COMBINATIONAL LOGIC - University of California, … · Dynamic CMOS Logic Domino ... Digital...

73
Digital Integrated Circuits © Prentice Hall 1995 Combinational Combinational Logic Logic COMBINATIONAL LOGIC

Transcript of COMBINATIONAL LOGIC - University of California, … · Dynamic CMOS Logic Domino ... Digital...

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

COMBINATIONALLOGIC

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Overview

Static CMOS

Conventional Static CMOS Logic

Ratioed Logic

Pass Transistor/Transmission Gate Logic

Dynamic CMOS Logic

Domino

np-CMOS

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Combinational vs. Sequential Logic

Logic

Circuit

Logic

CircuitOut

OutInIn

(a) Combinational (b) Sequential

State

Output = f(In) Output = f(In, Previous In)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Static CMOS Circuit

At every point in time (except during the switching transients) each gate output is connected to either VDD or Vss via a low-resistive path.

The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).

This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Static CMOSVDD

VSS

PUN

PDN

In1In2In3

F = G

In1

In2

In3

PUN and PDN are Dual Networks

PMOS Only

NMOS Only

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

NMOS Transistors in Series/ParallelConnection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

PMOS Transistors in Series/ParallelConnection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Complementary CMOS Logic Style Construction (cont.)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example Gate: NAND

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example Gate: NOR

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example Gate: COMPLEX CMOS GATE

VDD

A

B

C

D

DA

B C

OUT = D + A• (B+C)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

4-input NAND Gate

In3

In1

In2

In4

In1 In2 In3 In4

VDD

Out

In1 In2 In3 In4

Vdd

GND

Out

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Standard Cell Layout Methodology

VDD

VSS

Well

signalsRouting Channel

metal1

polysilicon

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Two Versions of (a+b).c

a c b a b c

xx

GND

VDDVDD

GND

(a) Input order {a c b} (b) Input order {a b c}

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Logic Graph

VDD

c

a

x

b

ca

b

GND

x

VDDx

c

b a

i

j

i

jPDN

PUN

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Consistent Euler Path

GND

x

VDDx

c

b a

i

j

{ a b c}

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example: x = ab+cd

GND

x

a

b c

d

VDDx

GND

x

a

b c

d

VDDx

(a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

a c d

x

VDD

GND

(c) stick diagram for ordering {a b c d}b

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Properties of Complementary CMOS Gates

High noise margins: VOH and VOL are at VDD and GND, respectively.

No static power consumption:There never exists a direct path between VDD and VSS (GND) in steady-state mode.

Comparable rise and fall times:(under the appropriate scaling conditions)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Properties of Complementary CMOSGates

High noise margins: VOH and VOL are at VDD and GND, respectively.

No static power consumption:There never exists a direct path between VDD and VSS (GND) in steady-state mode.

Comparable rise and fall times:(under the appropriate scaling conditions)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Transistor Sizing

VDD

AB

C

D

DA

B C

12

22

6

612

12

F

• for symmetrical response (dc, ac)• for performance

Focus on worst-case

Input Dependent

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Propagation Delay Analysis - The SwitchModel

VDDVDDVDD

CL

F CL

CL

F

F

RpRp Rp Rp

Rp

Rn

Rn

Rn Rn Rn

AA

A

AA

A

B B

B

B

(a) Inverter (b) 2-input NAND (c) 2-input NOR

tp = 0.69 Ron CL

(assuming that CL dominates!)

= RON

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

What is the Value of Ron?

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Numerical Examples of Resistances for 1.2µmCMOS

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Analysis of Propagation Delay

VDD

CL

F

Rp Rp

Rn

Rn

A

A B

B

2-input NAND

1. Assume Rn=Rp= resistance of minimum sized NMOS inverter

2. Determine “Worst Case Input” transition(Delay depends on input values)

3. Example: tpLH for 2input NAND- Worst case when only ONE PMOS Pulls

up the output node- For 2 PMOS devices in parallel, the

resistance is lower

4. Example: tpHL for 2input NAND- Worst case : TWO NMOS in series

tpLH = 0.69RpCL

tpHL = 0.69(2Rn)CL

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Design for Worst Case

VDD

CL

F

A

A B

B

2

2

1 1

VDD

AB

C

D

DA

B C

12

22

2

24

4

F

Here it is assumed that Rp = Rn

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Influence of Fan-In and Fan-Out on Delay

VDD

A B

A

B

C

D

C D

tp a1FI a2FI2 a3FO+ +=

Fan-Out: Number of Gates Connected2 Gate Capacitances per Fan-Out

FanIn: Quadratic Term due to:

1. Resistance Increasing2. Capacitance Increasing(tpHL)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

tp as a function of Fan-In

1 3 5 7 9fan-in

0.0

1.0

2.0

3.0

4.0t p

(nse

c)

tpHL

tp

tpLHlinear

quadratic

AVOID LARGE FAN-IN GATES! (Typically not more than FI < 4)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Fast Complex Gate - DesignTechniques

• Transistor Sizing: As long as Fan-out Capacitance dominates

• Progressive Sizing:

CL

In1

InN

In3

In2

Out

C1

C2

C3

M1 > M2 > M3 > MN

M1

M2

M3

MN

Distributed RC-line

Can Reduce Delay with more than 30%!

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Fast Complex Gate - Design Techniques(2)

In1

In3

In2

C1

C2

CL

M1

M2

M3

In3

In1

In2

C3

C2

CL

M3

M2

M1

(a) (b)

• Transistor Ordering

critical pathcritical path

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Fast Complex Gate - Design Techniques(3)

• Improved Logic Design

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Fast Complex Gate - Design Techniques(4)

• Buffering: Isolate Fan-in from Fan-out

CLCL

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example: Full Adder

VDD

VDD

VDD

VDD

A B

Ci

S

Co

X

B

A

Ci A

BBA

Ci

A B Ci

Ci

B

A

Ci

A

B

BA

Co = AB + Ci(A+B)

28 transistors

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

A Revised Adder Circuit

VDD

Ci

A

BBA

B

A

A BKill

Generate"1"-Propagate

"0"-Propagate

VDD

Ci

A B Ci

Ci

B

A

Ci

A

BBA

VDD

SCo

24 transistors

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Ratioed Logic

VDD

VSS

PDNIn1In2In3

F

RLLoad

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

FVSS

PDN

Resistive DepletionLoad

PMOSLoad

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Ratioed Logic

VDD

VSS

PDN

In1

In2

In3

F

RLLoadResistive

N transistors + Load

• VOH = VDD

• VOL = RPN

RPN + RL

• Assymetrical response

• Static power consumption

• tpL= 0.69 RLCL

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Active Loads

VDD

VSS

In1In2In3

F

VDD

VSS

PDNIn1In2In3

F

VSS

PDN

DepletionLoad

PMOSLoad

depletion load NMOS pseudo-NMOS

VT < 0

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Load Lines of Ratioed Gates

0.0 1.0 2.0 3.0 4.0 5.0Vout (V)

0

0.25

0.5

0.75

1

I L(N

orm

aliz

ed)

Resistive load

Pseudo-NMOS

Depletion load

Current source

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Pseudo-NMOS

VDD

A B C D

FCL

VOH = VDD (similar to complementary CMOS)

kn VDD VTn–( )VOLVOL

2

2-------------–

kp

2------ VDD VTp–( )

2=

VOL VDD VT–( ) 1 1kpkn------–– (assuming that VT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Pseudo-NMOS NAND Gate

VDD

GND

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Improved Loads

A B C D

F

CL

M1M2 M1 >> M2Enable

VDD

Adaptive Load

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Improved Loads (2)

VDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

AABB

M1 M2

Dual Cascode Voltage Switch Logic (DCVSL)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example

B

A A

B B B

Out

Out

XOR-NXOR gate

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Pass-Transistor LogicIn

puts Switch

Network

OutOut

A

B

B

B

• N transistors• No static consumption

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

NMOS-only switch

A = 5 V

B

C = 5 V

CL

A = 5 V

C = 5 V

BM2

M1

Mn

Threshold voltage loss causesstatic power consumption

VB does not pull up to 5V, but 5V - VTN

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Solution 1: Transmission Gate

A B

C

C

A B

C

C

BCL

C = 0 V

A = 5 V

C = 5 V

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Resistance of Transmission Gate

(W/L)p=(W/L)n =

1.8/1.2

0.0 1.0 2.0 3.0 4.0 5.0Vout

0.0

10000.0

20000.0

30000.0

R (O

hm)

Rn

Req

Rp

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Pass-Transistor Based Multiplexer

AM2

M1

B

S

S

S F

VDD

GND

VDD

In1 In2S S

S S

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Transmission Gate XOR

A

B

F

B

A

B

BM1

M2

M3/M4

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Delay in Transmission Gate Networks

V1 Vi-1

C

5 5

0 0

Vi Vi+1

CC

5

0

Vn-1 Vn

CC

5

0

In

V1 Vi Vi+1

C

Vn-1 Vn

CC

InReqReq Req Req

CC

(a)

(b)

C

Req Req

C C

Req

C C

Req Req

C C

Req

CIn

m

(c)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Elmore Delay (Chapter 8)

R1

C1

R2

C2

Ri-1

Ci-1

Ri

Ci

RN

CN

Vin N1 2 i-1 i

Assume All internal nodes are precharged to VDD and a step voltage isapplied at the input Vin

τN Ri Cjj i=

N

∑i 1=

N

∑ Ci Rjj 1=

i

∑i 1=

N

∑= =

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Delay Optimization

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Transmission Gate Full Adder

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

(2) NMOS Only Logic: Level RestoringTransistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

• Advantage: Full Swing

• Disadvantage: More Complex, Larger Capacitance

• Other approaches: reduced threshold NMOS

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Level Restoring Transistor

(a) Output node (b) Intermediate node X

0 2 4 6t (nsec)

-1.0

1.0

3.0

5.0

Vou

t (V

)

0 2 4t (nsec)

-1.0

1.0

3.0

5.0

VX

with

without

VB

with

without

6

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Solution 3: Single Transistor Pass Gate withVT=0

Out

VDD

VDD

5V

VDD

0V 5V

0V

WATCH OUT FOR LEAKAGE CURRENTS

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Complimentary Pass Transistor Logic

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=A⊕ ΒÝ

F=A⊕ ΒÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-TransistorNetwork

Pass-TransistorNetwork

AABB

AABB

Inverse

(a)

(b)

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

4 Input NAND in CPL

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Dynamic Logic

Mp

Me

VDD

PDN

φ

In1In2In3

OutMe

Mp

VDD

PUN

φ

In1In2In3

φ

φ

Out

CL

CL

φp networkφn network

2 phase operation:• Evaluation

• Precharge

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Example

Mp

Me

VDD

φOut

φ

A

B

C

• N + 1 Transistors

• Ratioless

• No Static Power Consumption

• Noise Margins small (NML)

• Requires Clock

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Transient Response

0.00e+00 2.00e-09 4.00e-09 6.00e-09t (nsec)

0.0

2.0

4.0

6.0V

out (

Vol

t)

φ Vout

PRECHARGEEVALUATION

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Dynamic 4 Input NAND Gate

In1

In2

In3

In4

Out

VDD

GNDφ

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Reliability Problems —Charge Leakage

Mp

Me

VDD

φOut

φ

ACL

(1)

(2)

φ

t

t

Vout

(b) Effect on waveforms(a) Leakage sources

precharge evaluate

Minimum Clock Frequency: > 1 MHz

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Charge Sharing (redistribution)

Mp

Me

VDD

φOut

φ

A

B = 0

CL

Ca

Cb

Ma

Mb

X

CLVDD CLVout t( ) Ca VDD VTn VX( )–( )+=

or

∆Vout Vout t( ) VDD–CaCL-------- VDD VTn VX( )–( )–= =

∆Vout VDD

CaCa CL+----------------------

–=

case 1) if ∆Vout < VTn

case 2) if ∆Vout > VTn

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Charge Redistribution - Solutions

Mp

Me

VDD

φ

Out

φ

A

B

Ma

Mb

Mbl Mp

Me

VDD

φOut

φ

A

B

Ma

Mb

Mbl

(b) Precharge of internal nodes

φ

(a) Static bleeder

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Clock Feedthrough

Mp

Me

VDD

φOut

φ

A

B

CL

Ca

Cb

Ma

Mb

5V

overshoot

out

could potentially forwardbias the diode

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Clock Feedthrough and Charge Sharing

0 1 2 3t (nsec)

0

2

4

6

V (V

olt) φ

out

internal node in PDN

output without redistribution (Ma off)

feed

thro

ugh

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Cascading Dynamic Gates

Mp

Me

VDD

φ

φ

Mp

Me

VDD

φ

φ

In

Out1 Out2

φ

Out2

Out1

In

V

t

∆V

VTn

(a) (b)

Only 0→ 1 Transitions allowed at inputs!

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Domino Logic

Mp

Me

VDD

PDN

φ

In1In2

In3

Out1

φ

Mp

Me

VDD

PDN

φ

In4

φ

Out2

Mr

VDD

Static Inverterwith Level Restorer

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Domino Logic - Characteristics

• Only non-inverting logic

• Very fast - Only 1->0 transitions at input of inverter

move VM upwards by increasing PMOS

• Adding level restorer reduces leakage andcharge redistribution problems

• Optimize inverter for fan-out

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

np-CMOS

Mp

Me

VDD

PDN

φ

In1In2In3

φ

Me

Mp

VDD

PUN

φ

In4

φOut1

Out2

Only 1→ 0 transitions allowed at inputs of PUN

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

np CMOS Adder

VDD

φ

φCi0

A0 B0 B0

φ

A0

VDD

φ

B1

φA1

VDD

φ

φ

A1 B1

Ci1

Ci2

Ci0

Ci0

B0

A0B0

S0

A0

VDD

φ

φ

VDD

φ

VDD

φ

φ

B1 Ci1

B1

φ

A1A1

VDD

φ S1

Ci1

Carry Path

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

Manchester Carry Chain Adder

P0

Ci,0

P1

G0

P2

G1

P3

G2

P4

G3 G4

φ

φ

VDD

M0 M1 M2 M3 M4

Co,4

11.522.53

3.5 3 2.5 2 1.5 1

1.522.533.54

0.5

Total Area:225 µm × 48.6 µm

Digital Integrated Circuits © Prentice Hall 1995Combinational Combinational LogicLogic

CMOS Circuit Styles - Summary