Communication system overview.pdf

download Communication system overview.pdf

of 16

Transcript of Communication system overview.pdf

  • 8/21/2019 Communication system overview.pdf

    1/42

    6.776 

    High Speed Commun icat ion Circu i ts Lectu re 1 Commun icat ion Systems Overv iew 

    Profs. Hae-Seung Lee and Michael H. Perrott

    Massachusetts Institute of Technology

    February 1, 2005

    Copyright © 2005 by H.-S. Lee and M. H. Perrott

  • 8/21/2019 Communication system overview.pdf

    2/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Modu lat ion Techniques 

    Amplitude Modulation (AM)

    -Standard AM

    -Double-sideband (DSB)

    -Single-sideband (SSB)

    -Quadrature Amplitude Modulation (QAM)

    Constant Envelope Modulation

    -Phase Modulation (PM)-Frequency Modulation (FM)

    Multiple Access

    -FDMA

    -TDMA-CDMA

    Ultra Wide Band (UWB)

    -Pulse-OFDM

  • 8/21/2019 Communication system overview.pdf

    3/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Ampl i tude Modulat ion (Transm it ter) 

    Vary the amplitude of a sine wave at carrier frequency f oaccording to a baseband modulation signal

    DC component of baseband modulation signal influencestransmit signal and receiver possibilities

    - DC value greater than signal amplitude shown above  Allows simple envelope detector for receiver 

    Strong carrier frequency tone is transmitted(wasted power)

  • 8/21/2019 Communication system overview.pdf

    4/42H.-S. Lee & M.H. Perro tt MIT OCW  

    Frequency Domain View of Standard AM Transm it ter 

    Baseband signal x’(t) has a nonzero DC component

    Causes impulse to appear at DC in baseband signal

    - Transmitter output has an impulse at the carrier frequency- This component is fixed in frequency and phase, so

    carries no information (waste of transmit power)

  • 8/21/2019 Communication system overview.pdf

    5/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Zero DC Value (DSB o r ‘Suppressed Carr ier ’) 

    Envelope of modulated sine wave no longer correspondsdirectly to the baseband signal

    - Envelope instead follows the absolute value of thebaseband waveform, negative value of the baseband inputproduces 180o phase shift in carrier 

    - Envelope detector can no longer be used for receiver  The carrier frequency tone that carries no information is

    removed: less transmit power required for sametransmitter SNR (compared to standard AM)

    2cos(2πf ot)

    y(t)

    Transmitter Output

    x(t)

    0

  • 8/21/2019 Communication system overview.pdf

    6/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    DSB Spectra 

    Impulse in DC portion of baseband signal is now gone

    - Transmitter output now is now free from having an impulse atthe carrier frequency: more power efficient

  • 8/21/2019 Communication system overview.pdf

    7/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Accompany ing Receiver (Coherent Detect ion) 

    Works regardless of DC value of baseband signal

    Requires receiver local oscillator to be accurately aligned in

    phase and frequency to carrier 

  • 8/21/2019 Communication system overview.pdf

    8/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Frequency Domain View of DSB Receiver (Coherent) 

  • 8/21/2019 Communication system overview.pdf

    9/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Impact o f Phase Misalignment in Receiver LocalOsci l lator 

    Worst case is when receiver LO and carrier frequency are

    phase shifted 90 degrees with respect to each other - Desired baseband signal is not recovered

  • 8/21/2019 Communication system overview.pdf

    10/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Impact of 90 Degree Phase Misal ignment (Freq. Domain View ) 

  • 8/21/2019 Communication system overview.pdf

    11/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    SSB (Sing le-Sideband ) 

    The upper sideband (USB) and the lower sideband(LSB) are symmetric, so they contain the sameinformation

    Standard AM is neither power efficient nor bandwidthefficient

    The DSB improves power efficiency, but still takes up

    twice the necessary bandwidth Most baseband signals have no DC or very low

    frequency components

    One of the sidebands can be removed at the IF or RF

    stage (much easier to filter in the IF stage)

  • 8/21/2019 Communication system overview.pdf

    12/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    SSB Spectra 

    One of the sidebands is removed by sideband filter or

    phase shift techniues

    - Signal bandwidth is reduced 2x: more bandwidth efficient

  • 8/21/2019 Communication system overview.pdf

    13/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Quadrature Modu lat ion (QAM) 

    Takes advantage of coherent receiver’s sensitivity to phasealignment with transmitter local oscillator 

    - We essentially have two orthogonal transmission channels (Iand Q) available

    - Transmit two independent baseband signals (I and Q) onto twosine waves in quadrature at transmitter 

  • 8/21/2019 Communication system overview.pdf

    14/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Accompanying Receiver 

    Demodulate using two sine waves in quadrature at receiver - Must align receiver LO signals in frequency and phase to

    transmitter LO signals

    Proper alignment allows I and Q signals to be recovered as shown

  • 8/21/2019 Communication system overview.pdf

    15/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Impact of 90 Degree Phase Misal ignm ent 

    I and Q channels are swapped at receiver if its LO signal is90 degrees out of phase with transmitter 

    - However, no information is lost!- Can use baseband signal processing to extract I/Q signals

    despite phase offset between transmitter and receiver 

  • 8/21/2019 Communication system overview.pdf

    16/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Simp li f ied View 

    For discussion to follow, assume that

    - Transmitter and receiver phases are aligned- Lowpass filters in receiver are ideal- Transmit and receive I/Q signals are the same except for scalefactor 

    In reality

    -RF channel adds distortion, causes fading

    - Signal processing in baseband DSP used to correct problems

  • 8/21/2019 Communication system overview.pdf

    17/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Analog Modu lat ion 

    I/Q signals take on a continuous range of values (as viewed in

    the time domain) Used for AM/FM radios, television (non-HDTV), and the first cell

    phones

    Newer systems typically employ digital modulation instead

  • 8/21/2019 Communication system overview.pdf

    18/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Digi tal Modulat ion 

    I/Q signals take on discrete values at discrete time instantscorresponding to digital data

    - Receiver samples I/Q channels Uses decision boundaries to evaluate value of data at each time

    instant

    I/Q signals may be binary or multi-bit

    - Multi-bit shown above

  • 8/21/2019 Communication system overview.pdf

    19/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Advantages of Digi tal Modu lat ion 

    Allows information to be “packetized”

    - Can compress information in time and efficiently sendas packets through network

    - In contrast, analog modulation requires connectionsthat are continuously available Inefficient use of radio channel if there is “dead time” in

    information flow

    Allows error correction to be achieved

    - Less sensitivity to radio channel imperfections Enables compression of information

    - More efficient use of channel Supports a wide variety of information content

    - Voice, text and email messages, video can all berepresented as digital bit streams

    C t l l t i Di f M l t i b i t Q d t Di i t l

  • 8/21/2019 Communication system overview.pdf

    20/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Cons tel lat ion Diagram of Mul t i-b i t Quadrature Digi talModulat ion (2-b it examp le) 

    We can view I/Q values at sample instants on a two-

    dimensional coordinate system Decision boundaries mark up regions corresponding

    to different data values

    Gray coding used to minimize number of bit errorsthat occur if wrong decision is made due to noise

    Amplitudes I and Q are encodedIn 2-bit digital values

  • 8/21/2019 Communication system overview.pdf

    21/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Impact o f Noise on Constel lat ion Diagram 

    Sampled data values no longer land in exact same locationacross all sample instants

    Decision boundaries remain fixed

    Significant noise causes bit errors to be made (channel

    SNR determines maximum number of bits)

  • 8/21/2019 Communication system overview.pdf

    22/42

    Cons tant Envelope Modu lat ion 

    H.-S. Lee & M.H. Perro tt MIT OCW  

  • 8/21/2019 Communication system overview.pdf

    23/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    The Issue o f Power Eff ic iency 

    Power amp dominates power consumption for many wirelesssystems

    - Linear power amps more power consuming than nonlinear ones

    Constant-envelope modulation allows nonlinear power amp- Lower power consumption possible

    Baseband to RF

    Modulation

    Power Amp

    Transmitter 

    Output

    Baseband

    Input

    Variable-Envelope Modulation Constant-Envelope Modulation

  • 8/21/2019 Communication system overview.pdf

    24/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Simpl i f ied Implementat ion for Constant-Envelope 

    Constant-envelope modulation limited to phase and

    frequency modulation methods Can achieve both phase and frequency modulation with

    ideal VCO

    -Use as model for analysis purposes

    - Note: phase modulation nearly impossible with practical VCO

    Baseband to RF Modulation   Power Amp

    Transmitter 

    Output

    BasebandInput

    Constant-Envelope Modulation

    TransmitFilter 

    E l C t l l t i Di f Ph

  • 8/21/2019 Communication system overview.pdf

    25/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Example Cons tel lat ion Diagram for PhaseModulat ion 

    DecisionBoundaries   I

    Q

    DecisionBoundaries

    000

    001

    011

    110111

    100

    101

    010

    I/Q signals must always combine such that amplituderemains constant

    - Limits constellation points to a circle in I/Q plane

    - Draw decision boundaries about different phase regions

  • 8/21/2019 Communication system overview.pdf

    26/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Trans i t ion ing Between Constel lat ion Poin ts 

    DecisionBoundaries   I

    Q

    DecisionBoundaries

    000

    001

    011

    110111

    100

    101

    010

    Constant-envelope requirement forces transitions toallows occur along circle that constellation points sit on

    - I/Q filtering cannot be done independently!

    - Significantly impacts output spectrum

  • 8/21/2019 Communication system overview.pdf

    27/42

    Mult ip le Access Techniques 

    H.-S. Lee & M.H. Perro tt MIT OCW  

  • 8/21/2019 Communication system overview.pdf

    28/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    The Issue of Mu lt ip le Access 

    Want to allow communication between many differentusers

    Freespace spectrum is a shared resource

    - Must be partitioned between users Can partition in either time, frequency, or through

    “orthogonal coding” (or nearly orthogonal coding) of

    data signals

  • 8/21/2019 Communication system overview.pdf

    29/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Frequency-Divis ion Mult ip le Access (FDMA) 

    Place users into different frequency channels

    Two different methods of dealing with transmit/receive of

    a given user 

    - Frequency-division duplexing- Time-division duplexing

  • 8/21/2019 Communication system overview.pdf

    30/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Frequency-Div is ion Dup lexing (Ful l -duplex) 

    Transmitter    RXTX

    Duplexer Antenna

    RX

    TX

    Receiver    TransmitBandReceive

    Band

    Separate frequency channels into transmit and receive bands

    Allows simultaneous transmission and reception

    - Isolation of receiver from transmitter achieved with duplexer - Cannot communicate directly between users, only between handsets and

    base station

    Advantage: isolates users

    Disadvantages:

    -duplexer has high insertion loss (i.e. attenuates signals passingthrough it)

    -takes up twice the bandwidth

  • 8/21/2019 Communication system overview.pdf

    31/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Time-Div is ion Duplexing (Hal f -duplex) 

    Use any desired frequency channel for transmitter andreceiver 

    Send transmit and receive signals at different times

    Allows communication directly between users (not

    necessarily desirable) Advantage: switch has low insertion loss relative to

    duplexer 

    Disadvantage: receiver more sensitive to transmittedsignals from other users

    Transmitter 

    Switch Antenna

    RX

    TX

    Receiver 

    switchcontrol

  • 8/21/2019 Communication system overview.pdf

    32/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Time-Divis ion Mult ip le Access (TDMA) 

    Place users into different time slots

    - A given time slot repeats according to time frame period Often combined with FDMA

    - Allows many users to occupy the same frequencychannel

  • 8/21/2019 Communication system overview.pdf

    33/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Channel Part i t ion ing Using (Nearly) “Orthogonal Cod ing” 

    Consider two correlation cases- Two independent random Bernoulli sequences

    Result is a random Bernoulli sequence

    -Same Bernoulli sequence

    Result is 1 or -1, depending on relative polarity

  • 8/21/2019 Communication system overview.pdf

    34/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Code-Divis ion Mult ip le Access (CDMA)

    y1(t)x1(t)

    PN1(t)

    y2(t)x2(t)

    PN2(t)

    y(t)

    SeparateTransmitters

    Transmit SignalsCombine

    in Freespace

    Td

    Tc

    Assign a unique code sequence to each transmitter 

    Data values are encoded in transmitter output stream by

    varying the polarity of the transmitter code sequence- Each pulse in data sequence has period Td Individual pulses represent binary data values

    - Each pulse in code sequence has period Tc Individual pulses are called “chips”

  • 8/21/2019 Communication system overview.pdf

    35/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Receiver Selects Desired Transm it ter Through Its Code 

    Receiver correlates its input with desired transmitter code- Data from desired transmitter restored- Data from other transmitter(s) remains randomized

    y1(t)x1(t)

    PN1(t)

    y2(t)x2(t)

    PN2(t)

    x(t) y(t)

    Separate

    Transmitters

    Transmit Signals

    Combine

    in Freespace

    Receiver 

    (Desired Channel = 1)

    PN1(t)

    Lowpassr(t)

    F D i Vi f Ch i V D t S

  • 8/21/2019 Communication system overview.pdf

    36/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Frequency Domain View of Ch ip Vs Data Sequences 

    tt

    Tc

    t

    data(t) p(t) x(t)

    Sdata(f)

    f 0

    *1

    -1Tc

    1

    -1

    1

    Sx(f)|P(f)|2

    f 1/Tc0

    Tc

    Td

    1/Tdf 

    1/Tc0

    Tc

    Td

    1/Td

    ttTd

    t

    data(t) p(t) x(t)

    *1

    -1

    1

    -1

    1

    Td

    Data and chip sequences operate on different time scales

    - Associated spectra have different width and height

    F D i Vi f CDMA

  • 8/21/2019 Communication system overview.pdf

    37/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Frequency Domain View of CDMA

    CDMA transmitters broaden data spectra by encoding it

    onto chip sequences (‘spread-spectrum’) CDMA receiver correlates with desired transmitter code

    - Spectra of desired channel reverts to its original width- Spectra of undesired channel remains broad

    Can be “mostly” filtered out by lowpass

    r(t)

    Sy1(f)

    f 1/Tc0

    Tc

    Sx(f)

    f 1/Tc0

    Tc

    Td

    1/Td

    Sx1(f)

    f 0

    Td

    1/Td

    Sy2(f)

    f 1/Tc0

    Tc

    Sx2(f)

    f 0

    Td

    1/Td

    y1(t)x1(t)

    PN1(t)

    Transmitter 1

    y2(t)x2(t)

    PN2(t)

    Transmitter 2y(t)

    PN1(t)

    Lowpass

    Sx1(f)

    UWB (Ult Wid b d )

  • 8/21/2019 Communication system overview.pdf

    38/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    UWB (Ultra-Wideband) 

    Pictures Courtesy of R. Blazquez, et. al.

    Extreme case of spread-spectrum communication

    Takes advantage of Shannon’s theorem :

    -data rate goes up proportionally to bandwidth but degrades only

    logarithmically with SNR.

    Very low energy emission per Hz

    UWB Standards 

  • 8/21/2019 Communication system overview.pdf

    39/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    FCC recently allowed 3.1-10.6 GHz for UWB

    Two separate IEEE standards are under development

    Pictures Courtesy of R. Blazquez, et. al.

    Figure by MIT OCW.

    Distance

    500Kb

    1m 10m 100m

    5Mb

    50Mb

    500MbWLAN

    Locationing/Tagging

    Wireless USB

    and Multimedia

    UWB Approaches

  • 8/21/2019 Communication system overview.pdf

    40/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    UWB Approaches 

    Pictures Courtesy of F. R. Lee, et. al.

    Pulsed UWB: Marconi invented it! It’s a form of TDMA

    OFDM UWB: Utilizes knowledge base of narrowbandsystems. Strong jammers can be avoided.

    Pulsed UWB

  • 8/21/2019 Communication system overview.pdf

    41/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    Pulsed UWB 

    Data encoded in impulse train

    Multipath can be exploited

    No narrowband filters (RF or baseband) needed intranceivers

    Extremely tight time-synchronization is essentialPictures Courtesy of R. Blazquez, et. al.

    OFDM UWB

  • 8/21/2019 Communication system overview.pdf

    42/42

    H.-S. Lee & M.H. Perro tt MIT OCW  

    OFDM UWB 

    Can take advantage of wealth of knowledge innarrowband communication

    Involves the usual blocks of narrowband systems –

    filters, LNA’s etc. Bandwidth of each channel is much wider: filtering is

    easier than narrowband systems

    SNR requirement in each channel is much lower thannarrowband systems

    More digital processing than pulsed OFDM

    Strong jammers can be avoided