Common Avionics Approach

61
Common Avionics- Page 1 7/25/2012 Common Avionics Approach SpaceAGE Bus & cFE/CFS: Software & Hardware Component Based Architecture Presenters: Jonathan Wilmot & Glenn Rakow NASA-GSFC

description

Common Avionics Approach. SpaceAGE Bus & cFE /CFS: Software & Hardware Component Based Architecture Presenters: Jonathan Wilmot & Glenn Rakow NASA-GSFC. Background: Avionics Current Practice. - PowerPoint PPT Presentation

Transcript of Common Avionics Approach

Page 1: Common Avionics Approach

Common Avionics- Page 17/25/2012

Common Avionics Approach

SpaceAGE Bus & cFE/CFS:Software & Hardware Component Based

ArchitecturePresenters: Jonathan Wilmot & Glenn Rakow

NASA-GSFC

Page 2: Common Avionics Approach

Common Avionics- Page 27/25/2012

Background: Avionics Current Practice

• Each organization that builds space systems has their own approach to implementation, so within organizations there are de facto standards– Necessary to save money– Or make profit

• However among space builders there is little interoperability– Mechanical approach differences– Electrical interfaces differences– Software architecture differences

• Even though the implementation methods used are very similar– Procured Single Board Computer – BAE Rad750, Leon 3– Bus protocols – Mil-Std-1553, SpaceWire– Mechanical approach – Backplane in mechanical chassis– etc.

Page 3: Common Avionics Approach

Common Avionics- Page 37/25/2012

Basic Tenets – Common Avionics

Standards

Hardware SoftwareCommonAvionics

• Standards – Interfaces, protocols, electronic data sheets, examples:– CCSDS AOS, Internet Protocol (IP), xTEDS

• Software architectures, examples:– Frameworks, design patterns, Application

Programmer Interfaces (API), • Hardware – Interfaces, form factors,

protocols, examples:– SpaceWire, Mil 1553b, RMAP, USB PnP, 6U

• Each of these can stand alone and be applied to a wide variety of missions– Missions may use 1553, or CCSDS AOS but

can not interoperate– Current approach for many organizations

• Common Avionics are defined by the intersection– Each organization can define it’s own

intersection, common only to that organization• Example: AFRL Space Plug-and-play Avionics

(SPA)

Page 4: Common Avionics Approach

Common Avionics- Page 47/25/2012

Common Avionics Goal

• Reduce Non Recurring Engineering cost of space avionics through reuse

• Be applicable to majority of space missions both robotics and crew rated vehicles

• Compatibility of avionics between vendors– Necessary for Human Exploration Programs

• Develop different vehicles/systems from same components• Increase pool of compatible products

– Focus limited resources to create synergy in space industry• Technology independent – focus on interfaces not implementations

– Protocols not defined• Few possibilities - allows space community to converge based upon demand• Provides system engineer flexibility

• Stream-line integration of avionics components (hardware & software) similar to commercial “plug-n-play”

Page 5: Common Avionics Approach

Common Avionics- Page 57/25/2012

Common Avionics Business Model• Encourage exchange of designs in open market that may be

integrated to implement system– Designs may have different levels of compatibility but market forces

should force convergence to small group of options• Government agencies use tech transfer offices to make designs

available to industry that can then be purchased on open market– Current example:

• GSFC developed the SpaceWire Test Set (SWTS) hardware and software.• Via Tech Transfer office, SWTS designs provided to support contractor, who

markets and sells the SWTS product.• Effort involves procuring the Printed Wiring Board (PWB), outsource the PWB

assembly, and test with software.• To date 150 SWTS have been built for multiple agencies and projects

• Currently, GSFC cFE/CFS and SpaceWire IP core (both software products) are widely distributed and used on non-GSFC missions– Help is needed in developing a governance model for

maintaining/updating code

Page 6: Common Avionics Approach

Common Avionics- Page 67/25/2012

Avionics cost savings•Development cost => Build-to-Print

•Hardware cost approaches a reduction of 80-90%•Based upon LCRD HSE budget

•Reduction of quality assurance and system engineering due to COTS component

•Reduction of risks•Reduction of documentation

•Reduction of schedule and manpower•Time is money => delay requires funding to carry manpower longer•Less development

Potential New Budget Model

Cost

Reuse

Build-to-Print

Page 7: Common Avionics Approach

Common Avionics- Page 77/25/2012

Building Block ElementsDefinition:• Building block element is a software or hardware functional

standalone unit of implementation with completely defined interfaces, so that they can be integrated together to form increasingly complex systems.

Examples:• Hardware

– Printed Wiring Boards (PWBs) built to a standard mechanical form factor with defined electrical interfaces

– Modules – comprised of a single or multiple PWBs integrated together into a mechanical card frame to form a increasingly complex function

• Software– Software component that has interface to a defined software bus so that

a publish/subscribe messaging service– Hypervisor – supports low level time-space partitioning to protect the

operating system from crashing

Page 8: Common Avionics Approach

Common Avionics- Page 87/25/2012

NASA/GSFC’s Flight Software Architecture:Core Flight Executive and

Core Flight System

Jonathan WilmotSoftware Engineering Division

NASA/Goddard Space Flight [email protected]

301-286-2623

Page 9: Common Avionics Approach

Common Avionics- Page 97/25/2012

cFE/CFS Introduction

coreFlight

Executive(cFE)

CFSApp

CFSApp CFS

App

CFSApp

CFSAppCFS

Library

CFSApp

CFSLibrary

• Core Flight System (CFS)– A Flight Software Architecture

consisting of the cFE Core, CFS Libraries, and CFS Applications

• core Flight Executive (cFE)– A framework of mission

independent, re-usable, core flight software services and operating environment

• For cFE/CFS, each element is a separate loadable file

Core Flight System (CFS)

Page 10: Common Avionics Approach

Common Avionics- Page 107/25/2012

CFS Flight Software Layers

Real Time OS

OS Abstraction Layer

cFE Platform Support Package

cFE Core

CFS Library MissionLibrary

CFS App 1

CFS App 2

MissionApp 1

Mission App 2

CFS App N

Mission App N

PROM Boot FSW

Mission and CFSApplication Layer

Mission and CFSLibrary Layer

CFE CoreLayer

AbstractionLibrary Layer

Mission Developed

GSFC Developed

3rd Party

RTOS / BOOTLayerReal Time OS Board Support

Package RTEMS, VxWorks, Linux

http://sourceforge.net/projects/coreflightexec

http://sourceforge.net/projects/osal

Page 11: Common Avionics Approach

Common Avionics- Page 117/25/2012

cFE Core - Overview

• A set of mission independent, re-usable, core flight software services and operating environment– Provides standardized Application Programmer Interfaces (API)– Supports and hosts flight software applications– Applications can be added and removed at run-time (eases system

integration and FSW maintenance)– Supports software development for on-board FSW, desktop FSW

development and simulators– Supports a variety of hardware platforms– Contains platform and mission configuration parameters that are used to

tailor the cFE for a specific platform and mission.

Executive Services (ES)

Software Bus (SB)

Time Services (TIME)

Event Services (EVS)

TableServices (TBL)

Page 12: Common Avionics Approach

Common Avionics- Page 127/25/2012

Hardware I/Fs

Exemplar GSFC Flight Software Architecture

Inter-task Message Router (SW Bus)

EventServices

EDACMemoryScrubber

Stored Commanding CFDP File

Transfer

Software

Scheduler

Housekeeping

Manager

ExecutiveServices

TimeServices

FileManager

Commands

cFE Components

C&DH Components

Real-time Telemetry

CommunicationInterfaces GN&C Components

LocalStorage

1553 BusSupport

File downlink (CFDP) via SpaceWire

SoftwareBus

InstrumentManagers

CommandIngest

Telemetry Output

1553 Hardware

MemoryManager

DataStorage

MassStorage

File System

TableServices

AttitudeDetermination

&Control

LimitChecker

SpaceWireSensor/actuator

I/O handlers

OrbitModels

SolarArray

High-GainAntenna

Instruments

Note - Some connection omitted for simplicity

Sensors & Actuators

Hardware I/Fs

Device adapters

Page 13: Common Avionics Approach

Common Avionics- Page 137/25/2012

Facets of Common Avionics

• Software– NASA cFE/CFS example of a component software architecture

• Hardware– SpaceAGE bus (intra-box interface definition)

• Modular• Standalone• Scalable

• Interface Control Document definition• Maintain reasonable flexibility with these area

Examples:– Software – allow different operation systems– Hardware – allow different protocols– Electronic Data Sheet (EDS) – work with different software architecture

Page 14: Common Avionics Approach

Common Avionics- Page 147/25/2012

Electronic Data Sheet (EDS)

Page 15: Common Avionics Approach

Common Avionics- Page 157/25/2012

SpaceAGE busIntra-Box Interface Definition

• SpaceAGE bus defines how to integrate Hardware modules together – analogous to cFE/CFS software bus

• Hardware modules analogous to cFE/CFS software components• 2 module types defined – Hub and Node – every box has 1 Hub and one

or more Nodes– Serial interfaces; Protocol agnostic

• Electrical interfaces- Power; Comm; Analog; Clock; Reset; Converter Sync; Module Detect

• Mechanical interface – Card frame– No backplane nor chassis– X&Y dimensions defined – Z (height) not defined (flexible)

• FOMs:– Minimize NRE (cost and schedule)– Broad mission applicability – supports all reliability schemes (cross-strapped, etc.)– Incremental Design

Page 16: Common Avionics Approach

Common Avionics- Page 167/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

HubModule

SpaceAGE Bus Architecture

Legend

SpaceAGE Bus Interface • power• comm.• analog• miscellaneous signals

• typically used for avionics systems

Page 17: Common Avionics Approach

Common Avionics- Page 177/25/2012

HeaterCard

PropCard

PyroCard

ExternalVehicle Control

Bus

HubModule

RIU Example using Integrated Modular Avionics (IMA) Approach

Time Triggered TTP/C (~10 MHz), with Bus Guardian

Legend

Processing, implementation not specified (could be embedded in FPGA)

TTP/CSwitch External I/F to

Higher Controller

Time

Epoch Epoch

TimeSlot

Hypervisor implementing “skinny” version of time-space partitioningSynchronized to Time-triggered data bus

Page 18: Common Avionics Approach

Common Avionics- Page 187/25/2012

ExternalVehicle Control

Bus

HubModule

Distributed IMA (DIMA) Approach

Time Triggered TTP/C (~10 MHz), with Bus GuardianLegend

Processing, implementation not specified (could be embedded in FPGA)

TTP/CSwitch

ExternalVehicle Control

Bus

HubModule

ExternalVehicle Control

Bus

HubModule

NodeNode

Node

Node

Node

Node

CPU1

CPU2

CPU3

Function 1Control

Application

Function 2Control

Application

Function 3Control

Application

OperatingSystem

CPU1

OperatingSystem

CPU2

OperatingSystem

CPU3

CPU1

CPU2

CPU3

sleep sleep

sleepsleep

sleep sleep

sleepsleep

Multiple Timelines Illustrating Distributed Processing Concurrently

Page 19: Common Avionics Approach

Common Avionics- Page 197/25/2012

Application of SpaceAge Bus

Page 20: Common Avionics Approach

Common Avionics- Page 207/25/2012

Implementation Example - Altair

Page 21: Common Avionics Approach

Common Avionics- Page 217/25/2012

Altair Avionics Design Approach (Distribution Process)

• Break vehicle up into sectors– AM and AL into quadrants– DM into upper and lower quadrants

• Gather the MEL components (sensors and actuators) into the various sectors per subsystem function– From ProE vehicle layout drawing

• Select module functions to perform requirement• Estimate board and box sizes and locate Distributed Avionics Units

based upon data to minimize harness mass– Rule of thumb – keep sensors and efforts within 10 feet of Remote Interface Unit

(RIU) – point where harness mass dominates box mass– Otherwise consider adding additional RIU in area

• Reliability analysis• Iterate

Page 22: Common Avionics Approach

Common Avionics- Page 227/25/2012

Location on Vehicle (Example: AM Functions per Quadrant)

23

4 1

1 2 3 4

He Tank w/ Iso

RCS Thruster Pod

GO2 Tanks, Pri & Sec

GN2 Tank

SIRU (2)

He Tank

RCS Thruster Pod

Pumps (2) and Accum., PG Loop

Antenna, S-band

Antenna, Emergency

Bus Repeater

He Tank

RCS Thruster Pod

Antenna, S-band

Antenna, Emergency

Pyro Firing Circuit RMUX A

Bus Repeater

He Tank

He Pyro Valves

RCS Thruster Pod

Get Home GO2 Tank

Sublimator H2O Tank

Inertial Meas. Unit

1/2

MMH Tank w/ Iso

NTO Tank w/ Iso

MMH Tank w/ Iso

NTO Tank w/ Iso

3/4

Optics, LIDAR

GN&C System

4/1

Antenna, S-band

Antenna, Emergency

Battery, Primary

Suit Loop Controllers, P&R

Avionics, LIDAR

2/3

Flight Computer

RMUX, CSA

RMUX

Rendezvous Camera

C&T Radio

Star Tracker

Swing Beds, Amine (2)

Major Constituent Analyzer

Fan Controller

Instrumentation Box **

Side Hatch

Monitor

Keyboard

Controllers (2) Trans, Rotational

Long-Range laser Range Finder

Crew Interface Unit (2)

Crew Microphone Speaker Monitor

Keyboard

Controllers (2) Trans, Rotational

Crew Interface Unit (2)

PDU, Type-1

Accumulator, potable water

Heat Exchanger, LCG Loop

Urine/Waste Collection

Pressurized AM

Unpressurized AM

N2 Controller

Pyro Firing Circuit RMUX B

Flight Computer

Flight Computer

Router, C3I

Video Processing Unit

Disconnect system, AM/DM

Sublimators (2)

Biocide Tank

Propellant Manifold

Electronics, Displays/Controls

Bus Repeater, CSA

Running Light

Running Light

Communication Hub, RCS

Sec. Structure, Instrumentation, RCS

Main Engine

Top Hatch Bed, Trace Contaminant Control

Suit Loop Compressors (2)

Suit Loop Heat Exchanger

Life Support System *

Vehicle Assembly Interface (2)

Vehicle Assembly Interface (2)

Cabin Heat Exchanger

Cabin Fan

Internal Light

Propulsion

ECLSS

C&T

Electrical Power

GN&C

C&DH

Active Thermal Control

Mechanisms

Unknown/Undetermined

* Assumed based on location of “Life Support System Mounting”

** Assumed based on location of “Instrumentation Box Mounting”

Page 23: Common Avionics Approach

Common Avionics- Page 237/25/2012

Propulsion Functions per Module/Sector

VDVSTP

ΔPFI

Valve DriverBilevel Valve StatusTemperaturePressureDiff. PressureFlow IndicatorOxygenO2

Q Liquid Quantity

Stepper Motor DriverPosition Indicator

Ctrl Embedded Controller/Electronics

He Tank

LH2Tank

T T

P P

He Tank

T TH(2)* H(2)* H(2)* H(2)*

NTOTank

MMHTank

T(2)*T(2)*H(2) H(2)

Q Q

MMHPyro Vlv

NTOPyro VlvNSI NSINSI NSI

DM RCS Propulsion Tanks

P P

HeLH2-Ld

Pyro VlvHeLO2-Ld

Pyro VlvNSI NSINSI NSI

VD(2)VS(2)

HeLH2

Iso VlvsVD(2)VS(2)

VD(2)VS(2)

HeLO2

Iso VlvsVD(2)VS(2)

HeLH2-Dr

Pyro VlvNSI NSI HeLO2-Dr

Pyro VlvNSI NSI

VD(2)VS

HeLH2

Vent VlvsVD(2)

VSVD(2)

VSHeLO2

Vent VlvsVD(2)

VS

VD(2)VS

HeLO2

VlvHeLH2-Dr

Pyro VlvNSI NSI

DM MPS LH2 He Pressurization DM MPS LO2 He Pressurization

VDVS

HeIso Vlv

VDVS

HeIso Vlv

HeMech

Regulator

HeMech

RegulatorP P

PT

HeRelief Vlv

HeRelief Vlv

DM He Pnuematic Control Regulator

VDVS(2)

PneIsol Vlv

VDVS

LH2TVS Vlvs

VDVS

VS(2) LH2 TnkVent Vlv

P P

TΔP

L Liquid DepletionSMD*

PI*

LQP

VDVS

LH2TVS Vlvs

VDVS

LH2Stir Fans

LH2 Heat Exch

DM LH2 Tank (x4)

VDVS(2)

PneIsol Vlv

VS(2) LO2 TnkVent Vlv

P P

DM LO2 Tank (x4)

PT

PT

LO2Tank

VDVS

LO2TVS Vlvs

VDVS

TΔP

LQP

VDVS

LO2TVS Vlvs

VDVS

LO2Pumps

LO2 Heat Exch

LH2Manifold

LO2Manifold

PT

PT

LH2 Vent Vlvs

LO2Vent Vlvs

VD(3)VS(2)

VD(3)VS(2)

LH2 PneFill Vlv

LO2 PneFill VlvVS(2) VS(2)

TP

TP

DM Manifolds and DME Feed

He Tank

VD(2)VS

HeIso Vlv

VD(2)VS

He Tank

He Tank

He Tank

HeIso Vlv

VD(2)VS

HeIso Vlv

HeMech

Regulator

HeMech

Regulator

HeMech

Regulator

VD(2)VS

HeMMH

Iso VlvVD(2)

VS

BurstDisk

HeNTO

Pyro VlvsNSI(7) NSI(7)

BurstDisk

AM He Pressurization

NTOTank

MMHTank

MMHIsol Vlv

NTOIsol Vlv

AM Propulsion Tanks

NTOTank

MMHTank

VD(2)VS

VD(2)VS

VD(2)VS

VD(2)VS

VDVS

MMHIso1 Vlv

VDVS

A1

MMH Iso2 Vlv

A2

A3

A4VD(2)

P*T(4)*

VDVS

NTOIso1 Vlv

VDVS

NTO Iso2 Vlv

AM RCS Thruster Pod A

A5

PneIsol Vlvs

VD(2)VS(2)

VD(2)VS(2)

He Purge Vlvs

VD(2)VS(2)

VD(2)VS(2)

AM Ascent Main Engine

DM Descent Main Engine

Pne LH2Prestart

Vlvs

VDVS(4)

P

Pne LO2Prestart

Vlvs

VDVS(4)

P

HeCooldwn

Vlv

VDVS(2)

P

LO2Cnt Vlv

SMDPI

LO2PumpRPM

RPM Tachometer

PT

DMEP

HeStart Vlv

VDVS(2)

P

LH2Pump

RPMT

Pne LH2DscRlfBld

VlvVS(2)

LH2Cvt Vlv

SMDPI

P(2)

Pne LH2IntCldBld

VlvVS(2)

P(3)

Pne LH2MnSht

VlvVS(2)

LH2 Pump

Byp Vlv

SMDPI

LH2 ThrCnt

Vlv

SMDPI

T

VD(4)VS(2)

RCS HeIsol Vlvs

HeMMH

MechRegulator

HeNTO Mech

Regulator

HeMMH

Pyro VlvHeNTO

Pyro VlvNSI NSINSI NSI

DM RCS He PressurizationTP

TP

TP

BurstDisk

BurstDisk

P

H H

MMHPyro VlvNSI NSI

VD(2)VS

MMHIso1 Vlv

VD(2)VS

A1

VD(2)P

T(4)*

MMH Iso2 Vlv

A2

A3

A4

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod A

MMH Tank

MMHPyro VlvNSI NSI

MMHPyro VlvNSI NSI

DM MMH Vent

P(2) P(2)

T

P

P

T

T

H H

HH

H(2)

P(4)T(2)

He Fl VlvVDVS

P

P P

QT

QT

QT

QT

HT*

HT*

HT*

HT*

H(2)

P(2) P(2)VD(2)

P*T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

T

PP

VDVS

MMHIso1 Vlv

VDVS

B1

MMH Iso2 Vlv

B2

B3

B4VD(2)

P*T(4)*

VDVS

NTOIso1 Vlv

VDVS

NTO Iso2 Vlv

AM RCS Thruster Pod B

B5

HT*

HT*

HT*

HT*

H(2)

P(2) P(2)VD(2)

P*T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

T

VDVS

MMHIso1 Vlv

VDVS

C1

MMH Iso2 Vlv

C2

C3

C4VD(2)

P*T(4)*

VDVS

NTOIso1 Vlv

VDVS

NTO Iso2 Vlv

AM RCS Thruster Pod C

C5

HT*

HT*

HT*

HT*

H(2)

P(2) P(2)VD(2)

P*T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

T

VDVS

MMHIso1 Vlv

VDVS

D1

MMH Iso2 Vlv

D2

D3

D4VD(2)

P*T(4)*

VDVS

NTOIso1 Vlv

VDVS

NTO Iso2 Vlv

AM RCS Thruster Pod D

D5

HT*

HT*

HT*

HT*

H(2)

P(2) P(2)VD(2)

P*T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

VD(2)P*

T(4)*H(2)

T

T(2)P(2)P(2)

AMEP(4)

T(4)PI(4)

T

T* T*

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

MMHPyro VlvNSI NSI

VD(2)VS

MMHIso1 Vlv

VD(2)VS

C1

VD(2)P

T(4)*

MMH Iso2 Vlv

C2

C3

C4

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod C

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

MMHPyro VlvNSI NSI

VD(2)VS

MMHIso1 Vlv

VD(2)VS

B1VD(2)

PT(4)*

MMH Iso2 Vlv

B2

B3

B4

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod B

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

MMHPyro VlvNSI NSI

VD(2)VS

MMHIso1 Vlv

VD(2)VS

D1VD(2)

PT(4)*

MMH Iso2 Vlv

D2

D3

D4

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod D

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

T(2)*T(2)*T(2)*T(2)*

1 1/2

4

3

2 4/1

3/4

2/3

2U3U

2U

1U

4U

3U

2L

L

2U

UU

1 2

3 4

1/2 1/2

3/4 3/4

1 2 3 43L 1L

2U

3U

3U

2U

2U

1U3U

L

L

L

L

2U

Could not find separate valves/pumps. Assume

this is all part of the “turbo pump” assembly in bottom

center

1

4

Unconnected on schematic - couldn’t find in

CAD model.

One Isol. Valve on each tank

Assume Iso Valves are included in thruster pods.

Couldn’t find valves on CAD. He doesn’t run to

AME.

Page 24: Common Avionics Approach

Common Avionics- Page 247/25/2012

Distributed Avionics Unit Configuration

Common Controller Slice (HUB)

Subsystem Specific Slicee.g. Propulsion

Subsystem Specific Slicee.g. Thermal

EMI Filter

Logic

Cross Bar Switch(Serial Backplane)

Rx Tx

Vehicle Control Bus(Protocol Program Specific)

Micro-processorMemory

MemoryManagement

Unit

SwitchingIsolated

& POL; LDO

+28V

VDD

Current LimiterCircuit Breaker

Current LimiterCircuit Breaker

Current LimiterCircuit Breaker

Current LimiterCircuit Breaker... ...Switching

Isolated&

POL; LDO

TargetInterface

Power DriverCircuit(s)

AnalogSensingCircuits

(Optional)

VDD

...

SwitchingIsolated

&POL; LDO

TargetInterface

Power DriverCircuit(s)

AnalogSensingCircuits

(Optional)

VDD

...

PrimaryVoltage

Vehicle Control BusPass-Thru

Power EffectorsEffectors Sensors Sensors

Rx TxRx Tx Rx TxRx Tx

Pass-ThruPower

Cabled Interfaces (just Power & Comm. Shown)

Page 25: Common Avionics Approach

Common Avionics- Page 257/25/2012

Example RIU - AM Monitor 1

E-A

-C

H18

D4H

32D

A T-A

-C

H16

V6H

32D

A

Pow

er S

uppl

y &

Con

trolle

r

End

Cap

ECLSS

ATCS

C&DH

C&T

Power

GN&C

Mech

Prop

Structure

ATCS

End

Cap

Functional Description:

C&TRF Switches

ECLSSVent valvesLGC systemPotable waterSuit loopSwing bed controlCabin air supplyCabin air returnCabin Waste venting

ATCSPumpsAccumulatorPropylene Glycol LoopPowerSwitching

Location:AM Pressurized

Size:10” x 7.5” x 6.5” (L x W x H) L x W = mounting surface (includes 0.75” flange)W x H = connector face

P-A

-CH

16H

P-A

-CH

16H

E-A

-C

H18

D4H

32D

A

Con RPC 1 FET 2 FET3

FET Analog Inputs Digital InputsPowerWiring

C&DH Wiring 22 AWG

Name Type

Relay RPC Sw

Serv H RD VD SMD NSI VS T P dP L Fl O2 Q PlNetwork

Serial RPM

Power

ServicesAWG ??

Power

ServicesAWG 16 TP

Power

ServicesAWG 20 TP

AWG 22 TSP

AWG 26 TSP

AWG 26 TST

Harness Mass (80 wires @

10ft)

Mass(Kg)

Power(W)

 TOTAL       26   8 18 1   25 4 10 2 1 3 2   1 1 4       6 27 49 4 5.6 kg 7.81 21.00Controller & PS HUB-6U                                   1 4       1   1 4 1.07 4.80AM C&T Monitor 1 C-6U-CH18D4H32DA         8       13                           1 8 13   1.07 0.98AM ECLSS Monitor 1 E-6U-CH18D4H32DA           14 1   10 4 8 2 1 2 2   1           1 15 30   1.07 2.23AM ATCS Monitor 1 T-6U-CH16V6H32DA           4     2   2     1                 1 4 5   1.07 2.78AM Monitor 1, SSC 1 S-6U-CH16     13                                       1       1.07 5.11AM Monitor 1, SSC 2 S-6U-CH16     13                                       1       1.07 5.11Internal Harness                                                       0.85  End Caps (2 ea)                                                       0.54  

Page 26: Common Avionics Approach

Common Avionics- Page 267/25/2012

Example RIU - AM Prop Monitor

ECLSS

ATCS

C&DH

C&T

Power

GN&C

Mech

Prop

Structure

ATCS

P-A

-C

H11

T32D

A

Pow

er S

uppl

y &

Con

trolle

r

End

Cap

End

Cap

P-A

-C

H11

T32D

A

Functional Description:PropHe Tanks StatusHe Tanks Iso ValvesMMH Tanks StatusMMH Tanks Iso ValvesNTO Tanks StatusNTO Tanks Iso Valves

PowerSwitching

Location:AM Unpressurized

Size:10” x 5.5” x 6.5” (L x W x H) L x W = mounting surface (includes 0.75” flange)W x H = connector face

P-A

-CH

16H

Con RPC 1 FET 2 FET3

FET Analog Inputs Digital InputsPowerWiring C&DH Wiring 22 AWG

Name Type

Relay RPC Sw

Serv H RD VD SMD NSI VS T P dP L Fl O2 Q PlNetwork

Serial RPM

Power

ServicesAWG ??

Power

ServicesAWG 16 TP

Power

ServicesAWG 20 TP

AWG 22 TSP

AWG 26 TSP

AWG 26 TST

Harness Mass (49 wires @

10ft)Mass(Kg)

Power(W)

 TOTAL       13     19     10 6 9         4   1         4 19 30   3.4 5.47 11.93Controller & PS HUB-6U                                   1         1   1   1.07 4.80AM Prop Mon AME P-6U-CH11T32DA           10     5 3 5         2             1 10 15   1.07 1.01AM Prop Mon AME P-6U-CH11T32DA           9     5 3 4         2             1 9 14   1.07 1.01AM Prop Monitor, SSC 1 S-6U-CH16     13                                       1       1.07 5.11Internal Harness                                                       0.65  End Caps (2 ea)                                                       0.54                                                             

Page 27: Common Avionics Approach

Common Avionics- Page 277/25/2012

Avionics Totals

Con RPC 1 FET 2 FET3

FET Analog Inputs Digital InputsPowerWiring C&DH Wiring 22AWG

Module Box

Relay RPC Sw

Serv H RF SW VD SMD NSI VS T P dP L Fl O2 Q Pl

Network

Serial RPM

Power

ServicesAWG ??

Power

ServicesAW

G 16 TP

Power

ServicesAW

G 20 TP

AWG 22 TSP

AWG 26 TSP

AWG 26 TST

# wires 10ft)

Harness

MassMass(Kg)

Power(W)

Grand Total   15 150 249 121 18 289 15 58 225 271 170 10 10 6 3 14 17 26 4     150 96 501 752 4 204.02 342.74AM Total   5 65 121 59 16 120 1 20 86 130 70 2 2 5 2 4 5 12 4     65 42 216 318 4 535 37.4 88.87 151.82  AM Monitor 1 Total     26   8 18 1   25 4 10 2 1 3 2   1 1 4       6 27 49 4 80 5.6 7.71 21.00  AM Monitor 2 Total     26 3 8 27     35 20 15   1 2     4 1         7 38 78   116 8 8.88 22.02  AM Prop Monitor Total     13     19     10 6 9         4   1         4 19 30   49 3.4 5.37 11.93  AM RCS Driver 1 Total       14   14     4 25 9             1         3 28 39   67 4.7 4.20 10.72  AM RCS Driver 2 Total       14   14     4 25 9             1         3 28 39   67 4.7 4.20 10.72  AM RCS Driver 3 Total       14   14     4 25 9             1         3 28 39   67 4.7 4.20 10.72  AM RCS Driver 4 Total       14   14     4 25 9             1         3 28 39   67 4.7 4.20 10.72  AM Pyro Driver (P) Total               10                   1         3 10 1   11 0.8 4.20 6.15  AM Pyro Driver (R) Total               10                   1         3 10 1   11 0.8 4.20 6.15  AM MBSU Total 5 11                               1       11 1   1   22.38 6.05  AM PDU 1 Total   30 28                             1       30 3   1   10.26 18.13  AM PDU 2 Total   24 28                             1       24 3   1   9.05 17.51DM Total   10 76 121 62 2 162 14 38 132 138 97 8 8 1   10 12 12       76 50 278 418   693 48.4 106.66 172.73  DM Monitor 1 Total     13     36 12   34 12 18     1     12 1         7 48 78   126 8.8 8.88 20.27

 DM Prop Mon MPS 1 Total     14 4   32     44 17 23 4 4     4   1         6 36 97   133 9.3 7.71 20.65

 DM Prop Mon MPS 2 Total     14 4   26     35 14 18 4 4     4   1         6 30 80   110 7.7 7.71 20.65

  DM RCS Driver 1 Total     13 12 2 16 2   5 21 8             1         5 32 35   67 4.7 6.54 16.26

 DM RCS Mon Driver 2 Total     13 18   20     6 32 14         2   1         5 38 55   93 6.5 6.54 17.97

  DM RCS Driver 3 Total     13 12   16     4 21 8             1         4 28 34   62 4.3 5.37 15.28  DM RCS Driver 4 Total     13 12   16     4 21 8             1         4 28 34   62 4.3 5.37 15.28  DM Pyro Driver (P) Total               19                   1         4 19 1   20 1.4 5.37 6.83  DM Pyro Driver (R) Total               19                   1         4 19 1   20 1.4 5.37 6.83  DM MBSU Total 10 17                               1       17 1   1   29.60 6.67  DM PDU 1 Total   30 14                             1       30 2   1   9.09 13.03  DM PDU 2 Total   29 14                             1       29 2   1   9.09 13.03AL Total     9 7     7     7 3 3       1     2       9 4 7 16   22 1.5 8.49 18.19  AL ECLSS Monitor Total           7     7 3 3       1     1         2 7 15   22 1.5 3.03 7.03  AL PDU Total   9 7                             1       9 2   1   5.45 11.15                                                           

Page 28: Common Avionics Approach

Common Avionics- Page 287/25/2012

Portion of Altair C&DH MELDistributed Control Unit (DCU); DM Reaction Control System (RCS) Monitor/Driver # 4

100 HUB-6U101 P-6U-CH8T6H32DA; Propulsion driver, heater, telemetry card102 P-6U-CH8T6H32DA; Propulsion driver, heater, telemetry card103 S-6U-CH16; Power switched service card104 DCU internal cable harness105 Enclosure end plates

Distributed Control Unit (DCU); DM Pyrotechnics Drive, Prime106 HUB-6U107 I-6U-CH7N108 I-6U-CH7N109 I-6U-CH7N110 DCU internal cable harness111 Enclosure end plates

Distributed Control Unit (DCU); DM Pyrotechnics Drive, Redundant112 HUB-6U113 I-6U-CH7N114 I-6U-CH7N115 I-6U-CH7N116 DCU internal cable harness117 Enclosure end plates

Distributed Control Unit (DCU); AL, ECLSS Monitor118 HUB-6U119 E-6U-CH18D4H32DA; ECLSS driver, heater, status card120 DCU internal cable harness121 Enclosure end plates

Flight Computer; AM, # 1122 HUB-6U123 CDH-6U-SBC124 DCU internal cable harness125 Enclosure end plates

Page 29: Common Avionics Approach

Common Avionics- Page 297/25/2012

LCRD Example

Page 30: Common Avionics Approach

Common Avionics- Page 307/25/2012

Building Blocks Used on LCRD

• Three building block elements initially developed– Reprogrammable Digital board– Analog board– Memory board

• Schematics developed initially under constellation funding• Layout and reviews done under LCRD funding• Boards can be interconnected within modules to form different

functional modules– HUB – Digital board and Analog board– Data Processing Storage Unit (DPSU) – Digital board and Memory board– Channel Coding Output Buffer (CCOB) – 2 Digital boards

• Approach allowed different combinations of boards and modules to be traded to match performance requirements– Allowed board development to continue as system changed

Page 31: Common Avionics Approach

Common Avionics- Page 317/25/2012

LCRD Application of Building Blocks

• Data Processing and Storage Unit (DPSU)– Stores high rate data for Payload

operational modes– Supports store and forward function– Provides T&C interfaces to CEs

through SpaceWire• Channel Coding and Output

Buffer (CCOB) (2)– Multi-rate gigabit non-blocking,

crossbar switch to internal/external functional elements (DPSU, CCOB and Integrated Modems)

– Performs Forward Error Correction (FEC) decode/encode based on Integrated Modem operational mode

– Provides translation of frame format and data link buffering to switch

– Performs channel data interleave/de-interleave function

DPSU

CCOB 1 CCOB 2

Integrated Modem 1

Integrated Modem 2

HSECE1 CE2SpW1

SpW2SpW2

SpW1

Page 32: Common Avionics Approach

Common Avionics- Page 327/25/2012

Digital Board Layout

Page 33: Common Avionics Approach

Common Avionics- Page 337/25/2012

Actel FPGARTAX4000SCCGA1272

Expa

nsio

n C

onne

ctor

AEx

pans

ion

Con

nect

or B

RelayFET

RelayFET

Card’s Front2Tbits of user space

SerDes

Sab

ritec

Spa

ceA

GE

Bus

Card’s Back

PH

YP

HY

Sam

tec

SpWx2

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

MW

DM

-51P

Debug C

onn.

Buffers

Sam

tec64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

64G

bFl

ash

5V/1

5W D

C/D

C

1.5VPOL

3.3VPOL

2.5VULDO

SerDes

Sam

tec MW

DM

-9SM

WD

M-9S

Sab

ritec

Spa

ceA

GE

Bus

33uF 75V

Layout of Memory Module

Page 34: Common Avionics Approach

Common Avionics- Page 347/25/2012

LCRD High Speed Electronics (HSE) Mechanical

Page 35: Common Avionics Approach

Common Avionics- Page 357/25/2012

End – Thank you

Page 36: Common Avionics Approach

Common Avionics- Page 367/25/2012

CommModule

SSRModule

External Analog

TlmModule

C&DH – Single String(LRO Mapping using LCRD elements)

SpaceWireLegend

Embedded processor in FPGA

ExternalVehicle Control

Bus

HubModule

Mil-Std 1553b

Mil-Std 1553b

Low rate SpaceWire using Manchester encoding over intra-box interfaceGigabit SpaceWire 2 (SpaceFiber protocol) over intra-box interface

Instrument B I/F

Instrument A I/F

Instrument C I/F

UART I/F

Comm Module: 2 Digital boardsSSR Module: 1 Digital board & 1 Memory boardHub Module: 1 Digital board & 1 Analog boardExternal Analog Tlm Module: New design

Page 37: Common Avionics Approach

Common Avionics- Page 377/25/2012

CommModule

SSRModule

External Analog

Tlm

C&DH – Redundant Processor(LRO Mapping using LCRD elements)

SpaceWireLegend

Embedded Self Checking Pairs (SCP); One BC other Monitor on 1553

ExternalVehicle Control

Bus

HubModule

ExternalVehicle Control

Bus

HubModule

Mil-Std 1553b

Mil-Std 1553b; one Hub module BC, other Hub Module Monitor, switchable through backdoor control over SpaceWire

Low rate SpaceWire using Manchester encoding over intra-box interfaceGigabit SpaceWire 2 (SpaceFiber protocol) over intra-box interface

Instrument B I/F

Instrument A I/F

Instrument C I/F

UART I/F

Comm Module: 2 Digital boardsSSR Module: 1 Digital board & 1 Memory boardHub Module: 1 Digital board & 1 Analog boardExternal Analog Tlm Module: New design

Page 38: Common Avionics Approach

Common Avionics- Page 387/25/2012

Backup

Page 39: Common Avionics Approach

Common Avionics- Page 397/25/2012

SpaceAge Bus – Electrical

Page 40: Common Avionics Approach

Common Avionics- Page 407/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

*EMIFilter

Power In

HubModule

Power - Single Voltage Distribution

Non-Digital Power and Return, Redundant Pair (LCRD implementation used primary power)

Power Switch

Legend

* Power conversion could also be done here (LCRD does not)

Page 41: Common Avionics Approach

Common Avionics- Page 417/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

*X-Bar SwitchExternal

Vehicle Control Bus

HubModule

Communications - Serial Full Duplex

2 uni-directional differential pairs, i.e., need to encode data & clock on same pair

Legend

Non-Blocking, protocol agnostic – multiple different protocols may be bridged via switch(LCRD uses SpaceWire 2 – new multi-Gigabit version of SpaceWire)

*

Page 42: Common Avionics Approach

Common Avionics- Page 427/25/2012

NodeModule

Node Module

NodeModule

Node Module

Node Module

Node Module

Node Module

ExternalVehicle Control

Bus

HubModule

Processing

2 uni-directional differential pairs, used for communicating with Nodes

Legend

Processing, implementation not specified (could be embedded in FPGA)

Page 43: Common Avionics Approach

Common Avionics- Page 437/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

HUB InternalAnalog Tlm

HubModule

Analog Telemetry Gathering

1 Analog signal and ground pair

Legend

ADC OutIn

AnaMux

I0

I1

Sel

Out

Page 44: Common Avionics Approach

Common Avionics- Page 447/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

ClockGen

HubModule

Clock Distribution

Differential pair, Node defined, may be different between nodes.Multiple uses - could be 1 Hz pulse, etc.

Legend

Page 45: Common Avionics Approach

Common Avionics- Page 457/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

ResetGen

HubModule

Reset Distribution

Legend

Signal and Return (Return shared with “Sense” signal),Node defined electrical and protocol

Page 46: Common Avionics Approach

Common Avionics- Page 467/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

SenseDetect

HubModule

Node Presence “Sense”

Legend

Signal and Return (Return shared with “Sense” signal),Allows hot-plugability of Node

Page 47: Common Avionics Approach

Common Avionics- Page 477/25/2012

NodeModule

Node Module

Node Module

Node Module

Node Module

Node Module

Node Module

ConverterSync

HubModule

Nodes “Converter Sync” Signal

Legend

Signal and Return same as Power Return,Used to reduce EMI by synchronizing switching converters on each Node

Page 48: Common Avionics Approach

Common Avionics- Page 487/25/2012

SpaceAge Bus – Mechanical

Page 49: Common Avionics Approach

Common Avionics- Page 497/25/2012

Assembled System View(Modules with EMI Shields)

Page 50: Common Avionics Approach

Common Avionics- Page 507/25/2012

Transparent View(Modules without EMI Shields)

Page 51: Common Avionics Approach

Common Avionics- Page 517/25/2012

L-Bracket (Front – Module Side)

Page 52: Common Avionics Approach

Common Avionics- Page 527/25/2012

L-Bracket (Back – Harness Side)

Page 53: Common Avionics Approach

Common Avionics- Page 537/25/2012

Suggested Cross Section View for HUB Enclosure

Page 54: Common Avionics Approach

Common Avionics- Page 547/25/2012

Suggested HUB Architecture (Digital Section)

16MBSRAM

w/EDAC

+2.5V

+1.5V

+1.0V

Serial_CommBack sideNodeInterfaces(7 ports)

Reprogrammable NV Memory w/EDAC:

A) Xilinx Configuration,B) Xilinx CPU ROM,C) Scratchpad RAM

2 banks x 8MB

3.3V Converter Synchronization

SystemClock POR

2 PortsSpWire

JTA

G 1

JTAG 2

Node Clock

Analog TLM and TLM Control

GSEConnector

Deb

ug S

etup

+3.3

DigitalGND

(Through Analog Card)

Xilinx Virtex-5FPGA

Node Power Control

Node Plug-in Sense

ExternalLVDS

HUB InternalVoltageTelemetry

FPGA Supervisor:Actel AX2000 or AX4000 with built-in IP cores for:

CPU, SpW, NVRAM programmer, etc.

2 HUBS

32b Local Bus

Functions:a) Full Duplex I/Fb) Clock Exchangec) Mutual Reset

Memory Bus

S/C Communications

2x16MBSRAM

w/EDAC

(Through Analog Card)

Node Reset Control

Peer Hub Communications

+1.8V

256MBSDRAMw/EDACBank 3

ExternalLVDS

Flexible DebugCommunications:

UART,10M Ethernet(Can be also used as S/C General PurposeCommunication ports)

2 Ports

LVDSClock

Configuration 8b Slave Bus

w/ CRC Check

(Through Analog Card)

Peer HUB and ID Sense

256MBSDRAMw/EDACBank 2

+1.2Van+1.0Van

Bank 1: mainBank 2: auxiliary

(8bits+addr)

256MBSDRAMw/EDACBank 1

256MBSDRAMw/EDACBank 4

ExpansionPort A

32b

ExpansionPort B

32b

Inte

rface

Por

ts A

&B

+3.3 +3.3

MOSFET Switches

LocalDigital

DomainDC/DC

Converters< 20W

+5.0V

On-boardIsolated

28V PowerConverter

+28V

+28Vret

Selectable:MIL-STD-1553B, or

Dual RS-485 I/F

SerDes

Serial_Comm

SerDes

Front sideS/CInterfaces(4 ports)

1553

/RS

-485

Por

ts

Redundant X-over

Page 55: Common Avionics Approach

Common Avionics- Page 557/25/2012

Suggested HUB Architecture (Analog TLM & Power)

Page 56: Common Avionics Approach

Common Avionics- Page 567/25/2012

SpaceAGE Bus Signal AssignmentsGroup

Sub Group

Function PinNode Bus Connector

Flow Direction

Hub Bus Connector

Flow Direction

Redundant Hub Notes

1 TX+ ← RX+

2 RX+ → TX+

3 TX− ← RX−

4 RX− → TX−

1 Clock_in+ ← Clock_out+

2 Analog_out+ → Analog_in+

3 Clock_in− ← Clock_out−

4 Analog_out- → Analog_in-

1 Node Power ← Node Power

2 Node Power ← Node Power

3 Power Return → Power Return

4 Power Return → Power Return

1 Reset_in ← Reset_out

2 HUB GND ← HUB GND

3 Sense_out → Sense_in

4 Converter sync ← Converter sync

1 X_TX+ X_TX+

2 X_Clock_out+ X_Clock_out+

3 X_TX− X_TX−

4 X_Clock_out- X_Clock_out-

1 X_RX+ X_RX+

2 X_Clock_in+ X_Clock_in+

3 X_RX− X_RX−

4 X_Clock_in- X_Clock_in-

1 X_Reset_out+ X_Reset_out+

2 Peer_Hub out Peer_Hub out

3 X_Reset_out− X_Reset_out−

4 Config_out Config_out

1 X_Reset_in+ X_Reset_in+

2 Case GND Case GND

3 X_Reset_in− X_Reset_in−

4 Case GND Case GND

Reset, Node Sense and

DC/DC Sync

Hub

to H

ub

Cr

osso

ver B

us

(4

inse

rts f

or a

n ex

tra

Hub)

Digital

Reset and

Config

Hub

to N

ode

Bus

(28

inse

rts o

ut o

f 32

for 7

Nod

es)

Digital

Serial Communication

Clock and Analog IF

Power and

Analog

Power Supply

Peer_Hub tells each Hub that its Peer Hub is in

Master Hub (A) - no jumper, Slave (B) - external jumper

X_Reset allows each Hub to reset its peer Hub either by

command, or by lack of communications for the

TBD time period

Cross Communication

Cross Clock

Cross Reset

Mster-Slave Configuration and Peer Hub

Plug-in

Full Duplex link. Diagonal pins 1-3 and 2-4 provide 100Ω impedance

Full Duplex cross link. Diagonal pins 1-3 and 2-4 provide 100Ω impedance

Allows both Hubs to share common clock

Up to 3A@18V of derated Node current;

DC/DC Sync is 200-800KHZ free running 5V clock;

Hub generated Power Fail

Optoisolated "Reset" from Hub and DC converter Sync; "Sense" tells Hub if Node is

plugged in and secured

Clock function is defined by Node end user

Node may have extra active analog telemetry, or 1

linear AD590 thermsitor;

Page 57: Common Avionics Approach

Common Avionics- Page 577/25/2012

Example RIU - AL ECLSS Monitor

ECLSS

ATCS

C&DH

C&T

Power

GN&C

Mech

Prop

Structure

ATCS

Pow

er S

uppl

y &

Con

trolle

r

End

Cap

End

Cap

Functional Description:ECLSSHigh pressure O2 controlPLSS

Size:10" x 3.5” x 6.5" (L x W x H) L x W = mounting surface (includes 0.75” flange)W x H = connector face

E-A

-C

H18

D4H

32D

A

Con RPC 1 FET 2 FET3

FET Analog Inputs Digital InputsPowerWiring C&DH Wiring 22 AWG

Name Type

Relay RPC Sw

Serv H RD VD SMD NSI VS T P dP L Fl O2 Q Pl Network

Serial RPM

Power

ServicesAWG

??

Power

ServicesAWG 16 TP

Power

ServicesAWG 20 TP

AWG 22 TSP

AWG 26 TSP

AWG 26 TST

Harness Mass (22 wires @

10ft)Mass(Kg)

Power(W)

 TOTALS             7     7 3 3       1     1         2 7 15   1.5 kg 3.13 7.03Controller & PS HUB-6U                                   1         1   1   1.07 4.80ECLSS E-6U-CH18D4H32DA           7     7 3 3       1               1 7 14   1.07 2.23Internal Harness                                                       0.45  End Caps (2 ea)                                                       0.54                                                             

Page 58: Common Avionics Approach

Common Avionics- Page 587/25/2012

23

4 1

U

L

1U 2U 3U 4U4/1U 1/2U 2/3U 3/4U

1L 2L 3L 4L4/1L 1/2L 2/3L 3/4L

LO2 Tank

Radiator

LH2 Tank

Porch Light

LO2 Tank

Radiator

Antenna, Whip, EVA

LH2 Tank

NTO Tank

MMH Drain Tank

LO2 Tank

Radiator

LH2 Tank

MMH Tank

LO2 Tank

Radiator

LH2 Tank

Power Distribution Unit

Fuel Cell Ancillaries

He Tank (LO2 Press.)

Terrain Hazard Detection

Electronics, Radar, Sec.

Remote Multiplexer Unit

Bus Repeaters (2)

He Tank (LH2 Press.)

Inter-loop Heat Exchanger

Fuel Cell Hydrogen Tank

Fuel Cell Stacks (2)

Pump & Accumulator

H2O Tank, Thermal

Electronics, Radar, Pri.

Radar Antenna

Survival Heater

TurboPump Assembly

Main Engine

C&T Radio

RCS Valves

Regulator Pkg, Pneumatic Ctrl.

DME Controller

Landing Gear Mechanisms*

Landing Gear Mechanisms*

Landing Gear Mechanisms*

Landing Gear Mechanisms*

*Assumed location – Pyros not found on CAD model.

Propulsion

ECLSS

C&T

Electrical Power

GN&C

C&DH

Active Thermal Control

Mechanisms

Unknown/Undetermined

DM Functions per Quadrant

Page 59: Common Avionics Approach

Common Avionics- Page 597/25/2012

1

23

4

1 2 3 41/2

Main Airlock Hatch

High-Pressure O2 System

3/44/1

High-Pressure O2 Accumulator

2/3

Airlock Hatch/Tunnel

Unpressurized Airlock

PDU

Crew Interface Micro./Speaker

Suit Service Unit Repeater

RMUX

EVA Battery Charger

Life Support System, Pri. (4)

Controls Module, EVA (4)

Whip Antenna, EVA Checkout

Pressurized AM

RMUX *

*Assumption based on location of an RMUX coldplate

Propulsion

ECLSS

C&T

Electrical Power

GN&C

C&DH

Active Thermal Control

Mechanisms

Unknown/Undetermined

AL Functions per Quadrant

Page 60: Common Avionics Approach

Common Avionics- Page 607/25/2012

DM Propulsion FunctionsBay 1U

Bay 1L

Bay 2U

Bay 2L

LH2Tank

LQP

LO2Tank

LQP

Bay 3L

VDVS LH2

Valves

VDVS

VDVS(2)

VDVS LO2

Valves

VDVS

VDVS(2)

TΔP

TΔP

2/3

Bay 4L

Bay 2U/3U RCS

VD(4)VS(2) He

Pressurization

T(3)P(4)

H(2)T(2)*

NTOTank

MMHTank

T(2)*T(2)*H(2) H(2)

Q Q

MMH Tank

P

P

T(2)

He Tank

T TH(2)* H(2)*

P P

He ValvesVD(2)

VS(2)VD(2)VS(2)

T(2)*T(2)*

LH2Tank

LQP

LO2Tank

LQP

VDVS LH2

Valves

VDVS

VDVS(2)

VDVS LO2

Valves

VDVS

VDVS(2)

TΔP

TΔP

4/1

LH2Tank

LQP

LO2Tank

LQP

VDVS LH2

Valves

VDVS

VDVS(2)

VDVS LO2

Valves

VDVS

VDVS(2)

TΔP

TΔP

1/2

LH2Tank

LQP

LO2Tank

LQP

VDVS LH2

Valves

VDVS

VDVS(2)

VDVS LO2

Valves

VDVS

VDVS(2)

TΔP

TΔP

3/4

VS(2)

P P

PT

VDVS LH2

Valves

VDVS

VDVS

VDVS

VS(2) LO2 Valves

P P

PT

VS(2)

P P

PT

VDVS

LH2Valves

VDVS

VDVS

VDVS

VS(2)LO2

Valves

P P

PT

1/2

4/1

VD(2)VS HeLO2

Vlvs

VD(2)VS

VD(2)VS

He Tank

T T

P P

H(2)* H(2)*

He Valves

VD(2)VS(2)

VD(2)VS(2)

T(2)*T(2)*

LH2Valves

LO2 Valves

HeLO2

Vlvs

LH2Valves

LO2 Valves

VS(2)P P

PT

VDVS

VDVS

VDVS

VDVS

VS(2)

P PPT

VD(2)VS

VD(2)VS

VD(2)VS

VS(2)P P

PT

VDVS

VDVS

VDVS

VDVS

VS(2)

P PPT

LH2 Valves

LO2 Valves

HeLO2

Vlvs

LH2 Valves

LO2 Valves

He Drain Valves

VS(9)

P(3)

P(4)T(4)

VD(8)VS(7)

VD(4)

P(3)

VD(8)VS(7)

LO2 Tank

LO2 Valves

He Tank

LH2 Tank

LH2 Valves

He Valves

LO2 Tank

LO2 Valves

LH2 Valves

LH2 Tank

LQPT

ΔP

VDVS

VDVS

VDVS(2)

LQPT

ΔP

VDVSVD

VS(2)

VDVS

VD(2)VS(2)

VD(2)VS(2)

T T

P P

H(2)* H(2)*T(2)*T(2)*

LQPT

ΔP

VDVS

VDVS

VDVS(2)

LQPT

ΔP

VDVSVD

VS(2)

VDVS

LO2 Tank

LO2 Valves

He Tank

He Valves

LH2 Tank

LH2 Valves

L(2)

LH2 Tank

LH2 Valves

LO2 Tank

LO2 Valves

H(2)T(3)

Q(2)ΔP(2)

H(2)T(3)

He Pressuriz

ation

MMH Tank

MMH Pyro Vlv

NTO Tank

NTO Pyro Vlv

MMH Valves

H(2)P(4)T(5)

VD(4)VS(2)

T(2)H(2)

Q

Q

T(2)H(2)

MMH Drain Tank

P

PT(2)

He Pressuriza

tion

MMH Tank

MMH Pyro Vlv

NTO Tank

NTO Pyro Vlv

MMH Valves

VS(2)H(6)T(11)

VD(4)

P(6)

MMH Drain Tank

VS(16)

P(2)

P(6)T(6)

VD(4)VS(4)

P(2)

VD(4)VS(4)

L(2)Q(2)ΔP(2)

LO2 Tank

LO2 Valves

He Tank

LH2 Tank

LH2 Valves

He Valves

LO2 Tank

LO2 ValvesLH2 Valves

LH2 Tank

LQPT

ΔP

VDVS

VDVS

VDVS(2)

LQPT

ΔP

VDVSVD

VS(2)

VDVS

VD(2)VS(2)

VD(2)VS(2)

T T

P P

H(2)* H(2)*T(2)*T(2)*

LQPT

ΔP

VDVS

VDVS

VDVS(2)

LQPT

ΔP

VDVSVD

VS(2)

VDVS

LO2 Tank

LO2 Valves

He Tank

He Valves

LH2 Tank

LH2 Valves

VD(2)VS(8)L(2)

LH2 Tank

LH2 Valves

LO2 Tank

LO2 Valves

H(2)T(3)

Q(2)P(5)T(5)

ΔP(2)

H(2)T(3)

VD(2)VS(8)L(2)Q(2)P(4)T(4)

ΔP(2)

VD(2)VS

MMHIso1 Vlv

VD(2)VS

A1VD(2)

PT(4)*

MMH Iso2 Vlv

A2

A3

A4

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod A

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)VS

MMHIso1 Vlv

VD(2)VS

C1VD(2)

PT(4)*

MMH Iso2 Vlv

C2

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod C

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)VS

MMHIso1 Vlv

VD(2)VS

B1VD(2)

PT(4)*

MMH Iso2 Vlv

B2

B3

B4

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod B

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)VS

MMHIso1 Vlv

VD(2)VS

D1VD(2)

PT(4)*

MMH Iso2 Vlv

D2

VD(2)VS

NTOIso1 Vlv

VD(2)VS

NTO Iso2 Vlv

DM RCS Thruster Pod D

P(2) P(2)

T

H H

HH

H(2)

T* T*

T*T*

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

VD(2)P

T(4)*H(2)

2U

1U

4U

3U

Thruster Valves

Thrusters

VS(4)P(4)H(4)T(5)*

Thruster Valves

Thrusters

VD(8)

P(4)H(8)

T(16)*

VD(8)

VS(4)P(8)

H(12)T(21)

VD(16)

Thruster Valves

Thrusters

VS(4)P(4)H(4)T(5)*

Thruster Valves

Thrusters

VD(8)

P(4)H(8)

T(16)*

VD(8)

VS(4)P(8)

H(12)T(21)

VD(16)

Thruster Valves

Thrusters

VS(4)P(4)H(4)T(5)*

Thruster Valves

Thrusters

VD(8)

P(4)H(8)

T(16)*

VD(8)

VS(4)P(8)

H(12)T(21)

VD(16)

Thruster Valves

Thrusters

VS(4)P(4)H(4)T(5)*

Thruster Valves

Thrusters

VD(8)

P(4)H(8)

T(16)*

VD(8)

VS(4)P(8)

H(12)T(21)

VD(16)

DM Descent Main Engine

Pne LH2Prestart

Vlvs

VDVS(4)

P

Pne LO2Prestart

Vlvs

VDVS(4)

P

HeCooldwn

Vlv

VDVS(2)

P

LO2Cnt Vlv

SMDPI

LO2PumpRPM

PT

DMEP

HeStart Vlv

VDVS(2)

P

LH2Pump

RPMT

Pne LH2DscRlfBld

VlvVS(2)

LH2Cvt Vlv

SMDPI

P(2)

Pne LH2IntCldBld

VlvVS(2)

P(3)

Pne LH2MnSht

VlvVS(2)

LH2 Pump

Byp Vlv

SMDPI

LH2 ThrCnt

Vlv

SMDPI

T

L

Could not find separate valves/pumps. Assume

this is all part of the “turbo pump” assembly in bottom

center

He Pressuriza

tion

MMH Tank

MMH Pyro Vlv

NTO Tank

NTO Pyro Vlv

MMH Valves

VS(18)PI(4)T(3)

P(11)

MMH Drain Tank

SMD(4)

VD(4)

RPM(2)

LH2 Vent Vlvs

LO2Vent Vlvs

VD(3)VS(2)

VD(3)VS(2)

Vent Valves

VD(6)VS(4)

VD(8)

Vent Valves

LH2 PneFill Vlv

LO2 PneFill VlvVS(2) VS(2)

TP

TP

Pne Fill Valves

VS(4)T(2)P(2)

Bay 3U

VS(2)

P P

PT

VDVS LH2

Valves

VDVS

VDVS

VDVS

VS(2) LO2 Valves

P P

PT 2/3

VDVS Pneumatic

Regulator

VDVS

P P

PT

VD(2)VS HeLH2

Valves

VD(2)VS

LH2Valves

LO2 Valves

Pneumatic Regulator

HeLH2

Valves

VS(2)P P

PT

VDVS

VDVS

VDVS

VDVS

VS(2)

P PPT

VDVS

VDVS

PT

P P

VD(2)VS

VD(2)VS

LH2 Valves

LO2 Valves

Pneumatic Regulator

HeLH2

Valves

P(4)

VD(9)VS(8)

P(4)

VD(9)VS(8)

Bay 4U

VS(2)

P P

PT

VDVS LH2

Valves

VDVS

VDVS

VDVS

VS(2) LO2 Valves

P P

PT

3/4

LH2Valves

LO2 Valves

VS(2)P P

PT

VDVS

VDVS

VDVS

VDVS

VS(2)

P PPT

LH2 Valves

LO2 Valves

P(2)

VD(4)VS(4)

P(2)

VD(4)VS(4)

Bay 1

Bay 2

Bay 3

Bay 4

RCS

Page 61: Common Avionics Approach

Common Avionics- Page 617/25/2012

DM Propulsion Bay 3 Upper/Lower

LH2Tank

LQP

LO2Tank

LQP

Bay 3L

VDVS LH2

Valves

VDVS

VDVS(2)

VDVS LO2

Valves

VDVS

VDVS(2)

TΔP

TΔP

2/3

He Tank

T TH(2)* H(2)*

P P

He ValvesVD(2)

VS(2)VD(2)VS(2)

T(2)*T(2)*

LO2 Tank

LO2 Valves

He Tank

He Valves

LH2 Valves

LH2 Tank

LQPT

ΔP

VDVS

VDVS

VDVS(2)

LQPT

ΔP

VDVSVD

VS(2)

VDVS

VD(2)VS(2)

VD(2)VS(2)

T T

P P

H(2)* H(2)*T(2)*T(2)*

LO2 Tank

LO2 Valves

He Tank

He Valves

VD(2)VS(8)L(2)

LH2 Tank

LH2 Valves

H(2)T(3)

Q(2)P(5)T(5)

ΔP(2)

H(2)T(3)

Bay 3U

VS(2)

P P

PT

VDVS LH2

Valves

VDVS

VDVS

VDVS

VS(2) LO2 Valves

P P

PT 2/3

VDVS Pneumatic

Regulator

VDVS

P P

PT

VD(2)VS HeLH2

Valves

VD(2)VS

LH2Valves

LO2 Valves

Pneumatic Regulator

HeLH2

Valves

VS(2)P P

PT

VDVS

VDVS

VDVS

VDVS

VS(2)

P PPT

VDVS

VDVS

PT

P P

VD(2)VS

VD(2)VS

LH2 Valves

LO2 Valves

Pneumatic Regulator

HeLH2

Valves

P(4)

VD(9)VS(8)

P(4)

VD(9)VS(8)

Bay 3