Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250...

63
Coherent Synchrotron Radiation and Beam Interaction 3 rd ARD ST3 workshop Martin Dohlus 16 th July 2015

Transcript of Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250...

Page 1: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

Coherent Synchrotron Radiationand Beam Interaction

3rd ARD ST3 workshopMartin Dohlus16th July 2015

Page 2: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

FEL process

Page 3: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

beam preparation: bunch compressor

1 m

without self‐interaction

1 mm

with self‐interaction

Page 4: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

1 ‐ one particle

2 ‐ near field

3 ‐multiple particles

4 ‐ circular motion & shielding

5 ‐ general trajectories

6 ‐ projected model

7 ‐ bunch compressor

8 ‐ other forces /  effects

9 ‐ transverse effects

Page 5: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

one particle

Page 6: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

one particle

instantaneouslyhttp://www.shintakelab.com/en/enEducationalSoft.htm Radiation 2D Simulator Free Download

Page 7: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

one particle

Lienert‐Wiechert

)(trs

)(0 trrttc s

Enc

B

Rnc

nn

Rn

nqEt

0

3

0223

0

0

1

114

)(trs

0q

trs 0q

tr ,(observer)R

n

charge      on trajectory0q

fields

retarded time

radiation term

Page 8: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

one particle

near and far

)(tr )( ttr

0cRtT

R

0ctR

tcnR 01

n

dVceTrSdtP r

tt

t

1rad ),(

V

),(12rad TrSnRddP

with Poynting flux in far zone

6

22

0

00 14 n

nn

Rq

cnS

from radiation term

Page 9: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

one particle

power loss

226

00

20

rad 6

cqP

0

0

2

44

0

02024

00

20

rad 66 Rcq

cqP

2

00

2026

00

20

rad 66

cq

cqP 5

2rad

cos1sin

ddP

22

22

3rad

cos1cossin1

cos11

ddP

linear acceleration

circular motion

nn , , ))

||||0 vEqeffective longitudinal field (self effect)

Page 10: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

near field

Page 11: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion

near field

Rnc

nn

Rn

neqEeE 3

0223||

0

0||||

114

longitudinal component on arc R0,test particle at s=vt, source particle at s=v(t+)

rEc

qE

20

0||

sgn4

c

cE

E ||

singular part as for linear motionresidual part

for R0 = 1m, = 10

30 cRc

c

with 200

40

4 RqEc

c

r

EE

Page 12: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

residual part

tt

rRnc

nneqcRn

neqE

3

0

||0

02223

||

0

0

14sgn

14

term 1 term 2

term 1

term 2

both terms contribute to near‐interaction!

near field

c

r

EE

c

Page 13: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

small angle approximation of residual part

)12)(4(

)8(4

324

0 22

2

220

40

,

R

qE sar

rad

sarsar PEE

qc

200 ,,

0

242 33

0

cRwith

34

power loss of one particle: far field radiation

near field

effective self field

c

c

sar

EE ,

Page 14: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

power loss of two particles

001 rr EEcqP

002 rcEqP

head particle

tail particle

4

2

fully coherent incoherent

PPsingle

1total power loss vs. distance

near field

c

Page 15: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

100 particles: total power loss vs. distance (first‐last)

PPsingle

1

2

100

1002

22

1) fully coherent2) energy independent3) cool beam4) incoherentx) transition

1 2 3 4

near field

c

Page 16: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

multiple particles

Page 17: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

multiple particles

superpositionfor instance all (N) particles on the same trajectory )()(, trtr ss

trBtrB

trEtrE

,,

,,

0

0

random time delayprobability distribution of delay: Np ,,, 21

independent delay: 021 ,,, pp N

(delay is not independent for systems with longitudinal dispersion + self effects!)

20

20 1~ iPNNNiFS dttitpiP exp00with

“coherent”white

one particle “collective term”

expectation of spectral power density (in principle)

Page 18: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

multiple particles

spectral power density (loss) for circular motion

rr EE ,

,

0,0, rrr EcqEcqP

power loss of all particles

impedance of residual part

deiZqE irr

20

20

20 1Re

iPNNNiZcqS r

0

~21

dSdSPnotation

c

cr ZZ Re

Page 19: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

multiple particles

impedance of residual part

dxxK 35839S

0

3

23Rc

c

ccr ZiZ

SRe with

critical frequency

10

dSand

c

s

exp83.0

3 148.0

91

0

0

RZZc

S

Page 20: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

Page 21: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

radiated power of Gaussian bunch in circular motion

30

0 R

2

4

0

020

0 6 RNcqP

0NPP

with

Page 22: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

energy independent regime

WP

m

0

nC 1q

N

m 100 R

= 500

= 1000

43

0

1 N

30

0 R

with

shape dependent

Gaussian shape: 343200

0202

CSR1 R

cqxNP with 0279.06465 3123 x

~1⁄

Page 23: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

energy independent regime 43

0

1 N

30

0 R

with

f.i. LCLS 2009

mm 83.0bunch mm 19.0bunch μm 22bunch

m 10~0Rcurvature in BC magnets

N 250 pC/q0

643

34

0

bunch

108

102.2 10

N

66 101.3 1011

coherent “” incoherent 

Page 24: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

incoherent regime0

43

N 30

0 R

with

shape independent

20

4

0

020

0ISR 6 RNcqPP

3043

RNi

f.i. HERA‐E

mm 310

50050000

bunch

100

N

R

f.i. PETRA

mm 1310

20012000

bunch

100

N

R

mm 13.0i

mm 7.3i

Page 25: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

a simple shielding model = parallel conducting planes

0Re , shcrZ

30

, 3hRcshc

h

path

real part of impedance is short‐circuited below a cutoff frequency 

20

20 1Re

iPNNNiZcqS r

spectral power density:

Page 26: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

circular motion & shielding

a simple shielding model = parallel conducting planes

0PP

0

without shielding

with shieldingcoherent part

210

23

, 51Rh

shc

Page 27: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectoriesand transients

Page 28: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

llL 221

L

30

3 20 for 24 RllRLo

retarded particles, seen from head particleseen from the head (1) before, (2) in and (3) after a 90 degree bending magnet

(1) (2) (3)

nm 10 cm, 29m 10 1000, μm, 10 300 RlLRl o

“overtaking length”

m 201000 μm, 10 Ll for instance:

Page 29: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

longitudinal field in the center of a Gaussian spherical bunchthat travels through a bending magnet

m 100 R

μm 20r

nC 1q

note:                     (all        contributions cancel for the center of the distribution)rEE 2rer

03432

0233

1231

q

REc

beamline coordinate

Page 30: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

transient CSR field, injection of a Gaussian bunch

bunch coordinate / head tail

parametero

i

LLx ˆ

iL3 2

024 RLo with

Page 31: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

transient CSR field, ejection of a Gaussian bunch

bunch coordinate / head tail

parameter

o

d

LLx ˆ

3 2024 RLo and

dL

Page 32: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

some remarks

sloppy notation: “residual” part (of longitudinal E‐field) is called CSR‐field

for free space: interaction by CSR‐field (CSR‐interaction) is tail‐to‐head interaction

significant part of interaction is over long distance weak sensitivity on transverse offset 1D model

energy independent model for 

closed environment (metallic chambers):tail‐to‐head and head‐to‐tail interaction

influence of finite conductivity

3 2024 RLo

R

oe

se

n

1D model (follows)

30 R

Page 33: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

vertical offset dependency: Gaussian bunch in circular motion

bunch coordinate / head tail

||EEc m 10 1000, μm, 100 0 R

: y = 1mmx x x: y = ____ y = 0

∆ 4.6mm

∆ 2

shielding parameter

Page 34: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

general trajectories and transients

closed environment, long range

Page 35: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

projected model

Page 36: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

projected model

phase space

Esyyxx

ZXtransverse coordinates (local system)

longitudinal coordinates (bunch coordinate ~ time, energy)

beamline coordinate

ZsvF

ZfdZd

,00000

,

CSR

ext

XX

projected model, equation of motion

particle index

external forces

collective longitudinal CSR‐self‐force

SC XF

collective SC‐self‐force

Page 37: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

line charge density

projected model

Zs,

ideal trajectory

particles

dxZxKZxsZsF ,,,

collective longitudinal self‐force

projected particles to ideal trajectory (neglect all coordinates but s)generate continuous function (s,Z) by binning and smoothing techniques

CSR kernel

xdZxKZxxsZsF ~,~~,~,

in principle

in practice, with retarded source position x~

Page 38: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

projected model

kernel function

no transverse forcesno transverse beam dimensionslocal rigid bunch approximationonly residual part   

??? add collective SC forces

approximations

R

oe

se

n

observer particle

retarded source particle

Rsne

ReeeenZxK sosos

11,~4 222

energy independent approximation with  0 ,1 2

sZs ,

partial compensation of transverse effects, see SLAC‐PUB‐7181

Page 39: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

projected model

implementations

(incomplete list)

Elegant only one magnetCSRtrack projected model, alternatively 2.5D modelImpact‐T + collective SC forcesBmadGPT

Page 40: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

Page 41: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

4 magnet bunch compressor

in principle

growth of emittanceand energy spread

Page 42: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

“typical” beam dimensions in a “typical” bunch compressorexample: benchmark BC from CSR workshop 2002http://www.desy.de/csr/csr_workshop_2002/csr_workshop_2002_index.html

Page 43: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

beamline coordinate / m beamline coordinate / m

mm56r

longitudinal dispersion

mmx

μmy

μmz

μm 20μm 200

rms bunch dimensions

compression

usually (but not always) the bunch is short after magnet3

“typical” beam dimensions in a “typical” bunch compressor

Page 44: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

simple model for emittance growth in last magnet

assumption: (1) neglect all self effects before last magnet(2) represent total energy loss in chicane by discrete loss E before magnet

growth of emittance ref020 EErms

with ,0 emittance before / after magnet beta function at magnet (lattice) deflection angle

rmsE energy spread of particle bunch(slice or full bunch)

refE energy of particle bunch

depends weak on energy (energy independent CSR regime)

therefore: small; focus of lattice function in last magent high

tt syyxxsyyxxX EEE

rmsE

Eref

Page 45: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

again the “typical” bunch compressorcompression 600 A (1 nC)  6 kA at 5 GeV

rms energy spread of bunch

mean energy of bunch

energy of particle in bunch center

CSR induced energy change along BC

the rms energy is created essentially: end of magnet 3, drift m3m4 and magnet 4

rough estimation of steady state field in magneto

c LIZEEˆ1 0

and transient in drift SL

sIZEo

5.02

1 0

0 rmsE

Page 46: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

projected emittance and slice emittance

222 xxxx naNa 1

with

projected emittance: use all particles:

slice emittance: use particles of a certain slice: few percent growth

0 2 4 6 8 10 12 14 161

1.2

1.4

1.6

S /m

γε x [μm]

Bend−plane normalized emittance

0 2 4 6 8 10 12 14 161

1.2

1.4

1.6

S /m

γε x [μm]

Bend−plane normalized emittance

x 1.52 m

0 = 1.00 m

from P. Emma

initial emittance:

again the “typical” bunch compressor

Page 47: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

growth of slice emittance (in principle)

x / m top view: a bit before last magnet directly after last magnet

slicein the middle of the bunch

z / m z / m

x / m

last magnet

blue: particles                                in one slice before the chicane,they are not in the same slice in the chicane, …

smallconstz

… but they come to the same slice after the chicane

in the chicane these particles may be in different slices and may observe differentlongitudinal fields (, even with the projected CSR model)

Page 48: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

growth of slice emittance, the “typical” bunch compressor

μmz

beamline coordinate / m

rms bunch length

rms length of an initial slice

GeV 5ref E

Page 49: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

bunch compressor

growth of slice emittance, the “typical” bunch compressor

μmz

beamline coordinate / m

rms bunch length

rms length of an initial slice

MeV 500ref Esame compressor, but low energy version:

Page 50: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

other forces /  effects

Page 51: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

rough estimation / scaling

other forces / effects

space charge zz

IZqE 2

02

0|| 3

14

rz for

CSR, circular motionoLIZE 0

||1

3 2024 zo RL

30 Rz

CSR, after magnet(distance S) SL

IZEo

5.02

1 0||

zS 22

0

0|| 8 Za

IZEz

resistive wall wake 3

0

2

ch 2 ZaSz

z

cqI2

(round pipe, radius a)

for Gaussian bunch with peak current

Page 52: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

other forces / effects

μm 100nC1

z

q

steady statealusteel

mm 10a

μm 1m 10twiss

130 MeV500 MeV

Page 53: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

other forces / effects

μm 100nC1

z

q

m 100 R

steady state

S = 1 m

steady statealusteel

mm 10a

μm 1m 10twiss

130 MeV500 MeV

Page 54: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

compression work

)()(2

),(2 rzrz

rgzgqzr

)(21)(2

),(0

rzz

r rgzgrqzrE

),(),( 0 zrEczrB r

zR /

rzmetot

RqWWW 5.1

ln4 0

23

2

other forces / effects

Page 55: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

other forces / effects

compression work

R = 1 cmz = 200mr = 100mq = 1 nC

z = 20m

Wtot = 0.107 mJ Wtot = 1.065 mJWtot = 0.958 mJ

simple example:

R0 = 10m, L = 0.5m , z = 20m P = 375 kW, P L/c0 = 0.625mJ

for comparison: steady state CSR energy loss in magnet

Page 56: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

transverse effects

see: Transverse Effects of Microbunch Radiative InteractionY. Derbenev, V. Shiltsev, SLAC‐PUB‐7181

Page 57: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

transverse effects

example: the “typical” bunch compressor (5 GeV case)methods for tracking:  projected model

full field, approach (1)full field, approach (2) “greens”

EE0K

energy loss of one “typical” particle

transverse phase space after chicane

“on axis particles” middle slice

Page 58: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

transverse effects

equation of horizontal motion

EE

EE xFKxxnKx

2

self effects

external fields: RzK 1 inverse curvature

to first order: chref

CSRch2

EEEE

xFKKxnKx

zn external focusing quadrupole field index

energy: CSRchref EEEE

chirp

horizontal CSR force: CSRCSR0 yxx vBEqF

Page 59: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

transverse effects

EE xFKxnKx

2

EsF ExF

EE0K

test particle particle with 00000syyxx schref EEE0 andexample: the “typical” bunch compressor (5 GeV case)

Page 60: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

A

eRvdtedqAe

dtdqvAeq

dtAdvAeq

AvtAeqF

xxx

x

xx

||

000

0

0

transverse effects

compensation

vAt

qΦqdtd

00E KΦqK 0E

BvEeqF xx

0

||eAvΦ

weak

compensation

Page 61: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

some literature

Page 62: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

E. Saldin, E. Schneidmiller, M. Yurkov: Radiative Interaction of Electrons in aBunch Moving in an Undulator. NIM A417 (1998) 158‐168.

M. Borland: Simple method for particle tracking with coherent synchrotronradiation. Phys. Rev. Special Topics ‐ Accelerators and Beams, Vol. 4, 070701(2001).

Y. Derbenev, J. Rossbach, E. Saldin, V. Shiltsev: Microbunching Radiative Tail‐Head Interaction. TESLA‐FEL 95‐05, September 95.

E. Saldin, E. Schneidmiller, M. Yurkov: On the Coherent Radiation of anElectron Bunch Moving in an Arc of a Circle. NIM A398 (1997) 373‐394.

J. Murphy,  S. Krinsky,  R. Glukstern: Longitudinal Wakefield forSynchrotron Radiation, Proc. of IEEE PAC 1995, Dallas (1995).

Page 63: Coherent Synchrotron Radiation and Beam Interaction · curvature in BC magnets R 0 ~10 m N 250 pC/q0 3 4 6 4 3 0 bunch 8 10 ... usually (but not always) the bunch is short after magnet3

R. Li, Self‐Consistent Simulation of the CSR Effect. NIM A429 (1998) 310‐314.

Y. Derbenev, V. Shiltsev: Transverse Effects of Microbunch Radiative Interaction. (1996)SLAC‐PUB‐7181.

G. Bassi,T. Agoh, M. Dohlus, L. Giannessi, R. Hajima, A. Kabel, T. Limberg, M. Quattromini: Overview of CSR codes. NIM A 557 (2006) 189–204.

G. Bassi, J. Ellison, K. Heinemann, R. Warnock: Microbunching instability in a chicane: Two‐dimensional mean field treatment. Phys. Rev. ST Accel. Beams 12, 080704. (2009)

T. Agoh, K. Yokoya: Calculation of coherent synchrotron radiation using mesh. Phys. Rev. ST Accel. Beams 7, 054403. (2004)

D. Sagan, G. Hoffstaetter, C. Mayes, U. Sae‐Ueng: Extended one‐dimensional methodfor coherent synchrotron radiation including shielding. Phys. Rev. ST Accel. Beams 12 (2009) 040703