  State  University    

University  Honors  College          

in  partial  fulfillment  of  the  requirement  for  the  

degree  of        

Honors  Baccalaureate  of  Science  in  Microbiology  (Honors  Scholar)            

Presented  May  15,  2014  Commencement  June  2014  

             

 

Page 2: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  2  

AN  ABSTRACT  OF  THE  THESIS  OF    Neil  Rajput  for  the  degree  Honors  Bachelor  of  Science  in  Microbiology  presented  on  May  15,  2014.    Title:  Comparative  Growth  Study  of  Toxic  and  Non-­‐Toxic  Microcystis  aeruginosa  Strains  under  Oxidative  Stress  Conditions      Abstract  approved:  _______________________________________________________________________                                            Dr.  Theo  Dreher,  Mentor      Toxic  cyanobacterial  blooms  in  freshwater  sources  are  of  increasing  concern  due  to  

the  production  of  toxins  that  pose  a  threat  to  human  health.  Both  toxic  and  non-­‐toxic  

strains  of  Microcystis  aeruginosa  cohabitate  with  one-­‐another,  in  vivo.    However,  

environmental  conditions  play  a  large  role  in  determining  the  dominance  of  toxic  or  

non-­‐toxic  strains  in  a  given  cyanobacterial  bloom.  The  mechanism  underlying  

Microcystis  aeruginosa’s  ability  to  out  compete  other  strains  in  response  to  changing  

environmental  conditions  remains  under  investigation.  This  research  studies  the  

growth  of  different  toxic  and  non-­‐toxic  strains  of  Microcystis  aeruginosa  under  

varying  light  intensities.  Light  intensity  was  analyzed  as  it  was  shown  to  be  a  source  

of  photooxidative  stress.  A  scopoletin  assay  was  adapted  to  measure  the  evolution  

of  hydrogen  peroxide,  which  was  found  to  be  greater  in  samples  exposed  to  high  

light  treatment.  The  study  also  incorporated  comparative  genomics  to  highlight  

several  conserved  peroxiredoxin  genes  in  certain  strains  of  Microcystis  aeruginosa  

that  have  been  studied  in  other  cyanobacterial  species  as  stress-­‐response  

mechanisms.  This  information  was  used  to  analyze  and  interpret  environmental  

data  published  on  ecological  shifts  of  toxic  potential  that  have  been  noted  in  many  

Microcystis  aeruginosa  dominated  blooms.  

 

Page 3: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  3  

 

 

   

                                                                   

Key  Words:  Microcystis  aeruginosa,  oxidative  stress,  cyanobacterial  blooms,  scopoletin  assay,  microcystin,  photooxidative  stress,  toxic  strain  dominance    Corresponding  e-­mail  address:  [email protected]    

Page 4: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  4  

                               

 Copyright  by  Neil  Rajput  May  15,  2014  

All  Rights  Reserved    

                                                 

Page 5: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  5  

 Honors  Baccalaureate  of  Science  in  Microbiology  project  of  Neil  Rajput  presented  May  15,  2014.      APPROVED:        ______________________________________________________________________  Mentor,  representing  Microbiology        ______________________________________________________________________  Committee  member,  representing  Microbiology        ______________________________________________________________________  Committee  member,  representing  Biology        ______________________________________________________________________  Chair,  Department  of  Microbiology        ______________________________________________________________________  Dean,  University  Honors  College        

I  understand  that  my  project  will  become  a  part  of  the  permanent  collection  of  Oregon  State  University,  University  Honors  College.  My  signature  below  authorizes  

release  of  my  project  to  any  reader  upon  request.          

Neil  Rajput        

Page 6: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  6  

ACKNOWLEDGEMENTS         I  received  support  from  many  people  over  the  course  of  my  research  work,  

which  allowed  me  to  write  this  thesis.  First,  I  would  like  to  thank  the  members  of  

the  Dr.  Theo  Dreher  laboratory  at  Oregon  State  University  for  teaching  me  the  “ins  

and  outs”  of  laboratory  research  and  for  making  me  more  familiar  with  techniques  

related  to  studying  cyanobacterial  species.  They  supported  me  in  troubleshooting  

when  parts  of  my  experiment  did  not  go  as  planned  and  their  affable  personalities  

made  every  day  in  the  lab  an  exciting  experience.  I  would  like  to  thank  Dr.  Dreher  

for  allowing  me  to  do  research  in  his  lab  and  for  his  continual  support  and  guidance  

in  planning  my  research.  A  special  thank  you  goes  to  my  postgraduate  doctoral  

mentor,  Dr.  Tim  Otten,  for  helping  me  throughout  the  project  and  giving  me  insight  

through  all  stages  of  the  research.  Lastly,  I  would  like  to  thank  my  advisors  within  

both  the  University  Honors  College,  and  the  Microbiology  major  for  helping  me  plan  

my  research  and  for  overseeing  my  completion  of  the  requirements  of  this  thesis.  

  Thank  you  to  my  mom,  dad,  and  sister  for  always  supporting  me  throughout  

my  undergraduate  experience.  Without  their  help,  I  wouldn’t  be  the  person  I  am  

today.  I  thank  them  for  inspiring  me  to  pursue  greater  endeavors  in  life.  I  know  that  

my  next  step  in  life,  attending  medical  school,  would  not  be  possible  without  their  

support.  

  Funding  for  this  project  was  provided  by  the  Dr.  Theo  Dreher  laboratory  and  

all  laboratory  research  related  to  this  thesis  was  conducted  in  Corvallis,  Oregon  at  

Oregon  State  University.  

 

Page 7: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  7  

TABLE  OF  CONTENTS    

INTRODUCTION   1     Background   1     Taxonomy   2     Microcystis  aeruginosa:  An  Overview   3     Production  of  Photooxidative  Stress   7     Population  Dynamics   9      THESIS  STATEMENT      

10  

MATERIALS  AND  METHODS   11                              Determination  of  Light  Conditions  (Independent  Variable)   11     Selection  of  Strains   12     Establishment  of  Log  (Exponential  Phase)  Growth   12     Growing  Conditions   13     Measurement  of  Photo-­‐induced  Oxidation  (Scopoletin  Assay)   13     Cell  Counting  Procedure   15     Comparative  Genomics/Proteomics  to  Identify  Presence  and  Function     of  Peroxiredoxin  Genes  

16  

  Evaluation  and  Comparison  of  Environmental  Studies  on  the  Variability     of  Toxic  Potential  of  Microcystis  aeruginosa  

17  

 RESULTS  AND  DISCUSSION  

 18  

Day  1-­‐14  Growth  of  Toxin  and  Non-­‐Toxic  Strains  under  High  and  Low  Light  

18  

  H2O2  Concentration  Determination  using  Adapted  Scopoletin  Assay   22     Investigation  of  2-­‐cys  Peroxiredoxin   27  

Literature  Review  of  Population  Dynamics  in  Environmental  Studies  (Bloom  Shift  from  Toxic  to  Non-­‐Toxic  Strain  Dominance)  

29  

    Misson,  Benjamin,  and  Delphine  Latour.   30       Zhu,  Lin  et  al.     32       Van  Wichelen,  Jeroen  et  al.   33                  Gobler,  C.  J.  et  al.   34                                      Yoshida,  Mitsuhiro  et  al.     35  

 Further  Support  for  Cyanophage-­‐Mediated  Genotypic  Succession  of  Microcystis  aeruginosa  over  a  Bloom  Period  

 

36  

   CONCLUSION   38          REFERENCES   40      

Page 8: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  8  

 

LIST  OF  FIGURES    

Figure    

Figure  1.  Structure  of  Microcystin-­‐LR.  Microcystin  (mcy)  gene  cluster   4  

Figure  2.  Interaction  of  microcystin  with  phosphoprotein  phosphatase  (PPP)  protein  that  shows  covalent  binding  to  cysteine  residues  at  various  grooves.  

6  

Figure  3.  Enlarged  Grid  of  Hemocytometer     16  

Figure  4.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­‐14.  PCC  7005  -­‐  "Non-­‐Toxic"  

20  

Figure  5.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­‐14.  PCC  2667  -­‐  "Toxic"   20  

Figure  6.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­‐14.  CPCC  299  -­‐  "Toxic"   21  

Figure  7.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­‐14.  UTEX  2386  -­‐  "Non-­‐Toxic"  

21  

Figure  8.  Scopoletin  Assay  Standard  Curve  -­‐  Growth  Day  11   24  

Figure  9.  Scopoletin  Assay  Standard  Curve  -­‐  Growth  Day  14   24  

Figure  10.  BlastP  Search  of  BAS1  (2-­‐cys  Prx)  in  Complete  and  Partially  Complete  Genomes  of  Microcystis  Aeruginosa  Strains  

28  

Figure  11.  A  Concept  Map  Depicting  the  Various  Publications  used  in  this  Literature  Review  and  their  Reported  Mechanism  for  the  Observed  Genotypic  Shift  (Toxic  to  Non-­‐Toxic)  over  a  Bloom  Period.  

 

30  

   

 

 

 

 

 

 

Page 9: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  9  

 

 

 

 

 

 

LIST  OF  TABLES    

Table    

Table  1.  Scopoletin  Assay  for  Determination  of  H2O2  Concentration  -­‐  Day  11   22  

Table  2.  Scopoletin  Assay  for  Determination  of  H2O2  Concentration  -­‐  Day  14   23  

Table  3.  Difference  in  H2O2  Concentration  between  High  Light  and  Low  Light  (nM)  -­‐  Growth  Day  11  

25  

Table  4.  Difference  in  H2O2  Concentration  between  High  Light  and  Low  Light  (nM)  -­‐  Growth  Day  14  

25  

Table  5.  Amino  Acid  Sequence  of  2-­‐cys  Peroxiredoxin  (BAS1)   27    

 

LIST  OF  EQUATIONS  

Equation    

Equation  1.  Cell  Density  Equation  for  Hemocytometer  Counting   15  

 

 

 

 

 

Page 10: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  10  

 

 

 

 

 

 

 

 

 

DEDICATION        

This  thesis  is  dedicated  to  the  professors  and  faculty    

of  the  Microbiology  department  at  Oregon  State  University    

for  their  expertise  and  continual  support.    

 

 

 

 

 

 

 

 

 

Page 11: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  1  

Comparative  Growth  Study  of  Toxic  and  Non-­‐Toxic  Microcystis  aeruginosa  Strains  

      INTRODUCTION    Background       Toxic  cyanobacterial  blooms  are  of  growing  concern  due  to  the  

environmental  implications  they  have  on  water  potability  and  overall  watershed  

health.  This  issue  is  further  complicated  by  rising  global  temperatures  and  

alteration  of  seasonal  weather  patterns,  which  modify  the  temperature  of  water  

bodies  leading  to  stratification  (1).  Studies  investigating  this  phenomenon,  in  

conjunction  with  eutrophication  from  freshwater  pollution,  have  concluded  that  

these  changes  will  increase  the  level  and  severity  of  toxic  cyanobacterial  blooms  

globally  (1).  

    Bloom  formation  is  influenced  by  increasing  global  temperatures,  

agricultural  run-­‐off,  and  other  sources  that  deliver  abundant  nitrogen  and  

phosphorous  that  can  be  readily  used  by  cyanobacterial  species  (2).  Bloom  

formation  poses  significant  threats  to  human  and  mammal  health  and  to  the  health  

of  other  aquatic  species.  In  humans,  consumption  of  or  swimming  in  water  that  is  

tainted  with  cyanobacteria  is  linked  to  gastroenteritis,  skin  irritation,  and  allergic  

reactions  of  the  skin  and  eyes.  Long-­‐term  exposure  has  been  linked  to  liver  damage  

(3).  The  cause  of  these  health  concerns  is  due  to  cyanobacterial  production  of  

hepatotoxins,  which  interfere  with  eukaryotic  cellular  signaling  (3).  Cyanobacterial  

blooms  also  create  issues  for  other  aquatic  life.  When  large  areas  of  blooms  die,  the  

resulting  organic  matter  favors  the  growth  of  other  microbes.  These  microbes  

Page 12: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  2  

deplete  the  waters  of  dissolved  oxygen  through  their  metabolic  activity  leading  to  

hypoxic  “dead-­‐zones”  where  aquatic  life  cannot  exist  (4).  

 Taxonomy  

    The  appearance  of  cyanobacterial  species  varies  depending  on  species.  They  

can  exist  unicellularly  or  alternatively  in  colonies.  In  colony  form,  they  can  form  

hollow  balls  or  filaments,  or  sheets.  Their  appearance  under  a  microscope  is  

dominated  by  large  gas  vesicles,  which  confer  buoyancy  within  the  water  column  to  

many  species  (1).  This  allows  them  to  take  advantage  of  optimal  light  intensities  and  

carbon  dioxide  levels  by  simply  changing  the  volume  of  their  gas  vesicles;  a  process  

known  as  phototaxis  (1).  In  comparison  to  other  bacterial  species,  cyanobacteria  are  

quite  large,  with  sizes  ranging  from  1  to  10  μm.  

    Cyanobacteria  are  Gram-­‐negative,  photoautothophs,  meaning  they  use  light  

energy  to  drive  metabolic  processes  and  are  capable  of  fixing  carbon  from  an  

inorganic  form  (5).  Their  evolution  as  organisms  is  believed  to  have  dramatically  

changed  the  composition  of  the  earth’s  environment  by  producing  oxygen  gas  as  a  

byproduct  of  photosynthesis,  therefore  stimulating  a  shift  from  a  reducing  

environment  to  an  oxidizing  one  (5).  Research  has  indicated  that  cyanobacteria  are  

the  origin  of  chloroplasts  found  in  plants  and  other  eukaryotes,  as  described  by  the  

endosymbiotic  theory  (6).  

    Cyanobacterial  photosynthesis  is  therefore  somewhat  similar  to  that  of  

plants.  Cyanobacteria  use  a  pigment  known  as  phycocyaninin  in  addition  to  

Page 13: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  3  

chlorophyll-­‐a  to  capture  light,  which  gives  them  their  blue-­‐green  appearance  (7).  

Water  is  used  as  an  electron  donor  and  oxygen  is  produced  as  a  product.  

Cyanobacteria  perform  photosynthesis  via  photosystem  (PS)  II  and  I,  which  allows  

water  to  be  oxidized  through  Z-­‐scheme  (7).  Phycocyanin  and  chlorophyll-­‐a  are  

housed  in  thylakoid  membranes.  PS  II  captures  light  energy,  which  initiates  an  

electron  transport  chain.  The  Calvin  Cycle  process  allows  carbon  dioxide  to  be  fixed  

into  organic  carbon  (7).  

 Microcystis  aeruginosa:  An  overview    

  Microcystis  aeruginosa  is  a  member  of  the  phylum,  Cyanobacteria,  that  is  

found  in  freshwater  sources.  Microcystis  aeruginosa  is  one  of  the  most  common  

cyanobacterial  species  related  to  eutrophic  blooms  (4).  Microcystis  aeruginosa  exists  

in  vivo  in  both  toxic  and  non-­‐toxic  strains.  In  toxic  strains,  Microcystis  aeruginosa  

produces  microcystin,  a  cyclic  peptide  hepatotoxin  that  is  harmful  to  human  and  

mammalian  health.  Microcystin  is  produced  as  a  secondary  metabolite,  and  is  not  

directly  related  to  Microcystis  aeruginosa’s  key  biochemical  pathways  leading  to  

growth  or  survival  (8).  Microcystis  aeruginosa  can  also  produce  lipopolysaccharide,  

a  skin  irritant  (14).  

    Over  80  variants  of  the  microcystin  toxin  have  been  isolated  from  

cyanobacterial  species  (13).  Microcystins  differ  from  each  other  by  the  

differentiation  of  L-­‐amino  acids  located  in  two  variable  sites,  and  sometimes  by  the  

chemical  modification  of  other  amino  acids  in  the  protein.  Each  microcystin  has  a  

different  toxicity  profile;  however,  microcystin-­‐LR  is  the  most  toxic  and  most  

Page 14: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  4  

studied  variety  of  microcystins.  In  Microcystis  aeruginosa,  microcystin-­‐LR  is  encoded  

by  a  55  kb  gene  cluster,  mcy.  Mcy  is  subdivided  into  6  gene  sections  that  encode  

larger  proteins  mcyA-­‐E  and  mcyG,  which  have  polyketide  synthase  activity  and  

nonribosomal  peptide  synthetase  activity  (13).  mcy  also  encodes  smaller  proteins  

mcyF  and  mcyH-­‐J.  All  microcystins  are  non-­‐ribosomal  peptides  meaning  that  they  

are  not  synthesized  by  ribosomes  (13).  The  different  protein  “modules”  on  the  

larger  proteins  provide  specialized  enzymatic  function  that  allows  for  biosynthesis  

of  the  peptide.  

 

 

Figure  1.  Structure  of  Microcystin-­LR.  (above).  Microcystin  (mcy)  gene  cluster  (below).  (13).  

 

   

Page 15: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  5  

    Eutrophication  results  from  agricultural  run-­‐off  and  other  sources,  resulting  

in  excess  nitrogen  and  phosphorus  (1,  14,  21).  These  nutrients,  when  in  excess,  

allow  Microcystis  aeruginosa  to  greatly  proliferate.  Microcystis  aeruginosa  also  

undergoes  high  levels  of  photosynthesis.  This  allows  Microcystis  aeruginosa  to  

dominate  cyanobacterial  blooms  under  typical  bloom  forming  conditions  (1).  Heavy  

bloom  formation  typically  begins  in  the  early  summer  and  may  last  2-­‐4  months.  

Microcystin  exposure  is  a  concern  because  typical  processes  to  treat  water  for  

potability  do  not  effectively  remove  microcystin  (3).  

    Microcystin’s  toxicity  affects  hepatocytes  (liver  cells),  which  decreases  the  

liver’s  function.  Microcystin-­‐LR’s  interaction  with  the  phosphatases  causes  covalent  

bond  formation  between  the  methylene  group  of  microcystin  and  a  cysteine  residue  

on  the  phosphoprotein  phosphatase  (PPP)  (46)  (Figure  2).  Microcystin  covalently  

binds  to  the  hydrophobic  groove,  acidic  groove,  and  C-­‐terminal  groove  in  a  “Y”  

configuration.  This  bond  blocks  access  of  the  substrate  to  the  active  site  of  the  PPP  

enzyme,  rendering  PPP  nonfunctional  and  preventing  phosphorylated  proteins  from  

becoming  de-­‐phosphorylated  (46).  More  specifically,  the  toxin  works  as  an  inhibitor  

of  mammalian  phosphatase  1  and  2A  (types  of  PPP),  and  an  activator  of  

cycloxygenase  and  phospholipase  A2.  This  causes  hyper-­‐phosphorylation  of  

cytokeratin  proteins  that  leads  to  changes  in  cell  shape  and  rearrangement  of  

intermediate  filaments  of  liver  cells.  The  destruction  of  liver  cells  leads  to  hepatic  

hemorrhage  or  hepatic  insufficiency.  

Page 16: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  6  

  More  recently,  microcystin  was  found  to  interact  with  the  mitochondria  of  

mammalian  cells.  Here,  microcystin  is  believed  to  disrupt  normal  calcium  (Ca2+)  

signaling  in  the  mitochondrial  membrane  leading  to  membrane  instability  and  

induction  of  reactive  oxygen  species  (ROS).  The  accumulation  of  high  concentrations  

of  ROS  leads  to  apoptosis  of  the  mammalian  cell.  This  is  a  more  recently  proposed  

mechanism  for  microcystin’s  toxicity  and  it  is  still  under  investigation  (45).  

 

 

Figure  2.  Interaction  of  microcystin  with  phosphoprotein  phosphatase  (PPP)  protein  that  shows  covalent  binding  to  cysteine  residues  at  various  grooves.  (46)    

    Microcystin  role  in  Microcystis  aeruginosa’s  fitness  has  not  been  elucidated.  

The  evolutionary  advantage  for  Microcystis  aeruginosa  is  unclear  because  the  

organism  only  releases  significant  amounts  of  microcystin  following  cell  death  and  

lysis  (8).  A  study  done  by  Rohrlack  et  al.  on  the  survival  of  Daphnia  (a  grazing  

zooplankton)  failed  to  link  the  toxin  as  the  cause  of  decline  in  feeding  Daphnia  

Page 17: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  7  

populations  (29).  Furthermore,  evolutionary  history  has  revealed  that  mcy  genes  

that  synthesize  microcystin  evolved  with  other  housekeeping  genes  well  before  the  

appearance  of  eukaryotic  grazers  (such  as  metazoans)  (28),  therefore  reducing  

support  for  the  theory  that  microcystin  production  is  a  defense  mechanism  to  

inhibit  zooplankton  grazing.  Another  study  conducted  by  Schatz  provided  insight  

that  microcystin  production  might  be  used  as  intercellular  signaling,  inducing  

apoptosis  to  send  signals  to  the  surrounding  population  warning  of  stress  (30).  A  

study  done  by  Börner  found  that  microcystin  (mcy)  genes  underwent  greater  

transcription  into  mRNA  following  exposure  to  high  light,  although  the  total  

quantity  of  microcystin  did  not  increase  (31).  A  proteomic  analysis  in  a  study  by  

Zilliges  et  al.  revealed  that  microcystin  may  engage  in  binding  to  cysteine  residues  

on  enzymes  of  the  Calvin  cycle,  phycobiliproteins  and  NADPH-­‐dependent  

reductases,  thereby  stabilizing  these  proteins  during  high  light  and  oxidative  stress,  

indicating  that  microcystin  may  function  in  the  tolerance  of  oxidative  stress  (8).  

Prior  findings  that  microcystin  acted  as  a  siderophore  to  sequester  iron  in  low-­‐iron  

conditions  were  dismissed  by  a  recent  study  by  Klein  (15).  This  study  found  that  

similar  strains  of  Microcystis  aeruginosa  have  the  same  amount  of  iron  uptake  

despite  one  of  the  strains  having  a  gene  knockout  for  mcy.  

 Production  of  Photooxidative  Stress  

    High  light  intensity  on  organic  matter  can  lead  to  the  production  of  reactive  

oxygen  species,  which  in  an  aquatic  environment  leads  to  an  increase  of  hydrogen  

peroxide  (H2O2)  concentration  (7).  Hydrogen  peroxide,  a  strong  oxidizing  agent  is  

Page 18: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  8  

particularly  damaging  to  enzymes  involved  in  photosynthesis  and  the  Calvin  Cycle,  

thereby  leading  to  an  increase  in  stress  on  aquatic  organisms  (43).  Hydrogen  

peroxide  has  also  been  shown  to  disrupt  the  cellular  membrane,  as  well  as  cause  

atypical  DNA  laddering  leading  to  apoptosis  (44).  Absorption  of  high  levels  of  solar  

radiation  increases  the  rate  of  photosynthetic  electron  transport  relative  to  the  rate  

of  electron  consumption  during  CO2  fixation  (32).  The  result  of  this  imbalance  is  

partially  reduced  forms  of  oxygen  (reactive  oxygen  species),  which  are  in  between  

atmospheric  oxygen  (most  oxidized  form)  and  water  (most  reduced  form),  in  terms  

of  redox  state,  such  as  O2-­‐  (7).  These  forms  of  oxygen  can  react  with  water  to  create  

hydrogen  peroxide,  which  is  soluble  in  and  can  cross  the  cellular  membrane.  

Excessive  reactive  oxygen  species  in  cyanobacteria  can  lead  to  photosystem  II  

inactivation,  protein  and  nucleic  acid  damage,  and  therefore  leads  to  growth  

inhibition  and  death  (43).  A  study  by  Ding  et  al.  found  that  exposing  Microcystis  

aeruginosa  cells  to  250  and  325  µM  H2O2  showed  membrane  deformation  and  

partial  disintegration  of  thylakoids  (visualized  with  electron  microscopy).  

Photosynthetic  efficiency,  measured  through  the  ratio  of  variable  fluorescence  to  

maximum  fluorescence,  and  the  maximum  electron  transport  rate,  were  also  

significantly  decreased  after  exposure  to  high  concentrations  of  hydrogen  peroxide  

(44). Zilleges  et  al.  noted  that  microcystin  may  function  in  binding  to  RbcL,  RbcS  and  

Prk  gene  products,  which  are  subunits  of  the  Calvin  Cycle  protein,  RubisCO.  In  

binding  to  RubisCO,  microcystin  may  help  stabilize  it  from  becoming  

oxidized/denatured  during  high  oxidative  (high  light)  conditions  (8).  

   

Page 19: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  9  

Population  Dynamics  

  In  cyanobacterial  bloom  populations,  both  toxic  and  non-­‐toxic  Microcystis  

aeruginosa  strains  can  exist  with  one  another,  but  studies  on  population  dynamics  

have  reported  shifts  in  the  dominance  of  toxic  and  non-­‐toxic  strains  over  a  bloom  

season  (11,  21,  22,  23,  40,  41,  42).  Research  investigating  bloom  population  

dynamics  and  its  causes  is  still  an  active  area  of  research  among  aquatic  microbial  

ecology.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 20: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  10  

 

 

 

 

 

THESIS  STATEMENT  

 

Exposing  Microcystis  aeruginosa  cultures  to  high  light  conditions  induces  greater  

oxidative  stress  to  the  organism,  which  may  be  detected  using  an  adapted  

scopoletin-­‐based  assay.  The  hypothesis  guiding  this  study  is  that  this  photooxidative  

environmental  stress  is  combated  by  the  presence  of  microcystin  and  

peroxiredoxins,  providing  insight  into  the  dominance  of  toxic  strains  over  non-­‐toxic  

strains  in  vivo.  

 

 

 

 

 

 

 

 

 

 

Page 21: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  11  

 

MATERIALS  AND  METHODS  

 Determination  of  Light  Conditions  (Independent  Variable)  

      To  assess  what  intensities  of  light  would  be  effective  to  use  as  high  

light  and  low  light  (control)  conditions,  environmental  data  and  prior  studies  were  

consulted.  Microcystis  aeruginosa  strain  PCC  7806  has  been  found  to  grow  optimally  

in  light  with  photosynthetically  active  radiation  (PAR)  value  at  40  μmol  of  photons  

m−2  s−1.  PAR  values  above  80  μmol  of  photons  m−2  s−1  showed  a  decrease  in  the  

strain's  normal  growth  rate  (9).  Another  study  used  values  of  20  μmol  of  photons  

m−2  s−1  to  represent  control  light  conditions,  and  noted  significant  stress  on  growing  

cultures  at  a  PAR  value  of  300  μmol  of  photons  m−2  s−1  (1).  For  this  study,  a  PAR  of  

30  μmol  of  photons  m−2  s−1  was  selected  to  use  as  low  light  conditions,  and  300  μmol  

of  photons  m−2  s−1  was  selected  to  use  as  high  light  treatment.  The  rationale  was  to  

have  the  low  light  treatment  reflect  normal  Microcystis  aeruginosa  growth,  which  

would  represent  a  scientific  control.  The  high  light  PAR  was  chosen  to  induce  

significant  stress  on  the  actively  growing  cultures  and  to  use  enough  intensity  of  

light  for  the  assessment  of  the  generation  of  photooxidative  stress  produced  by  light  

on  organic  matter.  To  achieve  these  values,  a  light  bank  was  set  up  using  fluorescent  

bulbs.  Using  a  light  meter,  the  distance  between  the  light  bulbs  and  the  cultures  to  

be  grown  in  flasks  was  adjusted  to  achieve  desired  light  intensities.  The  tops  of  the  

flasks  for  the  low  light  treatment  were  placed  approximately  40  centimeters  from  

the  tops  of  the  light  bank  and  tops  of  the  flasks  for  the  high  light  treatment  were  

placed  10  centimeters  from  the  light  bank.  These  distances  provided  the  PARs  

Page 22: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  12  

desired  for  use  in  this  experiment.  The  light  banks  were  set  on  a  timer  to  achieve  12  

hours  of  light  and  12  hours  of  darkness,  to  simulate  natural  conditions  and  to  allow  

the  cultures  to  carry  out  a  normal  cycle  of  photosynthesis  and  cellular  respiration  

per  day.  

 Selection  of  Strains  

      Two  toxic  strains  and  two  non-­‐toxic  strains  of  Microcystis  aeruginosa  

were  selected  for  this  study.  The  strains  used  were:  UTEX  2667  and  CPCC  299  

(toxic)  and  PCC  7005  and  UTEX  2386  (non-­‐toxic).  These  strains  were  obtained  from  

stock  cultures  maintained  in  the  Dreher  laboratory.  Strains  were  selected  based  on  

their  availability  to  use  in  the  experiment,  and  to  also  represent  strains  of  

Microcystis  aeruginosa  from  different  geographical  locations.  UTEX  2667  and  UTEX  

2386  are  culture  strain  from  a  collection  at  University  of  Texas  at  Austin  originally  

isolated  from  Little  Rideau  Lake,  Ontario,  Canada.  PCC  7005  was  obtained  from  the  

Pasteur  Culture  Collection.  

 Establishment  of  Log  (Exponential  Phase)  Growth  

    In  order  to  use  actively  growing  cells  in  exponential  phase  for  this  

experiment,  samples  of  UTEX  2667,  CPCC  299,  PCC  7005,  and  UTEX  2386  were  

taken  from  stock  cultures  and  transferred  to  sterile  75-­‐ml  Corning  plastic  flasks  

containing  BG11  medium  (10).  These  cells  were  grown  at  standard  conditions  of  23°  

Celsius  and  a  PAR  of  30  μmol  of  photons  m−2  s−1.  Cell  density  was  assessed  at  1,  3,  5  

and  7-­‐day  time  points  and  plotted  to  visualize  the  growth  curve  of  the  strains.  This  

Page 23: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  13  

was  done  using  a  hemocytometer  counting  procedure  for  Microcystis  aeruginosa.  On  

day  7,  the  cells  of  all  four  strains  were  determined  to  be  in  log  (exponential  growth)  

and  were  deemed  suitable  to  transfer  and  use  for  further  experimentation.  Log  

(exponential  growth)  was  assessed  through  a  visual  assessment  of  the  curve  made  

from  plotting  cellular  density  over  time.  

 Growing  Conditions  

    For  the  low  light  and  high  light  treatments  on  UTEX  2667,  CPCC  299,  PCC  

7005,  and  UTEX  2386,  the  initial  cell  density  for  Day  1  starting  values  was  

established  by  transferring  cells  from  log  phase  growth  to  new  BG11  medium  in  75-­‐

mL  Corning  plastic  flasks.  This  was  done  by  establishing  the  cellular  density  of  the  

transferrant  through  hemocytometer  counting.  Once  cellular  density  values  of  the  

log  phase  cells  were  determined,  a  volume  of  cell  suspension  was  removed  via  

pipette.  Culture  samples  of  60  ml  with  a  cellular  density  of  4.0  x  106  cells/ml  were  

achieved  though  dilution  of  the  log  phase  cells.  This  was  the  starting  density  used  in  

the  low  and  high  light  experiment.  It  was  important  that  cell  cultures  used  in  the  

experiment  began  at  the  same  cellular  density  so  that  changes  in  growth  over  the  

course  of  the  experiment  could  be  more  readily  compared.  

 Measurement  of  Photo-­induced  Oxidation  (Scopoletin  Assay)  

    To  measure  the  amount  of  photooxidation  that  occurred  as  a  result  of  the  

high  light  treatment,  a  special  procedure  involving  scopoletin  had  to  be  adapted.  

The  scopoletin  procedure  was  used  because  no  formal  scientific  instruments  could  

Page 24: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  14  

be  obtained  to  measure  hydrogen  peroxide  concentration  in  solution.  Furthermore,  

there  is  no  known  procedure  that  has  been  described  using  scopoletin  to  study  

hydrogen  peroxide  concentration  in  samples  of  cyanobacteria.  As  a  result,  the  

procedure  used  in  this  experiment  was  an  adaptation  of  a  procedures  published  by  

Kieber  and  Corbett  (33,  17).  Kieber  et  al.  studied  hydrogen  peroxide  production  in  

natural  waters  from  samples  collected  from  Paint  Branch,  a  stream  in  Maryland  

(33).  Scopoletin  can  be  used  to  measure  hydrogen  peroxide  because  scopoletin  is  a  

naturally  fluorescent  substrate.  Horseradish  peroxidase  catalyzes  the  oxidation  of  

scopoletin  by  hydrogen  peroxide,  therefore  decreasing  scopoletin’s  fluorescence  

(33).  A  borate  buffer  stops  the  reaction  so  that  the  fluorescence  can  be  measured  by  

a  fluorometer  at  a  wavelength  that  is  able  to  detect  scopoletin  fluorescence  (33).  

Therefore  scopoletin’s  measured  fluorescence  in  the  assay  is  inversely  proportional  

to  the  amount  of  hydrogen  peroxide  present  in  the  sample  (17).  In  this  experiment,  

60  μL  of  sample  was  added  to  20  μL  of  0.2  M  sodium  acetate  /  1  nM  EDTA,  pH  4.7.  

10  μL  of  horseradish  peroxidase  (30  μg/ml)  was  added,  followed  by  10  μL  

scopoletin  (0.04  mM,  770  ng/ml).  The  reaction  was  incubated  for  10  minutes,  and  

100  μL  of  0.15  M  potassium  borate,  pH  10,  was  used  to  stop  the  reaction.  The  assay  

was  performed  in  a  96  well  black  Corning  plate  with  a  clear  bottom.  The  

fluorescence  was  read  in  a  Tecan  Infinite  200  plate  reader  (with  fluorometer  

function)  at  an  excitation  wavelength  of  395  nm,  and  an  emission  wavelength  of  470  

nm,  at  a  gain  of  150.  A  standard  curve  of  scopoletin  fluorescence  was  generated  

using  known  concentrations  of  hydrogen  peroxide  that  were  prepared  via  serial  

Page 25: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  15  

dilutions  (2.0  μM,  1.0  μM,  500  nM,  250  nM,  100  nM,  50  nM  H2O2).  This  curve  

provided  a  reference  for  experimental  values  to  be  deduced.  

 Cell  Counting  Procedure       Cell  density  at  various  time  points  during  the  trials  was  measured  by  using  a  

light  microscope  and  a  hemocytometer  slide.  This  is  a  common  method  for  assessing  

cyanobacterial  concentrations  in  samples.  Because  of  Microcystis  aeruginosa’s  deep  

pigment,  no  staining  was  needed  to  view  the  cells  under  the  microscope.  Cells  were  

counted  in  a  grid  in  which  each  square  represents  a  certain  volume,  in  this  case  0.1  

mm3.  For  statistical  accuracy,  if  cells  were  positioned  on  the  gridlines  of  the  

counting  field,  they  were  only  counted  on  two  of  the  four  sides.  An  equation  

(Equation  1)  could  be  used  to  calculate  cell  density  (cells/ml)  based  on  the  average  

number  of  cells  counted  in  a  0.1  mm3  volume.  

 Equation  1.  Cell  Density  Equation  for  Hemocytometer  Counting  

average  cell  count  per  1mm  square  *  2  *  104  =  Viable  cell  count  (cells/ml)      If  the  number  of  counts  exceeded  200  then  a  dilution  of  the  sample  was  done  and  

this  was  considered  in  the  calculations.  If  the  number  of  counts  were  less  than  50,  

then  a  greater  area  of  the  hemocytometer  was  counted  and  this  was  also  reflected  in  

the  calculations.  Cells  were  not  counted  on  two  of  the  four  edges  for  statistical  

accuracy  (Figure  3).  Furthermore,  for  better  statistical  accuracy,  5  grids  on  the  

hemocytometer  were  counted  and  these  values  were  averaged.  Replicate  counts  

using  the  same  procedure  were  also  obtained  for  each  assessment  of  cellular  

density.  

Page 26: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  16  

 

Figure  3.  Enlarged  Grid  of  Hemocytometer  (note:  counting  procedure)  

 

Comparative  Genomics/Proteomics  to  Identify  Presence  and  Function  of  Peroxiredoxin  Genes    

  Despite  several  studies  done  on  proposed  mechanisms  on  how  Microcystis  

aeruginosa  deals  with  oxidative  stress,  none  of  these  studies  have  investigated  if  

peroxiredoxins  are  involved  in  Microcystis  aeruginosa’s  stress  response.  2-­‐cys  

peroxiredoxin  has  been  studied  as  a  possible  protein  that  functions  in  the  oxidative  

stress  response  in  Listeria  monocytogenes.  (34)  The  prevalence  of  peroxiredoxin  

genes  was  assessed  in  different  strains  of  Microcystis  aeruginosa  using  a  genomics  

search  engine  and  a  literature  review  of  peroxiredoxin  function  was  done  to  better  

hypothesize  the  protein’s  role  in  managing  oxidative  stress.    

     

Page 27: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  17  

Evaluation  and  Comparison  of  Environmental  Studies  on  the  Variability  of  Toxic  Potential  of  Microcystis  aeruginosa    

  Several  environmental  studies  focused  on  characterizing  population  

dynamics  in  cyanobacterial  blooms  have  noted  that  many  blooms  experience  

genotypic  structure  shifts  in  population  from  being  heavily  toxic  in  the  beginning  

(having  a  high  percentage  of  microcystin  producing  strains)  to  a  higher  dominance  

of  non-­‐toxin  strains  after  the  bloom’s  peak.  Several  mechanisms  for  this  have  been  

proposed.  A  literature  review  was  done  to  compare  various  findings  among  

different  environmental  studies.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 28: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  18  

RESULTS  AND  DISCUSSION  

Day  1-­14  Growth  of  Toxin  and  Non-­Toxic  Strains  under  High  and  Low  Light       The  14  day  growth  studies  on  UTEX  2667  and  CPCC  299  (toxic)  and  PCC  

7005  and  UTEX  2386  (non-­‐toxic)  strains  all  began  at  the  same  initial  concentration  

of  4.0  x  106  cells/ml  which  were  transferred  from  stock  cultures  containing  cells  in  

log  phase.    In  all  four  of  the  strains  examined,  the  low  light  conditions  produced  a  

greater  amount  of  growth  (assessed  though  Day  14  end  point  growth  values)  than  

the  high  light  conditions  (Figures  4-­‐7).  This  result  was  consistent  with  the  

hypothesis  that  high  light  would  induce  a  greater  level  of  stress  of  the  samples.  The  

high  light  growth  at  day  14  of  UTEX  2667  (toxic)  was  75.53%  of  the  low  light  

growth  value  (Figure  5).  The  high  light  growth  at  day  14  of  CPCC  299  (toxic)  was  

86.72%  of  the  low  light  growth  value  (Figure  6).  For  the  non-­‐toxic  strains,  the  

percentage  of  high  light  growth  compared  to  low  light  growth  was  significantly  less:  

61.82%  for  PCC  7005,  and  56.20%  for  UTEX  2386,  respectively  (Figures  4,  7).  In  is  

noted  in  Zilliges  et  al.  that  microcystin  may  function  in  binding  to  RbcL,  RbcS  and  

Prk  gene  products  that  are  subunits  of  the  Calvin  Cycle  protein,  RubisCO.  In  binding  

to  RubisCO,  microcystin  may  help  stabilize  it  from  becoming  oxidized/denatured  

during  high  oxidative  (high  light)  conditions  (8).  This  mechanism  could  potentially  

provide  insight  into  why  the  toxic  strains  investigated  achieved  higher  high  light  to  

low  light  growth  ratios  than  that  of  the  non-­‐toxic  strains  investigated.  Lastly,  the  

difference  in  growth  rate  between  strains  is  likely  attributable  to  natural  features  

among  strains  (i.e.  some  strains  may  grow  faster  than  others).  These  features  were  

not  the  subject  of  investigation  in  this  study.  

Page 29: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  19  

  It  is  important  to  note  that  innate  genotypic  variations  between  strains  may  

cause  some  strains  to  have  faster  doubling  times  and  a  higher  rate  of  growth  than  

other  strains.  One  concern  about  the  results  is  that  the  growth  of  strains  UTEX  2667  

(Figure  5)  and  CPCC  299  (Figure  6)  is  overall  less  than  strains  PCC  7005  (Figure  4)  

and  UTEX  2386  (Figure  7).  It  may  be  that  each  strain  has  specific  media  

requirements  or  optimal  control  growth  PAR  that  was  different  than  those  used  in  

this  study.  In  this  study  BG11  media  was  used  which  is  a  “complete”  media  for  

growing  cyanobacterial  species,  meaning  that  it  is  not  deficient  in  any  nutrients  for  

Microcystis  aeruginosa’s  normal  metabolism.  The  lighting  conditions  used  in  this  

study  could  also  have  influenced  the  growth  of  the  strains  and  could  be  a  possible  

reason  for  the  lower  growth  rate  of  UTEX  2667  (Figure  5)  and  CPCC  299  (Figure  6).  

As  noted,  some  strains  may  achieve  their  optimal  growth  rate  at  a  different  intensity  

of  light  than  other  strains.  In  this  study  a  PAR  value  of  30  μmol  of  photons  m−2  s−1  

was  used  as  the  control  light  condition;  however  it  may  be  possible  that  strains  

UTEX  2667  and  CPCC  299  grow  better  under  different  PAR  intensities.  Perhaps  a  

different  and  individualized  PAR  “control”  value  is  needed  for  each  strain,  which  

could  allow  for  a  more  valid  comparison  of  the  results  (from  strain  to  strain).    

Further  testing  on  the  strain’s  individualized  growth  patterns  under  different  light  

intensities  would  provide  further  insight  to  clarify  this  potential  shortcoming.  

 

 

Page 30: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  20  

 

Figure  4.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­14.  PCC  7005  -­  "Non-­Toxic"  

 

 

Figure  5.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­14.  PCC  2667  -­  "Toxic"  

 

0.00E+00  5.00E+06  1.00E+07  1.50E+07  2.00E+07  2.50E+07  3.00E+07  3.50E+07  4.00E+07  

0   2   4   6   8   10   12   14   16  

Cell  Density  (cells/ml)  

Day  

Microcystis  aeruginosa  Strain  PCC  7005  -­  "Non-­Toxic"  

LL   HL  

0.00E+00  5.00E+06  1.00E+07  1.50E+07  2.00E+07  2.50E+07  3.00E+07  3.50E+07  4.00E+07  

0   2   4   6   8   10   12   14   16  

Cell  Density  (cells/ml)  

Day  

Microcystis  aeruginosa  Strain  UTEX  2667  -­  "Toxic"  

LL   HL  

Page 31: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  21  

 

Figure  6.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­14.  CPCC  299  -­  "Toxic"  

 

 

Figure  7.  Growth  Curve  (High  Light  /  Low  Light)  Days  1-­14.  UTEX  2386  -­  "Non-­Toxic"  

 

   

0.00E+00  5.00E+06  1.00E+07  1.50E+07  2.00E+07  2.50E+07  3.00E+07  3.50E+07  4.00E+07  

0   2   4   6   8   10   12   14   16  

Cell  Density  (cells/ml)  

Day  

Microcystis  aeruginosa  Strain  CPCC  299  -­  "Toxic"  

LL   HL  

0.00E+00  5.00E+06  1.00E+07  1.50E+07  2.00E+07  2.50E+07  3.00E+07  3.50E+07  4.00E+07  

0   2   4   6   8   10   12   14   16  

Cell  Density  (cells/ml)  

Day  

Microcystis  aeruginosa  Strain  UTEX  2386  -­  "Non-­Toxic"  

LL   HL  

Page 32: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  22  

H2O2  Concentration  Determination  using  Adapted  Scopoletin  Assay  

 

Table  1.  Scopoletin  Assay  for  Determination  of  H2O2  Concentration  -­  Day  11*  

Sample   Fluorescence  

Experimentally  Derived  

Concentrations  of  H2O2  (nM)  

Catalase-­‐treated  Water  (Control)  

20504  

BG-­‐11  (Media)   19932  

2.0  μM  H2O2   4309  1.0  μM  H2O2   12645  500  nM  H2O2   16102  250  nM  H2O2   18584  100  nM  H2O2   19120  50  nM  H2O2   20073  

               

PCC  7005  HL   18960   174.30  PCC  7005  HL/S   18103   281.69  

PCC  7005  LL   19168   148.24  PCC  7005  LL/S   18240   264.53  

UTEX  2667  HL   19108   155.76  

UTEX  2667  LL   19309   130.57  

CPCC  299  HL   19199   144.36  CPCC  299  LL   19403   118.79  UTEX  2386  HL   19202   143.98  

UTEX  2386  LL   19337   127.06  

*average  background  fluorescence  subtracted  

 

 

Page 33: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  23  

 

Table  2.  Scopoletin  Assay  for  Determination  of  H2O2  Concentration  -­  Day  14*  

Sample   Fluorescence  

Experimentally  Derived  

Concentrations  of  H2O2  (nM)  

Catalase-­‐treated  Water  (Control)  

20104  

BG-­‐11  (Media)   19787  

2.0  μM  H2O2   4109  1.0  μM  H2O2   12365  500  nM  H2O2   16350  250  nM  H2O2   18102  100  nM  H2O2   18887  50  nM  H2O2   19666  

               

PCC  7005  HL   19201   108.12  PCC  7005  HL/S   18374   212.82  

PCC  7005  LL   19377   85.84  PCC  7005  LL/S   18689   172.94  

UTEX  2667  HL   19200   108.25  

UTEX  2667  LL   19433   78.75  

CPCC  299  HL   18855   151.92  CPCC  299  LL   19116   118.88  UTEX  2386  HL   18795   159.52  

UTEX  2386  LL   19082   123.18  

*average  background  fluorescence  subtracted  

 

 

Page 34: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  24  

 

Figure  8.  Scopoletin  Assay  Standard  Curve  -­  Growth  Day  11  

     

 

Figure  9.  Scopoletin  Assay  Standard  Curve  -­  Growth  Day  14  

 

y  =  -­‐7.8987x  +  20055  

0  

5000  

10000  

15000  

20000  

25000  

0   500   1000   1500   2000   2500  

Units  Fluorescence  

H2O2  Concentration  (nM)  

Scopoletin  Assay  Standard  Curve  -­  Growth  Day  11  

y  =  -­‐7.9803x  +  20351  

0  

5000  

10000  

15000  

20000  

25000  

0   500   1000   1500   2000   2500  

Units  Fluorescence  

H2O2  Concentration  (nM)  

Scopoletin  Assay  Standard  Curve  -­  Growth  Day  14  

Page 35: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  25  

Table  3.  Difference  in  H2O2  Concentration  between  High  Light  and  Low  Light  (nM)  -­  Growth  Day  11  

Strain  Difference  in  H2O2  

Concentration  between  HL  and  LL  (nM)  

PCC  7005  (MC-­‐)   26.06  UTEX  2667  (MC+)   25.19  CPCC  299  (MC+)   25.56  UTEX  2386  (MC-­‐)   16.92  

 

Table  4.  Difference  in  H2O2  Concentration  between  High  Light  and  Low  Light  (nM)  -­  Growth  Day  14  

Strain  Difference  in  H2O2  

Concentration  between  HL  and  LL  (nM)  

PCC  7005  (MC-­‐)   22.28  UTEX  2667  (MC+)   29.50  CPCC  299  (MC-­‐)   33.04  UTEX  2386  (MC+)   36.34  

 

  The  scopoletin  assay  allowed  for  experimental  H2O2  concentrations  to  be  

derived.  Fluorescence  values  for  the  samples  were  read  in  a  fluorometer,  which  

quantified  the  amount  of  fluorescence  in  the  sample.  A  standard  curve  was  

generated  so  that  experimental  values  could  be  derived  (Figures  8  and  9).  When  

plotted,  the  standard  curve  gave  values  that  followed  a  linear  pattern.  Using  the  

equation  of  this  line,  the  experimental  concentrations  were  determined  by  

calculation.    The  values  listed  in  Tables  1  and  2  represent  the  average  of  two  

replicates.  The  average  background  fluorescence  of  the  plate  was  subtracted  to  

ensure  that  values  represented  only  the  fluorescence  of  the  scopoletin  in  the  assay.    

      The  results  of  the  scopoletin  assay  indicate  that  on  Day  11  toxic  and  non-­‐

toxic  high  light  samples  had  a  greater  H2O2  concentration  than  low  light  samples  

Page 36: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  26  

(between  16.92  and  26.06  nM  higher)  (Table  3).  A  similar  result  was  obtained  by  

Day  14  samples;  the  high  light  samples  showed  a  greater  H2O2  concentration  than  

low  light  samples  (between  22.28  and  36.34  nM  higher)  (Table  4).  These  results  

were  consistent  with  the  hypothesis  that  exposing  the  cell  cultures  to  high  light  

would  induce  the  generation  of  more  reactive  oxygen  species  than  exposing  them  to  

low  light  (due  to  the  overstimulation  of  the  electron  transport  chain  machinery  

during  photosynthesis,  which  creates  reactive  oxygen  species)  (7).  These  results  are  

also  consistent  with  findings  by  Cooper  et  al.  in  a  study  that  exposed  natural  waters  

to  high  light  and  observed  similarly  increased  concentrations  of  H2O2  (20).  The  

experimentally  derived  values  are  also  similar  to  those  investigated  in  a  study  by    

Leunert  et  al.  (16).  This  study  had  hypothesized  that  Day  14  derived  H2O2  

concentrations  would  be  greater  than  Day  11  derived  concentrations  (due  to  the  

increase  in  organic  matter  caused  by  an  increase  in  cellular  density).  However,  this  

particular  hypothesis  is  not  confirmed  by  the  results,  as  several  of  the  strain’s  Day  

11  H2O2  concentrations  are  higher  than  their  respective  values  at  Day  14.    

 

 

 

 

 

 

 

 

Page 37: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  27  

Investigation  of  2-­cys  Peroxiredoxin  

    Through  background  research  on  the  effects  of  oxidative  stress  on  cellular  

function,  it  was  expected  that  peroxiredoxins  play  a  role  in  an  organism’s  ability  to  

control  intracellular  peroxide  levels.  Peroxiredoxins  function  by  having  a  conserved  

“peroxidatic  cysteine”(CP)  residue  which  readily  reduces  peroxide  substrates.  The  

mechanism  is  as  follows:  when  a  peroxidatic  cysteine  is  oxidized  by  a  peroxide,  a  

conformation  change  occurs  around  the  active  site  of  the  enzyme,  which  allows  a  

free  thiol  to  form  a  disulfide  bond  with  the  CP  (27).  The  class  2-­‐cys  prx  refers  to  a  

peroxiredoxin  in  which  the  thiol  group  is  on  the  peroxiredoxin  (27).  

  Despite  extensive  literary  research,  there  was  little  to  no  published  work  of  the  

role  of  peroxiredoxins  specific  to  Microcystis  aeruginosa.  A  putative  sequence  of  2-­‐

cys-­‐prx  was  annotated  in  the  complete  genome  sequence  of  Microcystis  aeruginosa  

TAIHU98,  a  nontoxic  strain  isolated  from  Taihu  Lake  in  China  (Table  5)  (19).  A  

BlastP  search  revealed  this  2-­‐cys  peroxiredoxin  “BAS1”  was  present  in  14  other  

partially  or  wholly  sequence  strains  of  Microcystis  aeruginosa  (Figure  10).    

 Table  5.  Amino  Acid  Sequence  of  2-­cys  Peroxiredoxin  (BAS1)  (19)  

>tr|L7E2N1|L7E2N1_MICAE  2-­‐Cys  peroxiredoxin  BAS1  OS=Microcystis  

aeruginosa  TAIHU98  GN=O53_2506  PE=4  SV=1  

MTAEGCLRVGQAAPDFTATAVFDQEFKTIKLSDYRGKYVVLFFYPLDFTFVCPTEITAFS  DRVSEFASINTEILGVSVDSEFAHLAWIQTERKSGGVGDVAYPLVSDLKKEISTAYNVLD  PDAGVSLRGLFIIDKEGVIQHATINNLSFGRSVDETLRTLKAIQYVQSHPDEVCPAGWQE  GDATMVPDPVKSKVYFAAV    

 

Page 38: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  28  

 

Figure  10.  BlastP  Search  of  BAS1  (2-­cys  Prx)  in  Complete  and  Partially  Complete  Genomes  of  Microcystis  aeruginosa  Strains  

 A  study  on  assessing  the  presence  of  putative  peroxiredoxins  among  the  phylum,  

Cyanobacteria,  found  that  Microcystis  aeruginosa  strain  NIES-­‐843  contains  seven  

putative  prx  genes  (35).  The  functions  of  these  genes  and  their  expression  profile  

have  not  been  fully  investigated.  Two  separate  studies  on  Synechocystis  sp.  PCC  

6803  and  Synechococcus  sp.  PCC  7942  found  that  the  disruption  of  genes  encoding  

2-­‐cys  Prx  affected  the  strains’  tolerance  to  oxidative  stress  (25,  26).  A  more  recent  

study  looked  at  differences  in  the  transcriptome  between  night-­‐time  and  day-­‐time  

periods  in  a  strain  of  Microcystis  aeruginosa  derived  from  an  environmental  sample  

in  Singapore  (16).  The  results  of  this  study  indicated  that  a  gene  for  peroxiredoxin  

was  transcribed  at  a  higher  rate  during  daytime  hours  than  at  night-­‐time  hours.  This  

suggests  that  the  transcription  of  peroxiredoxin  genes  may  be  related  to  the  

presence  of  light  or  when  the  cell  is  actively  photosynthesizing.  Overall,  it  appears  

that  the  function  of  2-­‐cys  peroxiredoxin  in  Microcystis  aeruginosa  is  a  topic  in  need  

of  further  investigation.  

Page 39: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  29  

 Literature  Review  of  Population  Dynamics   in  Environmental   Studies   (Bloom  Shift  from  Toxic  to  Non-­Toxic  Strain  Dominance)           Despite  knowledge  of  biotic  and  abiotic  factors  that  affect  Microcystis  

aeruginosa’s  growth  (nutrient  availability,  temperature,  salinity,  etc.),  the  causes  for  

temporal  changes  in  genotypes  have  yet  to  be  elucidated.  A  2007  study  by  Kardinaal  

et  al.  was  one  of  the  first  publications  to  report  on  a  genotypic  shift  from  toxic  to  

non-­‐toxic  dominance  over  the  course  of  a  bloom.  This  study  investigated  

hypertrophic  lakes  in  the  western  region  of  The  Netherlands  (22).  Populations  were  

monitored  using  the  rRNA  of  the  internal  transcribed  spacer  (ITS)  region  in  

combination  with  denaturing  gradient  gel  electrophoresis  (DGGE).  For  Microcystis  

aeruginosa,  microcystin-­‐producing  and  non-­‐producing  colonies  were  separated  into  

different  rRNA-­‐ITS  classes.  The  results  of  the  study  showed  a  seasonal  succession  of  

the  Microcystis  genotype  in  all  three  lakes,  with  a  stronger  presence  of  non-­‐toxic  

genotypes  after  the  peak  of  the  bloom  (towards  the  end  of  the  season).  Despite  

these  findings,  the  study  did  not  investigate  a  mechanism  for  the  observed  shift.  A  

2010  study  by  Bozarth  et  al.  also  observed  Microcystis  strain  successions  within  a  

single  bloom  period  with  surface  samples  from  the  Copco  Reservoir  in  Northern  

California  from  a  2007  bloom.  These  samples  were  analyzed  genetically  by  

sequencing  clone  libraries  made  with  amplicons  of  the  internal  transcribed  spacer  

of  the  rRNA  operon  (ITS),  cpcBA,  and  mcyA.  The  study  reached  similar  findings  as  in  

the  study  by  Kardinaal  et  al.  and  also  noted  that  the  cause  of  this  shift  is  not  fully  

understood  (41).  Based  on  these  studies,  it  appears  that  a  common  pattern  in  

Microcystis  aeruginosa  blooms  is  a  shift  from  toxic  to  non-­‐toxic  dominance  mid-­‐

Page 40: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  30  

season.  Here  we  compare  and  contrast  various  published  work  on  the  topic  (Figure  

11).  

 

Figure  11.  A  Concept  Map  Depicting  the  Various  Publications  used  in  this  Literature  Review  and  their  Reported  Mechanism  for  the  Observed  Genotypic  Shift  (Toxic  to  Non-­Toxic)  over  a  Bloom  Period  

 Misson,  Benjamin,  and  Delphine  Latour.  "Vertical  Heterogeneity  of  Genotypic  Structure  and  Toxic  Potential  within  Populations  of  the  Harmful  Cyanobacterium  Microcystis  aeruginosa."         Mission  et  al.  studied  Microcystis  aeruginosa-­‐dominated  blooms  in  lakes  

Grangent  and  Villerest,  two  artificial  dam  reservoirs  of  the  Loire  River  (France)  (11).  

The  researchers  collected  samples  from  three  blooms  at  various  depths:  −0.5m,  

−2.5m,  −5m,  −7.5m,  −10m,  −15m,  -­‐20  m,  −25m  and  −30m.  Cell  enumeration  was  

done  by  counting  under  a  light  microscope.    A  quantitative  qPCR  assay  was  

developed  to  amplify  the  mcyB  gene,  which  encodes  an  essential  protein  needed  for  

Page 41: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  31  

microcystin  biosynthesis.  This  method  allowed  for  the  estimation  of  the  proportion  

of  toxic  cells  of  Microcystis  aeruginosa  in  the  sample.  The  results  of  the  study  found  

that  blooms  of  Microcystis  aeruginosa  can  differ  in  genotype  and  toxic-­‐potential  in  

the  vertical  (depth)  dimension.  This  vertical  genotypic  variation  occurred  

predominantly  in  shallower  depths  of  water.  Interestingly,  the  researchers  found  

that  vertical  differences  in  genotype  were  sometimes  greater  than  horizontal  

differences  in  genotype  (site  samples  at  various  locations  at  the  same  depth).  The  

researchers  also  found  that  over  the  course  of  a  bloom  season,  genotypic  shifts  

occur  among  strains  occupying  certain  depths  of  the  water  column.    The  researchers  

believed  a  driving  factor  behind  the  heterogeneity  and  observed  shifts  is  the  light  

attenuation  in  the  deeper  parts  of  the  water  column.  They  concluded  that  certain  

non-­‐toxic/toxic  strains  are  better  suited  for  growth  at  different  light  intensities  than  

others,  and  that  depending  on  environmental  conditions,  both  toxic  and  non-­‐toxic  

strains  undergo  light-­‐induced  taxis  by  regulating  the  volume  of  their  gas  vacuole.  

The  study  also  noted  a  potential  concern  for  environmental  research  work  on  

population  dynamics  in  cyanobacterial  blooms,  primarily  concerning  sampling  

method.  The  study  suggests  that  if  samples  are  collected  from  inconsistent  depths  

over  the  course  of  a  bloom,  the  innate  vertical  genotypic  variation  within  the  water  

column  may  produce  sample  isolates  with  different  strains,  thus  giving  the  false  

illusion  that  genotypic  succession  is  occurring.  The  study  alluded  to  the  possibility  

that  improper  sampling  technique  could  skew  the  findings  of  other  studies  that  have  

reported  observed  genotypic  succession.  This  is  an  important  finding  because  it  

provides  a  previously  unidentified  aspect  for  assessing  prior  studies,  and  provides  

Page 42: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  32  

further  emphasis  on  the  importance  of  sampling  depth  for  future  studies  on  the  

topic.  

 Zhu,  Lin  et  al.  "Ecological  dynamics  of  toxic  Microcystis  spp.  and  microcystin-­degrading  bacteria  in  Dianchi  Lake,  China."         A  study  by  Zhu  et  al.  investigated  Dianchi  Lake,  a  freshwater  lake  located  in  

Yunnan  Province,  China  (23).  Samples  were  taken  between  June  2010  and  

December  2011  at  three  sampling  sites  (monthly).  Quantitative-­‐PCR  was  used  to  

measure  changes  in  the  population  of  toxic  and  non-­‐toxic  Microcystis  aeruginosa  

over  the  bloom  period.  qPCR  was  also  used  to  study  the  expression  of  mlrA,  a  gene  

in  microcystin-­‐degrading  bacteria  (class  Alphaproteobacteria,  order  

Sphingomonadales)  that  encodes  an  enzyme  responsible  for  the  hydrolytic  cleavage  

of  the  cyclic  structure  of  microcystins.  The  results  of  the  study  indicated  that  peaks  

in  the  microcystin  concentration  were  apparent  in  September  2010  and  October  

2011,  which  was  followed  by  peaks  in  the  mlrA  gene  copy  numbers  of  MC-­‐degrading  

bacteria.  The  peak  in  mlrA  gene  copy  number  appeared  one  month  after  both  annual  

peaks  in  microcystin  (October  2010  and  November  2011).  September  2010  

concentrations  of  microcystin  were  1.33  g/liter  at  site  D13,  1.3  g/liter  at  site  D22,  

and  1.63  g/liter  at  site  D24;  October  2011  concentrations  were  1.421  g/liter  at  site  

D13,  1.39  g/liter  at  site  D22,  and  1.53  g/liter  at  site  D24).  The  study  found  the  

proportion  of  toxic  Microcystis  cells  in  the  lake  varied  from  93.8%  to  2.9%,  reaching  

a  maximum  in  June  and  July,  and  a  low  in  September  to  April.    The  researchers  

found  the  largest  Microcystis  blooms  always  occurred  from  June  to  December  (108  

copies/liter  to  109  copies/liter),  while  the  smallest  blooms  occurred  from  February  

Page 43: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  33  

to  April  (106  copies/liter).  The  non-­‐toxic  strain  appeared  to  be  dominant  between  

September  and  December.  One  possible  issue  with  this  study  is  the  amount  of  time  

elapsed  between  samples  which  may  not  allow  for  the  determination  of  actual  

“peak”  values  as  the  study  indicated.  These  results  of  this  study  are  important  for  

inclusion  in  this  literature  review  because  they  provide  the  basis  for  further  

discussion.  While  it  is  noted  that  peaks  in  microcystin-­‐degrading  bacteria  numbers  

followed  peaks  in  microcystin  quantity,  the  research  fails  to  provide  insight  into  the  

root  cause  of  microcystin  release.  Microcystin  release  in  the  extracellular  

environment  is  typically  highest  when  cell  death  and  apoptosis  occurs.  This  

research  fails  to  find  any  support  that  microcystin-­‐degrading  bacteria  are  associated  

with  cell  apoptosis  or  the  observed  genotypic  shift  from  toxic  to  non-­‐toxic  strains  

during  bloom  periods.  This  research  may  be  of  more  significance  if  the  MC-­‐

degrading  bacterium  cited  in  the  study  (genus  Sphingopyxis)  was  found  to  be  a  

predatory  bacterium.  Predatory  bacteria  are  bacteria  which  are  able  to  infect  and  

feed  off  of  other  live  bacterial  cells.  However,  further  investigation  into  predatory  

and  potentially  predatory  signatures  (based  on  certain  genomic  features)  could  not  

confirm  or  deny  that  any  species  in  genus  Sphingopyxis  are  predatory  in  nature  (47).    

 Van  Wichelen,  Jeroen  et  al.  “Strong  effects  of  amoebae  grazing  on  the  biomass  and  genetic  structure  of  a  Microcystis  bloom  (Cyanobacteria).”         In  a  research  publication  by  Van  Wichelen  et  al.,  a  two-­‐year  study  was  done  

on  a  small  hypertrophic  pond  (37).  Microcystis  populations  were  enumerated  

through  microscopy  and  DGGE  of  the  ITS  rDNA  region  was  used  to  assess  

population  dynamics.  ITS-­‐DGGE  allows  for  the  differentiation  of  closely  related  

Page 44: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  34  

organisms.  This  high-­‐resolution  method  allows  for  the  monitoring  of  population  

dynamics,  by  giving  unique  DGGE  profiles  even  in  comparison  to  closely  related  

organisms.  The  study  revealed  that  amoebae  grazing  affected  the  population  

dynamics  of  Microcystis  and  resulted  in  significant  bloom  biomass  reduction  in  both  

years  of  the  study.  Grazing  experiments  revealed  that  amoebae  (Genus  Protozoa)  

had  a  preference  for  Microcystis  aeruginosa  compared  to  Microcystis  viridis.  This  was  

shown  to  drive  a  shift  in  one  of  the  bloom  years  from  Microcystis  aeruginosa  

dominance  to  Microcystis  viridis  dominance.  The  importance  of  this  study  is  the  

revelation  that  grazers  may  have  a  preference  for  whether  or  not  the  bloom  is  

producing  toxin.  This  may  have  implications  in  genotypic  shifts  in  blooms.    

 Gobler,  C.  J.  et  al.  "Interactive  influences  of  nutrient  loading,  zooplankton  grazing,  and  microcystin  synthetase  gene  expression  on  cyanobacterial  bloom  dynamics  in  a  eutrophic  New  York  lake."           A  study  by  Gobler  et  al.  evaluated  the  effects  of  zooplankton  

(mesozooplankton  and  microzooplankton)  and  the  population  dynamics  and  toxin  

production  of  a  bloom  in  Lake  Agawam,  a  eutrophic  lake  in  New  York  (40).  This  

bloom  was  mainly  dominated  by  toxic  Microcystis  aeruginosa  in  its  onset.  The  

research  team  observed  that  nitrogen  levels  enhance  the  growth  rate  and  toxin  

levels  produced  by  a  toxic-­‐strain  dominated  bloom.  The  team  also  observed  the  

mesoplankton  grazing  was  unable  to  reduce  the  bloom  size  when  cell  numbers  were  

above  a  threshold  of  8.0  x  104  cells/mL.  The  team  proposed  that  both  microcystin  

synthase  gene  expression  and  high  cell  densities  under  nutrient  loading  are  

mechanisms  to  deter  grazing  by  zooplankton.  The  team  observed  that  by  late  

Page 45: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  35  

summer,  and  early  fall  there  was  a  demise  in  the  bloom,  caused  by  nitrogen-­‐

limitation  which  causes  bloom  cells  to  go  into  stationary  phase.  The  team  observed  

that  cells  in  this  stage  of  growth  have  lower  expression  of  the  microcystin  synthase  

gene,  which  leads  them  to  be  more  vulnerable  to  grazing  by  mesozooplankton  

leading  to  a  rapid  decline  in  the  bloom.  This  decline  could  provide  a  niche  for  non-­‐

toxic  Microcystis  aeruginosa  to  fill  and  dominate.  Despite  this,  the  research  fails  to  

address  what  mechanisms  the  non-­‐toxic  strains  have  to  inhibit  mesoplankton  

grazing.  

  The  study  by  Gobler  et  al.  differs  with  the  findings  of  another  study  by  Li  et  

al.  that  investigated  nitrogen  concentration’s  effects  on  population  dynamics.  This  

study  used  a  quantitative  (real-­‐time)  PCR  assay  of  the  phycocyanin  intergenic  

spacer  (PC-­‐IGS)  and  mcyD  to  study  population  dynamics  in  2009  and  2010  samples  

from  Lake  Taihu  (China)  (36).  The  findings  of  this  study  were  that  the  abundance  of  

toxic  and  potentially-­‐toxic  (strains  with  the  microcystin  gene  cluster  in  their  

genome)  had  a  negative  correlation  with  total  nitrogen  levels.    

 Yoshida,  Mitsuhiro  et  al.  "Ecological  dynamics  of  the  toxic  bloom-­forming  cyanobacterium  Microcystis  aeruginosa  and  its  cyanophages  in  freshwater."    

  A  study  by  Yoshida  et  al.  sought  to  investigate  the  role  of  cyanophages  on  M.  

aeruginosa  communities  in  samples  isolated  from  Lake  Mikata  (Japan)  (21).  The  

same  site  was  sampled  each  month  from  April  to  October,  2006.  To  quantify  total  M.  

aeruginosa,  a  qPCR  amplification  of  the  phycocyanin  intergenic  spacer  (PC-­‐IGS)  was  

used  (present  in  all  strains  of  Microcystis  aeruginosa).  A  second  qPCR  assay  was  

used  to  quantitatively  detect  potentially  infectious  Ma-­‐LMM01  cyanophages  using  

Page 46: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  36  

the  primers  targeting  the  viral  sheath  protein-­‐encoding  gene  (g91).  The  study  also  

used  qPCR  to  quantify  the  proportion  of  one  of  the  components  of  the  microcystin  

synthetase  gene  (mcyA)  to  assess  the  abundance  of  toxic  strains  of  Microcystis  

aeruginosa.  The  results  of  the  study  indicated  that  as  cyanophage  abundance  

increased,  there  was  a  temporal  decline  in  total  Microcystis  aeruginosa  abundance.  

The  study  also  noted  that  mcyA  producing  strains  had  a  greater  abundance  in  April-­‐

August  (>18%)  than  in  September-­‐November  (0.50  to  2.25%).  The  decline  in  mcyA  

strains  coincided  with  a  rise  and  dominance  in  non-­‐toxic  strains  when  the  bloom  

reemerged.  The  data  suggests  that  cyanophages  may  have  induced  the  decline  in  the  

microcystin-­‐producing  subpopulation,  which  allowed  for  the  shift  to  non-­‐toxic  

strain  dominance  in  the  early  fall  months  (September-­‐November).  

Further  Support  for  Cyanophage-­Mediated  Genotypic  Succession  of  Microcystis  aeruginosa  over  a  Bloom  Period           Similar  to  the  findings  of  Yoshida  et  al.,  emerging  research  by  Driscoll  et  al.  

from  the  Dreher  Lab  at  Oregon  State  University  has  proposed  that  a  Microcystis  

infecting  virus  Ma-­‐LMM01  strain  may  be  responsible  for  bloom  collapse  observed  in  

San  Francisco  Delta  watershed  (42).  This  strain  of  Ma-­‐LMM01  is  genetically  similar  

to  the  Ma-­‐LMM01  strain  that  was  first  isolated  by  Yoshida  et  al.  from  2006  samples  

taken  from  Lake  Mikata,  Japan  (21).  Bloom  collapse  may  provide  an  ecological  niche  

for  the  rise  of  another  bloom-­‐forming  cyanobacterial  species.  This  cyanobacterial  

species  could  subsequently  establish  dominance  if  it  has  some  type  of  innate  

resistance  to  the  factor  that  caused  the  demise  of  the  previous  population.  Besides  

the  research  publication  by  Yoshida  et  al.,  the  topic  of  Ma-­‐LMM01  mediated  bloom  

Page 47: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  37  

collapse  is  not  widely  described  in  research  literature  (21).  The  relationship  

between  Ma-­‐LMM01  and  bloom  population  dynamics  is  an  active  area  of  research  in  

the  Dreher  lab.  In  this  study,  samples  collected  for  twelve  weeks  in  2011  and  2012  

were  analyzed  with  quantitative  PCR  to  quantify  populations  from  each  testing  site.  

Samples  from  the  Mildred  Island  site  showed  a  rapid  decline  in  Microcystis  

abundance.  Metagenome  sequencing  of  the  DNA  extracted  before  and  after  the  

bloom  collapse  identified  twelve  putative  phage  genomes  that  were  actively  

infecting  cells  within  the  samples.  One  of  these  genomes  strongly  resembled  virus  

Ma-­‐LMM01.  Further  investigation  showed  that  the  reduction  in  the  quantity  of  the  

Ma-­‐LMM01-­‐like  virus  correlated  with  the  reduction  in  total  Microcystis  cells  after  

the  bloom  demise.  This  research  may  shine  light  on  the  occurrence  of  virus-­‐

mediated  bloom  collapse  and  investigate  a  possible  mechanism  for  genotypic  

succession  in  Microcystis  aeruginosa  blooms.    

 

 

 

 

       

 

 

   

 

Page 48: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  38  

CONCLUSION  

    Rising  global  temperatures,  along  with  anthropogenic  sources  of  aquatic  

pollution  have  led  to  the  eutrophication  of  many  bodies  of  water  across  the  planet.  

As  a  result  of  this,  it  is  predicted  that  the  extent  and  severity  of  cyanobacterial  

blooms  is  set  to  increase,  potentially  affecting  human  health,  recreation,  and  

watershed  condition.  This  study  intended  to  investigate  the  response  of  toxic  and  

non-­‐toxic  strains  of  Microcystis  aeruginosa  to  increased  oxidative  conditions  

induced  by  the  incidence  of  high  light  over  a  14  day  growth  period.  The  results  

indicate  that  UTEX  2667  and  CPCC  299  (toxic  strains)  of  Microcystis  aeruginosa  

were  less  inhibited  by  exposure  to  300  μmol  of  photons  m−2  s−1  (12  light  /  12  hour  

dark  cycle)  than  were  PCC  7005  and  UTEX  2386  (non-­‐toxic  strains).  This  result  is  in  

keeping  with  evidence  that  microcystin  may  play  a  role  in  stabilizing  photosynthesis  

enzymes  such  as  RuBisCO,  which  was  reported  by  Zilliges  et  al.  (8).  This  study  also  

adapted  a  scopoletin  assay  to  measure  the  amount  of  hydrogen  peroxide  produced  

from  exposure  to  high  light,  which  is  caused  by  the  over-­‐excitation  of  electron  

transport  machinery  in  a  mechanism  detailed  by  Kozuleva  et  al.  (7).  The  results  of  

Day  11  and  Day  14  scopoletin  measurements  indicate  that  on  both  days,  the  high  

light  treatments  of  all  samples  produced  a  quantifiable  hydrogen  peroxide  increase  

in  the  range  of  10-­‐9  nM.  These  results  are  consistent  with  findings  that  the  cause  of  

stress  induced  by  high  light  on  cyanobacteria  is  oxidative  in  nature.    

  The  study  included  an  investigation  of  published  scientific  findings  on  2-­‐cys  

peroxiredoxin,  an  enzyme  that  has  been  studied  in  related  species  as  one  that  helps  

the  organism  “cope”  with  increased  levels  of  peroxide  concentrations.  From  this  

Page 49: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  39  

investigation,  it  appears  that  further  investigation  into  2-­‐cys  peroxiredoxin  

expression  by  Microcystis  aeruginosa  under  oxidative  conditions  may  be  fruitful.    

  Lastly  the  study  looked  to  investigate  the  causes  of  genotypic  variation  from  

toxic  to  non-­‐toxic  strains  observed  in  environmental  studies  focused  on  Microcystis  

aeruginosa  dominated  blooms.  Several  different  mechanisms  have  been  proposed.  

These  mechanisms  range  from  cyanophages,  microcystin-­‐degrading  bacteria,  

nutrient  limitation/meszooplankton  grazing,  amoebae  grazing,  to  the  changes  in  

light  intensity  during  a  bloom  season  that  causes  vertical  genotypic  variation.  It  

appears  that  no  clear  consensus  has  been  reached  to  explain  this  phenomenon.  This  

study  demonstrated  that  toxic  and  non-­‐toxic  strains  of  Microcystis  aeruginosa  

respond  differentially  to  high  light,  which  provides  support  to  the  hypothesis  that  

light  intensity  could  play  a  role  in  this  observed  genotypic  succession.  There  is  also  

ongoing  research  on  the  toxic  bloom  collapse  mediated  by  viral  (cyanophage)  

infection,  which  may  provide  further  insight  into  this  phenomenon.  

  The  findings  of  this  study  provide  a  basis  for  the  further  assessment  of  how  

high  light  /  oxidative  conditions  affect  toxic  and  non-­‐toxic  Microcystis  aeruginosa.  As  

a  next  step,  it  would  be  beneficial  to  use  qPCR  to  assess  the  expression  of  2-­‐cys  

peroxiredoxin  under  a  similar  experimental  design  used  in  this  study.  It  would  also  

be  advantageous  to  investigate  whether  Microcystis  aeruginosa  can  respond  to  

oxidative  stress  in  the  presence  of  a  gene  knock  out  for  2-­cys  prx.  In  total,  further  

understanding  of  factors  that  favor  the  growth/inhibition  of  cyanobacteria  and  

Microcystis  aeruginosa-­‐dominated  blooms  may  lead  to  the  development  of  potential  

management  strategies  for  this  pressing  environmental  concern.  

Page 50: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  40  

REFERENCES    

1. Dziallas,  Claudia,  and  Hans-­Peter  Grossart.  2011.  Increasing  oxygen  radicals  and  water  temperature  select  for  toxic  Microcystis  sp.  PloS    one.  6:e25569.  

 2. Vézie,  C.,  et  al.  2002.  Effect  of  nitrogen  and  phosphorus  on  growth  of  toxic  

and  nontoxic  Microcystis  strains  and  on  intracellular  microcystin  concentrations."  Microbial  ecology.  43:443-­‐454.  

 3. Department  of  Health  and  Human  Services  CDC.  2010.  Harmful  Algal  

Blooms:  Environmental  Hazards  and  Health  Effects.  Retrieved  from  US  Center  for  Disease  Control:  http://www.cdc.gov/hab/  

 4. Paerl,  Hans  W.,  Nathan  S.  Hall,  and  Elizabeth  S.  Calandrino.  2011.  

Controlling  harmful  cyanobacterial  blooms  in  a  world  experiencing  anthropogenic  and  climatic-­‐induced  change.  Science  of  the  Total  Environment.  409:1739-­‐1745.  

 5. Stewart,  Ian,  and  Ian  R.  Falconer.  2008.  Cyanobacteria  and  cyanobacterial  

toxins.  Oceans  and  human  health:  risks  and  remedies  from  the  seas.  271-­‐296.    

6. McFadden,  Geoffrey  I.,  and  Giel  G.  van  Dooren.  2004.  Evolution:  red  algal  genome  affirms  a  common  origin  of  all  plastids.  Current  Biology.  14:514-­‐516.  

 7. Kozuleva,  Marina  A.,  et  al.  2012.  Photosynthetic  electron  flow  to  oxygen  

and  diffusion  of  hydrogen  peroxide  through  the  chloroplast  envelope  via  aquaporins.  Biochimica  et  Biophysica  Acta  (BBA)-­‐Bioenergetics.  1817:1314-­‐1321.  

 8. Zilliges,  Yvonne,  et  al.  2011.  The  cyanobacterial  hepatotoxin  microcystin  

binds  to  proteins  and  increases  the  fitness  of  Microcystis  under  oxidative  stress  conditions.  PloS  one.  6:e17615.  

 9. Wiedner,  Claudia,  et  al.  2003.  Effects  of  light  on  the  microcystin  content  of  

Microcystis  strain  PCC  7806.  Applied  and  Environmental  Microbiology.  69:1475-­‐1481.  

 10. UTEX  The  Culture  Collection  of  Algae.  UTEX  The  Culture  Collection  of  

Algae.  N.p.,  n.d.  Web.  http://web.biosci.utexas.edu/utex/mediaDetail.aspx?mediaID=26.  

 11. Misson,  Benjamin,  and  Delphine  Latour.  2013.  Vertical  Heterogeneity  of  

Genotypic  Structure  and  Toxic  Potential  within  Populations  of  the  Harmful  Cyanobacterium  Microcystis  aeruginosa.  Advances  in  Microbiology.  3:  27.  

 

Page 51: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  41  

12. Penn,  Kevin,  et  al.  2014.  Secondary  metabolite  gene  expression  and  interplay  of  bacterial  functions  in  a  tropical  freshwater  cyanobacterial  bloom.  The  ISME  journal.  

 13. Sielaff,  Heike,  et  al.  2003.  The  mcyF  gene  of  the  microcystin  biosynthetic  

gene  cluster  from  Microcystis  aeruginosa  encodes  an  aspartate  racemase.  Biochem.  J.  373:  909-­‐916.  

 14. Watanabe,  Mariyo  F.,  et  al.  1995.  Toxic  Microcystis.  CRC  press.  

 15. Klein,  Annaleise  R.,  Darren  S.  Baldwin,  and  Ewen  Silvester.  2013.  Proton  

and  Iron  Binding  by  the  Cyanobacterial  Toxin  Microcystin-­‐LR."  Environmental  science  &  technology.  47:5178-­‐5184.  

 16. Leunert,  Franziska,  et  al.  2014.  Phytoplankton  response  to  UV-­‐generated  

hydrogen  peroxide  from  natural  organic  matter.  Journal  of  Plankton  Research.  36:185-­‐197.  

 17. Corbett,  Jean  T.  1989.  The  scopoletin  assay  for  hydrogen  peroxide  A  review  

and  a  better  method.  Journal  of  biochemical  and  biophysical  methods  18:297-­‐307.  

 18. Counting  Cells  with  a  Hemocytometer  -­  Protocol.  Counting  Cells  with  a  

Hemocytometer  -­‐  Protocol.  N.p.,  n.d.  Web.  http://web.mnstate.edu/provost/CountingCellsHemocytometer.pdf.  

 19. Yang,  Chen,  et  al.  2013.  Whole-­‐genome  sequence  of  Microcystis  aeruginosa  

TAIHU98,  a  nontoxic  bloom-­‐forming  strain  isolated  from  Taihu  Lake,  China."  Genome  announcements.  1:e00333-­‐13.  

 20. Cooper,  William  J.,  et  al.  1988.  Photochemical  formation  of  hydrogen  

peroxide  in  natural  waters  exposed  to  sunlight.  Environmental  science  &  technology.  22:1156-­‐1160.  

 21. Yoshida,  Mitsuhiro,  et  al.  2008.  Ecological  dynamics  of  the  toxic  bloom-­‐

forming  cyanobacterium  Microcystis  aeruginosa  and  its  cyanophages  in  freshwater.  Applied  and  environmental  microbiology.  74:3269-­‐3273.  

 22. Kardinaal,  W.  Edwin  A.,  et  al.  2007.  Microcystis  genotype  succession  in  

relation  to  microcystin  concentrations  in  freshwater  lakes.  Aquatic  Microbial  Ecology.  48:1-­‐12.  

 23. Zhu,  Lin,  et  al.  2014.  Ecological  dynamics  of  toxic  Microcystis  spp.  and  

microcystin-­‐degrading  bacteria  in  Dianchi  Lake,  China.  Applied  and  environmental  microbiology.  AEM-­‐02972.  

 

Page 52: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  42  

24. Latifi,  Amel,  Marion  Ruiz,  and  Cheng‐Cai  Zhang.  2009.  Oxidative  stress  in  cyanobacteria.  FEMS  microbiology  reviews.  33:258-­‐278.  

 25. Yamamoto  H,  Miyake  C,  Dietz  KJ,  Tomizawa  K,  Murata  N  &  Yokota  A.  

1999.  Thioredoxin  peroxidase  in  the  cyanobacterium  Synechocytis  sp.  PCC  6803.  FEBS  Lett.  447:269–273.  

 26. Perelman  A,  Uzan  A,  Hacohen  D  &  Schwarz  R.  2003.  Oxidative  stress  in  

Synechococcus  sp.  strain  PCC  7942:  various  mechanisms  for  H2O2  detoxification  with  different  physiological  roles.  J  Bacteriol.  185:3654–3660.  

 27. Hall,  Andrea,  P.  Andrew  Karplus,  and  Leslie  B.  Poole.  2009.  Typical  2-­‐Cys  

peroxiredoxins–structures,  mechanisms  and  functions.  FEBS  journal.  276:2469-­‐2477.  

 28. Rantala,  Anne,  et  al.  2004.  Phylogenetic  evidence  for  the  early  evolution  of  

microcystin  synthesis.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America.  101:568-­‐573.  

 29. Rohrlack,  Thomas,  et  al.  2001.  Effects  of  cell-­‐bound  microcystins  on  

survival  and  feeding  of  Daphnia  spp.  Applied  and  environmental  microbiology.  67:3523-­‐3529.  

 30. Schatz,  Daniella,  et  al.  2007.  Towards  clarification  of  the  biological  role  of  

microcystins,  a  family  of  cyanobacterial  toxins."  Environmental  microbiology.  9:965-­‐970.  

 31. Börner,  Thomas,  and  Elke  Dittmann.  2005.  Molecular  biology  of  

cyanobacterial  toxins.  Harmful  cyanobacteria.  Springer.  Netherlands.  25-­‐40.    

32. Mostofa,  Khan  MG,  et  al.  2013.  Photoinduced  Generation  of  Hydroxyl  Radical  in  Natural  Waters."  Photobiogeochemistry  of  Organic  Matter.  Springer.  Berlin  Heidelberg.  209-­‐272.  

 33. Kieber,  Robert  J.,  and  G.  R.  Helz.  1986.  Two-­‐method  verification  of  

hydrogen  peroxide  determinations  in  natural  waters.  Analytical  chemistry  58:2312-­‐2315.  

 34. Dons,  Lone  E.,  et  al.  2013.  Role  of  the  Listeria  monocytogenes  2-­‐Cys  

peroxiredoxin  homologue  in  protection  against  oxidative  and  nitrosative  stress  and  in  virulence.  Pathogens  and  disease.  

 35. Cui,  Hongli,  et  al.  2012.  Genome-­‐wide  analysis  of  putative  peroxiredoxin  in  

unicellular  and  filamentous  cyanobacteria.  BMC  evolutionary  biology.  12:  220.  

 

Page 53: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  43  

36. Li,  Daming,  et  al.  2012.  Quantification  of  microcystin-­‐producing  and  non-­‐microcystin  producing  Microcystis  populations  during  the  2009  and  2010  blooms  in  Lake  Taihu  using  quantitative  real-­‐time  PCR."  Journal  of  Environmental  Sciences.  24:84-­‐290.  

 37. Van  Wichelen,  Jeroen,  et  al.  2010.  Strong  effects  of  amoebae  grazing  on  the  

biomass  and  genetic  structure  of  a  Microcystis  bloom  (Cyanobacteria).  Environmental  microbiology.  12:2797-­‐2813.  

 38. Yoshida,  Mitsuhiro,  et  al.  2007.  Dynamics  of  microcystin-­‐producing  and  

non-­‐microcystin-­‐producing  Microcystis  populations  is  correlated  with  nitrate  concentration  in  a  Japanese  lake.  FEMS  microbiology  letters.  266:49-­‐53.  

 39. Joung,  Seung-­Hyun,  et  al.  2011.  Correlations  between  environmental  

factors  and  toxic  and  non-­‐toxic  Microcystis  dynamics  during  bloom  in  Daechung  Reservoir,  Korea.  Harmful  Algae.  10:188-­‐193.  

 40. Gobler,  C.  J.,  et  al.  2007.  Interactive  influences  of  nutrient  loading,  

zooplankton  grazing,  and  microcystin  synthetase  gene  expression  on  cyanobacterial  bloom  dynamics  in  a  eutrophic  New  York  lake.  Harmful  Algae.  6:119-­‐133.  

 41. Bozarth,  Connie  S.,  et  al.  2010.  Population  turnover  in  a  Microcystis  bloom  

results  in  predominantly  nontoxigenic  variants  late  in  the  season.  Applied  and  environmental  microbiology.  76:5207-­‐5213.  

 42. Connor,  Driscoll.  Investigating  the  role  of  viruses  in  Microcystis  sp.  bloom  

collapse.  WALPA  RSS.  Washington  State  Lake  Protection  Association,  n.d.  Web.  http://www.walpa.org/investigating-­‐the-­‐role-­‐of-­‐viruses-­‐in-­‐Microcystis-­‐sp-­‐bloom-­‐collapse.  

 43. Murata,  Norio,  et  al.  2007.  Photoinhibition  of  photosystem  II  under  

environmental  stress."  Biochimica  et  Biophysica  Acta  (BBA)-­‐Bioenergetics.  1767:414-­‐421.  

 44. Ding,  Yi,  et  al.  2012.  Hydrogen  peroxide  induces  apoptotic-­‐like  cell  death  in  

Microcystis  aeruginosa  (Chroococcales,  Cyanobacteria)  in  a  dose-­‐dependent  manner.  Phycologia.  51:567-­‐575.  

 45. Campos,  Alexandre,  and  Vitor  Vasconcelos.  2010.  Molecular  mechanisms  

of  microcystin  toxicity  in  animal  cells.  International  journal  of  molecular  sciences.  11:268-­‐287.  

     

Page 54: Comparative!GrowthStudyofToxicandNon :Toxic Microcystis ...

  44  

46. Pereira,  Susana  R.,  Vítor  M.  Vasconcelos,  and  Agostinho  Antunes.  2013.  Computational  study  of  the  covalent  bonding  of  microcystins  to  cysteine  residues–a  reaction  involved  in  the  inhibition  of  the  PPP  family  of  protein  phosphatases.  FEBS  Journal.  280:674-­‐680.  

 47. Pasternak,  Zohar,  et  al.  2012.  By  their  genes  ye  shall  know  them:  genomic  

signatures  of  predatory  bacteria.  The  ISME  journal.  7:756-­‐769.