Comp. Genomics

23
Comp. Genomics Recitation 6 14/11/06 ML and EM

description

Comp. Genomics. Recitation 6 14/11/06 ML and EM. Outline. Maximum likelihood estimation HMM Example EM Baum-Welch algorithm. Maximum likelihood. One of the methods for parameter estimation Likelihood: L=P(Data|Parameters) Simple example: Simple coin with P(head)=p 10 coin tosses - PowerPoint PPT Presentation

Transcript of Comp. Genomics

Page 1: Comp. Genomics

Comp. Genomics

Recitation 614/11/06ML and EM

Page 2: Comp. Genomics

Outline

• Maximum likelihood estimation• HMM Example• EM• Baum-Welch algorithm

Page 3: Comp. Genomics

Maximum likelihood

• One of the methods for parameter estimation

• Likelihood: L=P(Data|Parameters)• Simple example:

• Simple coin with P(head)=p• 10 coin tosses• 6 heads, 4 tails

• L=P(Data|Params)=(106)p6 (1-p)4

Page 4: Comp. Genomics

Maximum likelihood

• We want to find p that maximizes L=(10

6)p6 (1-p)4

• Infi 1, Remember?• Log is a monotonically increasing

function, we can optimize logL=log[(10

6)p6 (1-p)4]=

log(106)+6logp+4log(1-p)]

• Deriving by p we get: 6/p-4/(1-p)=0• Estimate for p:0.6 (Makes sense?)

Page 5: Comp. Genomics

ML in Profile HMMs

• Emission probabilities

• Mi a

• Ii a

http://www.cs.huji.ac.il/~cbio/handouts/Class6.ppt

• Transition Probabilities• Mi Mi+1• Mi Di+1• Mi Ii

• Ii Mi+1• Ii Ii

• Di Di+1• Di Mi+1• Di Ii

Page 6: Comp. Genomics

Input: X1,…,Xn independent training sequencesGoal: estimation of = (A,E) (model parameters)Note: P(X1,…,Xn | ) = i=1…nP(Xi | ) (indep.)

l(x1,…,xn | ) = log P(X1,…,Xn | ) = i=1…nlog P(Xi | )

Parameter Estimation for HMMs

Case 1 - Estimation When State Sequence is Known: Akl = #(occurred kl transitions)

Ek(b) = #(emissions of symbol b that occurred in state k)

Max. Likelihood Estimators:

• akl = Akl / l’Akl’

• ek(b) = Ek(b) / b’Ek(b’)

small sample, orprior knowledge correction:A’kl = Akl + rkl

E’k(b) = Ek(b) + rk(b)

Page 7: Comp. Genomics

Example

http://www.cs.huji.ac.il/~cbio/handouts/Class6.ppt

• Suppose also that the “match” positions are marked...

• Suppose we are given the aligned sequences

AG---CA-AT-CAG-AA-

--AAACAG---C

*---**

Page 8: Comp. Genomics

Calculating A, E

count transitions and emissions:

0 1 2 3M-MM-DM-II-MI-DI-ID-MD-DD-I

0 1 2 3ACGT

ACTG

transitions emissions

http://www.cs.huji.ac.il/~cbio/handouts/Class6.ppt

AG---CA-AT-CAG-AA-

--AAACAG---C

*---**

Page 9: Comp. Genomics

Calculating A, E

count transitions and emissions:

0 1 2 3M-M 4 3 2 4M-D 1 1 0 0M-I 0 0 1 0I-M 0 0 2 0I-D 0 0 1 0I-I 0 0 4 0

D-M - 0 0 1D-D - 1 0 0D-I - 0 2 0

0 1 2 3A - 4 0 0C - 0 0 4G - 0 3 0T - 0 0 0

A 0 0 6 0C 0 0 0 0T 0 0 1 0G 0 0 0 0

transitions emissions

http://www.cs.huji.ac.il/~cbio/handouts/Class6.ppt

AG---CA-AT-CAG-AA-

--AAACAG---C

*---**

Page 10: Comp. Genomics

Estimating Maximum Likelihood probabilities using Fractions

0 1 2 3A - 1 0 0C - 0 0 1G - 0 1 0T - 0 0 0

A .25 .25 .86 .25C .25 .25 0 .25T .25 .25 .14 .25G .25 .25 0 .25

0 1 2 3A - 4 0 0C - 0 0 4G - 0 3 0T - 0 0 0

A 0 0 6 0C 0 0 0 0T 0 0 1 0G 0 0 0 0

emissions

http://www.cs.huji.ac.il/~cbio/handouts/Class6.ppt

Page 11: Comp. Genomics

0 1 2 3M-M 4 3 2 4M-D 1 1 0 0M-I 0 0 1 0I-M 0 0 2 0I-D 0 0 1 0I-I 0 0 4 0

D-M - 0 0 1D-D - 1 0 0D-I - 0 2 0

Estimating ML probabilities (contd)

0 1 2 3M-M .8 .75 .66 1.0M-D .2 .25 0 0M-I 0 0 .33 0I-M .33 .33 .28 .33I-D .33 .33 .14 .33I-I .33 .33 .57 .33

D-M - 0 0 1D-D - 1 0 0D-I - 0 1 0

transitions

http://www.cs.huji.ac.il/~cbio/handouts/Class6.ppt

Page 12: Comp. Genomics

EM - Mixture example

• Assume we are given heights of 100 individuals (men/women): y1…y100

• We know that:• The men’s heights are normally distributed

with (μm,σm)• The women’s heights are normally distributed

with (μw,σw)• If we knew the genders – estimation is

“easy” (How?)• What we don’t know the genders in our

data!• X1…,X100 are unknown• P(w),P(m) are unknown

Page 13: Comp. Genomics

Mixture example

• Our goal: estimate the parameters (μm,σm), (μn,σn), p(m)

• A classic “estimation with missing data”

• (In an HMM: we know the emmissions, but not the states!)

• Expectation-Maximization (EM):• Compute the “expected” gender for

every sample height• Estimate the parameters using ML• Iterate

Page 14: Comp. Genomics

EM

• Widely used in machine learning• Using ML for parameter estimation at

every iteration promises that the likelihood will consistently improve

• Eventually we’ll reach a local minima• A good starting point is important

Page 15: Comp. Genomics

Mixture example

• If we have a mixture of M gaussians, each with a probability αi and density θi=(μm,σm)

• Likelihood the observations (X):• The “incomplete-data” log-likelihood

of the sample x1,…,xN:

• Difficult to estimate directly…

Page 16: Comp. Genomics

Mixture example

• Now we introduce y1,…,y100: hidden variables telling us what Gaussian every sample came from

• If we knew y, the likelihood would be:

• Of course, we do not know the ys…• We’ll do EM, starting from

θg=(α1g ,..,αM

g, μ1g,..,μM

g,σ1g,.., σM

g)

Page 17: Comp. Genomics

Estimation

• Given θg, we can estimate the ys!• We want to find:• The expectation is over the states of

y• Bayes rule: P(X|Y)=P(Y|X)P(X)/P(Y):

Page 18: Comp. Genomics

Estimation

• We write down the Q:

• Daunting?

Page 19: Comp. Genomics

Estimation

• Simplifying:

• Now the Q becomes:

Page 20: Comp. Genomics

Maximization

• Now we want to find parameter estimates, such that:

• Infi 2, remember?• To impose the constraint Sum{αi}=1,

we introduce Lagrange multiplier λ:

• After summing both sides over l:

Page 21: Comp. Genomics

Maximization

• Estimating μig+1,σi

g+1 is more difficult

• Out of scope here• What turns out is actually quite

straightforward:

Page 22: Comp. Genomics

What you need to know about EM:

• When: If we want to estimate model parameters, and some of the data is “missing”

• Why: Maximizing likelihood directly is very difficult

• How:• Initial guess of the parameters• Finding a proper term for Q(θg, θg+1)• Deriving and finding ML estimators

Page 23: Comp. Genomics

EM estimation in HMMs

Input: X1,…,Xn independent training sequences Baum-Welch alg. (1972): Expectation:• compute expected # of kl state transitions:

P(i=k, i+1=l | X, ) = [1/P(x)]·fk(i)·akl·el(xi+1)·bl(i+1)

Akl = j[1/P(Xj)] · i fkj(i) · akl · el(xj

i+1) · blj(i+1)

• compute expected # of symbol b appearances in state kEk(b) = j[1/P(Xj)] · {i|xj

i=b} fkj(i) · bk

j(i) (ex.) Maximization:• re-compute new parameters from A, E using max.

likelihood.repeat (1)+(2) until improvement