COMBINED LOADSThe bar shown is subjected to two types of loads: a torque T and a vertical load P....

42
In many structures the members are required to resist more than one kind of loading (combined loading). These can often be analyzed by superimposing the stresses and strains cause by each load acting separately. Superposition of stresses and strains is permissible only under the following conditions: a.The stresses and the strains must be a linear function of the applied loads (Hooke’s law must be obeyed and the displacements must be small). b.There must be no interaction between the various loads. COMBINED LOADS Examples: wideflange beam supported by a cable (combined bending and axial load), cylindrical pressure vessel supported as a beam, and shaft in combined torsion and bending.

Transcript of COMBINED LOADSThe bar shown is subjected to two types of loads: a torque T and a vertical load P....

  • In many structures the members are required to resist more than one kind of loading (combined loading). These can often be analyzed by superimposing the stresses and strains cause by each load acting separately.

    Superposition of stresses and strains is permissible only under the following conditions:

    a.The stresses and the strains must be a linear function of the applied loads (Hooke’s law must be obeyed and the displacements must be small).

    b.There must be no interaction between the various loads.

    COMBINED LOADS

    Examples:  wide‐flange beam supported by a cable (combined bending and axial load),  cylindrical pressure vessel supported as a beam, and shaft in combined torsion and bending.

  • 1.Select the point on the structure where the stresses and the strains are to be determined. 

    2.For each load on the structure, determine the stress resultant at the cross section containing the selected point..

    3.Calculate the normal and shear stresses at the selected point due to each of the stress resultant. 

    4.Combine the individual stresses to obtain the resultant stresses at the selected point.

    5.Determine the principal stresses and maximum shear stresses at the selected point.

    6.Determine the strains at the point with the aid of Hooke’s law for plane stress.

    7.Select additional points and repeat the process.

    tpr

    IbVQ

    IMy

    AP

    ==

    −=ΙΤ

    ==

    στ

    σρτσρ

    Method of Analysis:

  • The bar shown is subjected to two types of loads: a torque T and a vertical load P.

    Let us select arbitrarily two points. Point A (top of the bar) and point B (side of the bar ‐ in the same cross section).

    The resulting stresses acting across the section are the following:

    ‐ A twisting moment equal to the torque T.

    ‐ A bending moment M equal to the load P times the distance b.

    ‐ A shear force V equals to the load P. 

    Illustration of the Method:

  • The twisting moment Τ produces a torsional shear stresses

    The stress τ1 acts horizontally to the left at point A and vertically downwards at point B.

    The bending moment M produces a tensile stress at point A

    However, the bending moment produces no stress at point B, because B is located on the neutral axis.

    32rT

    ITr

    Polartorsion π

    τ ==

    34

    rM

    IMr

    bending πσ ==

    The shear force V produces no shear stress at the top of the bar (point A), but at point B the shear stress is as follows:

    σA and τ1 are acting in point A, while the τ1 and τ2 are acting in point B.

    AV

    IbVQ

    shear 34

    ==τ

  • Note that the element is in plane stress with

    σx = σA, σy = 0 , and τxy = - τ1.A stress element in point B is also in plane stress and the only stresses acting on this element are the shear stresses τ1 and τ2. Therefore 

    σx = σy = 0 and τxy = - (τ1 + τ2).

    At point A: σx = σA, σy = 0 , and τxy = - τ1

    At point B σx = σy = 0 and τxy = - (τ1 + τ2).

  • Of interest are the points where the stresses calculated from the flexure and shear formulas have maximum or minimum values, called critical points.

    If the objective of the analysis is to determine the largest stresses anywhere in the structure, then the critical points should be selected at cross sections where the stress resultants have their largest values.

    Furthermore, within those cross sections, the points should be selected where either the normal stresses or the shear stresses have their largest values.

    Selection of Critical Areas and Points

    For instance, the normal stresses due to bending are largest at the cross section of maximum bending moment, which is at the support. Therefore, points C and D at the top and bottom of the beam at the fixed ends are critical points where the stresses should be calculated.

  • Stress at which point?

  • The rotor shaft of an helicopter drives the rotor blades that provide the lifting force to support the helicopter in the air. As a consequence, the shaft is subjected to a combination of torsion and axial loading.

    For a 50mm diameter shaft transmitting a torque Τ = 2.4kN.m and a tensile force P = 125kN, determine the maximum tensile stress, maximum compressive stress, and maximum shear stress in the shaft.

    Solution

    The stresses in the rotor shaft are produced by the combined action of the axial force P and the torque Τ. Therefore the stresses at any point on the surface of the shaft consist of a tensile stress σo and a shear stress τo.

    ( )MPa

    mkN

    AP 66.63

    05.04

    1252 === πσ

    The tensile stress

    The shear stress to is obtained from the torsion formula

    ( )

    ( )MPa

    mkN

    ITr

    PTorsion 78.97

    3205.0

    205.0.4.2

    4 =⎟⎠⎞

    ⎜⎝⎛

    ==π

    τ

  • ( ) MPaxyyxMAX 10322

    2

    =+⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −= τ

    σστ

    33.2103

    2480

    ==⇒MPa

    MPaSFMSST

    Knowing the stresses σo and τo, we can now obtain the principal stresses and maximum shear stresses . The principal stresses areobtained from

    ( )22

    2,1 22 xyyxyx τ

    σσσσσ +⎟⎟

    ⎞⎜⎜⎝

    ⎛ −±⎟⎟

    ⎞⎜⎜⎝

    ⎛ +=

    The maximum in-plane shear stresses are obtained using the formula

    Because the principal stresses σ1 and σ2 have opposite signs, the maximum in-plane shear stresses are larger than the maximum out-of-plane shear stresses. Therefore, the maximum shear stress in the shaft is 103MPa.

    ( )

    MPaMPa

    71135

    78.972

    66.6302

    66.630

    2

    1

    22

    2,1

    −==

    −+⎟⎠⎞

    ⎜⎝⎛ −±⎟

    ⎠⎞

    ⎜⎝⎛ +=

    σσ

    σ

    Will it fail if σyield=480MPa?

    ( ) ( )( ) ( )

    65.22.181

    4802.1817171135135 22

    ==⇒

    =−+−−=

    MPaMPaSFDET

    MPaVMσ

  • A thin wall cylindrical pressure vessel with a circular cross section is subjected to internal gas pressure p and simultaneously compressed by an axial load P = 12k. The cylinder has inner radius r = 2.1in. And wall thickness t = 0.15in. Determine the maximum allowable internal pressure pallow based upon an allowable shear stress of 6500psi in the wall of the vessel.

    Solution

    The stresses on the wall of the pressure vessel are caused by a combined action of the internal pressure and the axial force. We can isolate a stress element in point A. The x-axis is parallel to the longitudinal axis of the pressure vessel and the y-axis is circumferential. Note that there are no shear stresses acting on the element.

    The longitudinal stress σx is equal to the tensile stress produced by the internal pressure minus the compressive stress produced by the axial force.

    rtP

    tpr

    AP

    tpr

    x πσ

    222−=−=

  • The circumferential stress σy is equal to the tensile stress produced by the internal pressure.Note that σy > σx .

    tpr

    y =σ

    Since no shear stresses act on the element the above stresses are also the principal stresses

    rtP

    tprtpr

    x

    y

    πσσ

    σσ

    222

    1

    −==

    ==

    ( )

    ( )( ) ( )( )[ ] psipinin

    kin.in.p

    rtP

    tpr

    pin.in.p

    tpr

    60630.715.01.22

    12150212

    22

    0.14150

    12

    2

    1

    −=−=−=

    ===

    ππσ

    σ

    substituting numerical values

    In-Plane Shear StressesThe maximum in-plane shear stress is

    ( ) ( ) ( )( ) psippsippMax 30325.3260630.70.14

    221 +=

    −−=

    −=

    σστ

    Since τmax is limited to 6500psi then

    psippsippsi allowed 99030324.365000 =⇒+=

  • Out-of-Plane Shear StressesThe maximum out-of-plane shear stress is either

    Comparing the three calculated values for the allowable pressure, we see that (pallow)3 = 928psi governs.At this pressure, the principal stresses are σ1 = 13000psi and σ2 = 430psi.These stresses have the same signs, thus confirming that one of the out-of-plane shear stresses must be the largest shear stress.

    2

    22

    1

    στ

    στ

    =

    =

    Max

    Max

    From the first equation we get

    From the second equation we get:

    psippsippsi

    allowed 272030325.365000

    =−=

    psipppsi allowed 9280.765000 =⇒=

    Allowable internal pressure

  • A sign of dimensions 2.0mx1.2m is supported by a hollow circular pole having outer diameter 220mm and inner diameter 180mm (see figure). The sign offset 0.5m from the centerline of the pole and its lower edge is 6.0m above the ground.

    Determine the principal stresses and maximum shear stresses at points A and B at the base of the pole due to wind pressure of 2.0kPa against the sign.

    SolutionStress Resultant: The wind pressure against the sign produces a resultant force W that acts at the midpoint of the sign and it is equal to the pressure p times the area A over which it acts:

    ( )( ) kNmmkPapAW 8.42.10.20.2 =×==

    The line of action of this force is at height h = 6.6m above the ground and at distance b = 1.5m from the centerline of the pole.The wind force acting on the sign is statically equivalent to a lateral force Wand a torque Τ acting on the pole.

  • The torque is equal to the force Wtimes the distance b:

    ( )( )mkNT

    mkNWbT−=

    ==2.7

    5.18.4

    The stress resultant at the base of the pole consists of a bending moment M, a torque Τ and a shear force V. Their magnitudes are:M = Wh = (4.8kN)(6.6m) = 31.68kN.mΤ = 7.2kN.mV = W = 4.8kN

    Examination of these stress resultants shows that maximum bending stresses occur at point A and maximum shear stresses at point B.Therefore, A and B are critical points where the stresses should be determined.Stresses at points A and BThe bending moment M produces a tensile stress σa at point A, but no stress at point B (which is located on the neutral axis)

  • ( )( )( )

    ( ) MPamkN

    dd

    dMa 91.54

    6418.022.011.068.31

    64

    2444

    142

    2

    =

    ⎥⎦

    ⎤⎢⎣

    ⎡ −=

    ⎥⎦

    ⎤⎢⎣

    ⎡ −

    ⎟⎠⎞

    ⎜⎝⎛

    =ππ

    σ

    The torque Τ produces shear stresses τ1 at points A and B.

    Finally, we need to calculate the direct shear stresses at points A and Bdue to the shear force V.

    ( )( )( )

    ( ) MPammkN

    dd

    dTTorsion 24.6

    3218.022.011.0.2.7

    32

    2444

    142

    2

    =

    ⎥⎦

    ⎤⎢⎣

    ⎡ −=

    ⎥⎦

    ⎤⎢⎣

    ⎡ −

    ⎟⎠⎞

    ⎜⎝⎛

    =ππ

    τ

  • The shear stress at point A is zero, and the shear stress at point B (τ2) is obtained from the shear formula for a circular tube

    The stresses acting on the cross section at points A and Bhave now been calculated.

    ( )

    ( ))(2

    32

    64

    12

    31

    32

    41

    42

    2

    rrb

    rrQ

    ddI

    IbVQ

    −=

    −=

    ⎥⎦

    ⎤⎢⎣

    ⎡ −=

    =

    π

    τ

    ( ) MPamA

    VMax 7637.001257.0

    4800222,2 ===τ

  • Stress ElementsFor both elements the y-axis is parallel to the longitudinal axis of the pole and the x-axis is horizontal.Point A :σx = 0 σy = σa = 54.91MPa τxy = τ1 = 6.24MPa

    ( )22

    2,1 22 xyyxyx τ

    σσσσσ +⎟⎟

    ⎞⎜⎜⎝

    ⎛ −±⎟⎟

    ⎞⎜⎜⎝

    ⎛ +=Principal stresses at Point A

    Substituting σ1,2 = 27.5MPa +/- 28.2MPaσ1 = 55.7MPa and σ2 = - 0.7MPa

    The maximum in-plane shear stresses can be obtained from the equation

    ( ) MPaxyyxMAX 2.2822

    2

    =+⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛ −= τ

    σστ

    Because the principal stresses have opposite signs, the maximum in-plane shear stresses are larger than the maximum out-of-plane shear stresses. Then, τmax = 28.2MPa.

  • Point B :σx = σy = 0 τxy = τ1 + τ2τxy = 6.24MPa + 0.76MPa = 7.0MPaPrincipal stresses at point B areσ1 = 7.0MPa σ2 = - 7.0 MPaAnd the maximum in-plane shear stress is

    τmax = 7.0MPaThe maximum out-of-plane shear stresses are half of this value.Note

    If the largest stresses anywhere in the pole are needed, then we must also determine the stresses at the critical point diametrically opposite point A, because at that point the compressive stress due to bending has its largest value.The principal stresses at that point are σ1 = 0.7MPa and σ2 = - 55.7MPa The maximum shear stress is 28.2MPa.(In this analysis only the effects of wind pressure are considered. Other loads, such as weight of the structure, also produce stresses at the base of the pole).

  • A tubular post of square cross section supports a horizontal platform (see figure). The tube has outer dimension b = 6in. And wall thickness t = 0.5in.The platform has dimensions 6.75in x 24.0in and supports an uniformly distributed load of 20psi acting over its upper surface. The resultant of this distributed load is a vertical force P1 = (20psi)(6.75in x 24.0in) = 3240lb

    This force acts at the midpoint of the platform, which is at distance d = 9in. from the longitudinal axis of the post. A second load P2 = 800lb acts horizontally on the post at height h = 52in above the base.Determine the principal stresses and maximum shear stresses at points A and B at the base of the post due to the loads P1 and P2.

  • Stress ResultantsThe force P1 acting on the platform is statically equivalent to a force P1 and a moment M1 = P1d acting on the centroid of the cross section of the post. The load P2 is also shown.

    Solution

    The stress resultant at the base of the post due to the loads P1 and P2 and the moment M1 are as follows:(A) An axial compressive force P1 = 3240lb(B) A bending moment M1 produced by the force P1:

    M1 = P1d = (3240lb)(9in) = 29160lb-in(C) A shear force P2 = 800lb(D) A bending moment M2 produced by the force P2:

    M2 = P2h = (800lb)(52in) = 41600lb.in

    Examinations of these stress resultants shows that both M1 and M2 produce maximum compressive stresses at point A and the shear force produces maximum shear stresses at point B. Therefore, A and B are the critical points where the stresses should be determined.

  • Stresses at points A and B(A) The axial force P1 produces uniform compressive stresses throughout the post. These stresses are σP1 = P1 / A where A is the cross section area of the postA = b2 – (b – 2t)2 = 4t(b-t) = 4 (0.5in)(6in – 0.5in) = 11.0in2 σP1 = P1 / A = 3240lb / 11.00in2 = 295psi

    (B) The bending moment M1 produces compressive stresses σM1 at points Aand B. These stresses are obtained from the flexure formula σM1 = M1 (b / 2) / Ιwhere Ι is the moment of inertia of the cross section. The moment of inertia isΙ = [b4 - (b -2t)4] / 12 = [(6in)4 – (5in)4] / 12 = 55.92in4Thus, σM1 = M1 b / 2Ι = (29160lb.in)(6in) / (2)(55.92in4) = 1564psi

  • (C) The shear force P2 produces a shear stress at point B but not at point A. We know that an approximate value of the shear stress can be obtained by dividing the shear force by the web area.τP2 = P2 / Aweb =P2 /(2t(b – 2t)) =800lb / (2)(0.5in)(6in–1in)= 160psiThe stress τp2 acts at point B in the direction shown in the above figure.We can calculate the shear stress τP2 from the more accurate formula. The result of this calculation is τP2 = 163psi, which shows that the shear stress obtained from the approximate formula is satisfactory.

    D) The bending moment M2 produces a compressive stress at point A but no stress at point B. The stress at A is σM2 = M2 b / 2Ι = (41600lb.in)(6in) / (2)(55.92in4) = 2232psi.This stress is also shown in the above figure.

  • Stress ElementsEach element is oriented so that the y-axis is vertical (i.e. parallel to the longitudinal axis of the post) and the x-axis is horizontal axisPoint A : The only stress in point A is a compressive stress σa in the y directionσA = σP1 + σM1 + σM2σA = 295psi + 1564psi + 2232psi = 4090psi (compression)Thus, this element is in uniaxial stress.

    Principal Stresses and Maximum Shear Stressσx = 0 σy = - σa = - 4090psiτxy = 0

    Since the element is in uniaxial stress, σ1 = σx and σ2 = σy = - 4090psi

    And the maximum in-plane shear stress isτmax = (σ1 - σ2) / 2 = ½ (4090psi) = 2050psiThe maximum out-of-plane shear stress has the same magnitude.

  • Point B:Here the compressive stress in the y direction isσB = σP1 + σM1σB = 295psi + 1564psi = 1860psi (compression)And the shear stress is τB = τP2 = 160psiThe shear stress acts leftward on the top face and downward on the x face of the element.Principal Stresses and Maximum Shear Stressσx =0 σy = - σB = - 1860psi τxy = - τP2 = - 160psiSubstituting σ1,2 = - 930psi +/- 944psiσ1 = 14psi and σ2 = - 1870psi

    ( )22

    2,1 22 xyyxyx τ

    σσσσσ +⎟⎟

    ⎞⎜⎜⎝

    ⎛ −±⎟⎟

    ⎞⎜⎜⎝

    ⎛ +=

    The maximum in-plane shear stresses can be obtained from the equation Because the principal stresses have opposite signs, the maximum in-plane shear stresses are larger than the maximum out-of-plane shear stresses. Then, τmax = 944psi. ( ) psixyxMAX 9442

    22

    =+⎟⎠⎞

    ⎜⎝⎛= τ

    στ

  • Three forces are applied to a short steel post as shown. Determine the principle stresses, principal planes and maximum shearing stress at point H.

    Determine internal forces in Section EFG.

    Solution

    ( )( ) ( )( )

    ( )( ) mkN3m100.0kN30 0mkN5.8

    m200.0kN75m130.0kN50kN75kN50kN 30

    ⋅===⋅−=

    −=−==−=

    zy

    x

    x

    zx

    MMMM

    VPV

  • Note: Section properties, ( )( )

    ( )( )

    ( )( ) 463121

    463121

    23

    m10747.0m040.0m140.0

    m1015.9m140.0m040.0

    m106.5m140.0m040.0

    ×==

    ×==

    ×==

    z

    x

    I

    I

    A

    ( )( )

    ( )( )

    ( ) MPa66.0MPa2.233.8093.8m1015.9

    m025.0mkN5.8m10747.0

    m020.0mkN3m105.6

    kN50

    46

    4623-

    =−+=×

    ⋅−

    ×

    ⋅+

    ×=

    −++=

    x

    x

    z

    zy I

    bMI

    aMAPσ

    Evaluate the stresses at H.

    Shear stress at H.

    ( )( )[ ]( )

    ( )( )( )( )

    MPa52.17

    m040.0m1015.9m105.85kN75

    m105.85

    m0475.0m045.0m040.0

    46

    36

    36

    11

    =

    ×

    ×==

    ×=

    ==

    tIQV

    yAQ

    x

    zyzτ

    Normal stress at H.

  • Calculate principal stresses and maximum shearing stress.

    °=

    °===

    −=−=−=

    =+=+=

    =+==

    98.13

    96.2720.33

    52.172tan

    MPa4.74.370.33

    MPa4.704.370.33

    MPa4.3752.170.33

    pp

    min

    max

    22max

    p

    CDCY

    ROC

    ROC

    R

    θ

    θθ

    σ

    σ

    τ

    °=

    −=

    =

    =

    98.13

    MPa4.7

    MPa4.70

    MPa4.37

    min

    max

    max

    σ

    σ

    τ

  • The cantilever tube shown is to be made of 2014 aluminum alloy treated to obtain a specified minimum yield strength of 276MPa. We wish to select a stock size tube (according to the table below). Using a design factor of n=4. The bending load is F=1.75kN, the axial tension is P=9.0kN and the torsion is T=72N.m. What is the realized factor of safety?

    Consider the critical area ( top surface).

  • IMc

    AP

    x +=σ

    Maximum bending moment = 120F

    I

    dkNxmm

    AkN

    x

    ⎟⎠⎞

    ⎜⎝⎛×

    += 275.1120

    Jd

    J

    d

    JTr

    zx362

    72=

    ⎟⎠⎞

    ⎜⎝⎛×

    ==τ

    ( ) 2122 3 zxxVM τσσ +=

    GPaGPanSy

    VM 0690.04276.0

    ==≤σ

    For the dimensions of that tube

    57.406043.0276.0

    ===VM

    ySnσ

  • A certain force F is applied at D near the end of the 15-in lever, which is similar to a socket wrench. The bar OABC is made of AISI 1035 steel, forged and heat treated so that it has a minimum (ASTM) yield strength of 81kpsi. Find the force (F) required to initiate yielding. Assume that the lever DC will not yield and that there is no stress concentration at A.

    Solution:

    1) Find the critical section

    The critical sections will be either point A or Point O. As the moment of inertia varies with r4then point A in the 1in diameter is the weakest section.

  • Fd

    inFd

    dM

    IMy

    x 6.1421432

    64

    234 =××

    =⎟⎠⎞

    ⎜⎝⎛

    ==ππ

    σ

    2) Determine the stresses at the critical section

    Fin

    inFd

    dT

    JTr

    zx 4.76)1(1516

    32

    234 =

    ××=

    ⎟⎠⎞

    ⎜⎝⎛

    ==ππ

    τ

    3) Chose the failure criteria.

    The AISI 1035 is a ductile material. Hence, we need to employ the distortion-energy theory.

    lbfS

    F

    F

    VM

    y

    zxxxyyxyxVM

    4165.194

    81000

    5.19433 22222

    ===

    =+=+−+=

    σ

    τστσσσσσ

  • Apply the MSS theory. For a point undergoing plane stress with only one non-zero normal stress and one shear stress, the two non-zero principal stresses (σA and σB) will have opposite signs (Case 2).

    ( ) ( )( )lbfF

    FF

    S

    S

    zxxzxx

    yBA

    zxxyBA

    3884.7646.14281000

    42

    2

    222

    2122

    2222

    22

    max

    =×+=

    +=+⎟⎠⎞

    ⎜⎝⎛=≥−

    +⎟⎠⎞

    ⎜⎝⎛±==

    −=

    τστσσσ

    τσσστ

  • A round cantilever bar is subjected to torsion plus a transverse load at the free end. The bar is made of a ductile material having a yield strength of 50000psi. The transverse force (P) is 500lb and the torque is 1000lb-in applied to the free end. The bar is 5in long (L) and a safety factor of 2 is assumed. Transverse shear can be neglected. Determine the minimum diameter to avoid yielding using both MSS and DET criteria.

    Solution

    1) Determine the critical section

    The critical section occurs at the wall.

  • 3432

    64

    2dPL

    d

    dPL

    IMc

    x ππσ =

    ⎟⎠⎞

    ⎜⎝⎛

    ==34

    16

    32

    2dT

    d

    dT

    JTc

    xy ππτ =

    ⎟⎠⎞

    ⎜⎝⎛

    ==

    ( ) ( )

    ( )

    ( ) ⎥⎦⎤

    ⎢⎣⎡ +×±×=

    ⎥⎦⎤

    ⎢⎣⎡ +±=⎟

    ⎠⎞

    ⎜⎝⎛+⎟

    ⎠⎞

    ⎜⎝⎛±=

    +⎟⎠⎞

    ⎜⎝⎛±⎟

    ⎠⎞

    ⎜⎝⎛=+⎟⎟

    ⎞⎜⎜⎝

    ⎛ −±⎟⎟

    ⎞⎜⎜⎝

    ⎛ +=

    2232,1

    223

    2

    3

    2

    332,1

    22

    22

    2,1

    10005500550016

    16161616

    2222

    d

    TPLPLdd

    TdPL

    dPL

    xyxx

    xyyxyx

    πσ

    ππππσ

    τσστσσσσ

    σ

  • indn

    Sdd

    yMAX

    MAX

    031.1

    000,252

    500002

    4.137152

    )8.980(264502

    31

    3331

    ==≤=−

    =−−

    =−

    =

    τσσ

    σστ

    3126450

    d=σ 32

    8.980d

    −=σ The stresses are in the wrong order.. Rearranged to

    3126450

    d=σ 33

    8.980d

    −=σ

    MSS

    indnS

    d

    dddd

    yVM

    VM

    025.12

    5000026950

    8.980264508.98026450

    3

    33

    2

    3

    2

    3312

    32

    1

    =≤=

    ⎟⎠⎞

    ⎜⎝⎛−⎟

    ⎠⎞

    ⎜⎝⎛−⎟

    ⎠⎞

    ⎜⎝⎛−+⎟

    ⎠⎞

    ⎜⎝⎛=−+=

    σ

    σσσσσDET

  • The factor of safety for a machine element depends on the particular point selected for the analysis. Based upon the DET theory, determine the safety factor for points A and B.

    This bar is made of AISI 1006 cold-drawn steel (Sy=280MPa) and it is loaded by the forces F=0.55kN, P=8.0kN and T=30N.m

    Solution:Point A 2324

    432

    464

    2dP

    dFl

    dP

    d

    dFl

    AreaP

    IMc

    x ππππσ +=+

    ⎟⎠⎞

    ⎜⎝⎛

    =+=

    ( )( )( )( )

    ( )( )( )

    MPax 49.9502.01084

    02.01.01055.032

    2

    3

    3

    3

    =+=ππ

    σ

  • ( )( )

    MPadT

    JTr

    xy 10.19020.0301616

    33 ==== ππτ

    ( ) ( )[ ]77.2

    1.101280

    1.1011.19349.953 212222

    ===

    =+=+=

    VM

    y

    xyxVM

    Sn

    MPa

    σ

    τσσ

    Point B ( )( )( )

    ( )( )

    ( )( )( )

    ( )[ ]22.6

    02.45280

    02.4543.21347.25

    43.2102.0

    43

    1055.0402.03016

    3416

    47.2502.010844

    2122

    2

    3

    33

    2

    3

    2

    ==

    =+=

    =⎟⎠⎞

    ⎜⎝⎛

    +=+=

    ===

    n

    MPa

    MPaAV

    dT

    MPadP

    VM

    xy

    x

    σ

    πππτ

    ππσ

  • The shaft shown in the figure below is supported by two bearings and carries two V-belt sheaves. The tensions in the belts exert horizontal forces on the shaft, tending to bend it in the x-z plane. Sheaves B exerts a clockwise torque on the shaft when viewed towards the origin of the coordinate system along the x-axis. Sheaves C exerts an equal but opposite torque on the shaft. For the loading conditions shown, determine the principal stresses and the safety factor on the element K, located on the surface of the shaft (on the positive z-side), just to the right of sheave B. Consider that the shaft is made of a steel of a yield strength of 81ksi

  • Shearing force = 165lbBending Moment = -1540lb-in

    ( )( )

    ksirrM

    IMc

    x 031.8625.015404

    4

    34 =−

    −=−=−=ππ

    σ

    ( )( )

    ksirT

    JTr

    xz 868.2625.0110022

    33 ==== ππτ

  • ( ) ( )

    ( )

    ksiksi

    xyxx

    xyyxyx

    92.0 95.8

    868.2203.8

    203.8

    2222

    21

    22

    2,1

    22

    22

    2,1

    −==

    +⎟⎠⎞

    ⎜⎝⎛±=

    +⎟⎠⎞

    ⎜⎝⎛±⎟

    ⎠⎞

    ⎜⎝⎛=+⎟⎟

    ⎞⎜⎜⎝

    ⎛ −±⎟⎟

    ⎞⎜⎜⎝

    ⎛ +=

    σσ

    σ

    τσστσσσσ

    σ

    ( )

    2.8935.4

    281

    2..

    935.42

    92.095.82

    ..... 31

    ====

    =−−

    =−

    =

    Max

    Y

    Max

    SnFactorSafety

    ksiMSS

    τ

    σστ

    ( ) ( ) ( )( )

    58.844.9

    81..

    44.992.095.892.095.8...... 22312

    32

    1

    ====

    =−−−+=−+=

    VM

    y

    VM

    SnFactorSafety

    ksiDET

    σ

    σσσσσ

  • A horizontal bracket ABC consists of two perpendicular arms AB and BC, of 1.2m and 0.4m in length respectively. The Arm AB has a solid circular cross section with diameter equal to 60mm. At point C a load P1=2.02kN acts vertically and a load P2=3.07kN acts horizontally and parallel to arm AB.For the points p and q, located at support A, calculate:(1)The principal stresses.(2) the maximum in-plane shear stress.

    1.2m

    q