Co-evolution of Content Popularity and Delivery in...

71

Transcript of Co-evolution of Content Popularity and Delivery in...

Co-evolution of Content Popularity and Delivery inMobile P2P Networks

Srinivasan Venkatramanan and Anurag Kumar

Department of ECE,

Indian Institute of Science,

Bangalore 560 012.

vsrini,[email protected]

March 26,2012

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 1 / 35

Outline

1 Motivation

2 System Model

3 Fluid limits

4 Optimization Problems

5 Concluding Remarks

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 2 / 35

Outline

1 Motivation

2 System Model

3 Fluid limits

4 Optimization Problems

5 Concluding Remarks

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 3 / 35

Mobile P2P Networks

A scalable approach to content delivery for mobile nodes

Why Mobile P2P?I Increased penetration of smart phonesI Growing demand for high-bandwidth content on mobile devicesI A single item of content (news,ringtone,etc.) may be of interest to

several users in a region

Can be studied under the Mobile Opportunistic Networks paradigm

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 4 / 35

Mobile P2P Networks

A scalable approach to content delivery for mobile nodes

Why Mobile P2P?I Increased penetration of smart phones

I Growing demand for high-bandwidth content on mobile devicesI A single item of content (news,ringtone,etc.) may be of interest to

several users in a region

Can be studied under the Mobile Opportunistic Networks paradigm

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 4 / 35

Mobile P2P Networks

A scalable approach to content delivery for mobile nodes

Why Mobile P2P?I Increased penetration of smart phonesI Growing demand for high-bandwidth content on mobile devices

I A single item of content (news,ringtone,etc.) may be of interest toseveral users in a region

Can be studied under the Mobile Opportunistic Networks paradigm

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 4 / 35

Mobile P2P Networks

A scalable approach to content delivery for mobile nodes

Why Mobile P2P?I Increased penetration of smart phonesI Growing demand for high-bandwidth content on mobile devicesI A single item of content (news,ringtone,etc.) may be of interest to

several users in a region

Can be studied under the Mobile Opportunistic Networks paradigm

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 4 / 35

Mobile P2P Networks

A scalable approach to content delivery for mobile nodes

Why Mobile P2P?I Increased penetration of smart phonesI Growing demand for high-bandwidth content on mobile devicesI A single item of content (news,ringtone,etc.) may be of interest to

several users in a region

Can be studied under the Mobile Opportunistic Networks paradigm

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 4 / 35

Example setup: Highlights of Infocom Keynote Speech

Figure: Mobile P2P Network - An Example

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 5 / 35

Example setup: Highlights of Infocom Keynote Speech

Figure: Mobile P2P Network - An Example

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 5 / 35

Evolution of Content Popularity

Creators: Increase the popularity of the content 1

Distributors: Optimally control delivery mechanisms 2

In�uence spread models (from viral marketing) can be employed

1David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003

2Chandramani Singh, Anurag Kumar, Rajesh Sundaresan and Eitan Altman, �OptimalForwarding in Delay Tolerant Networks with Multiple Destinations�, WiOpt 2011V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 6 / 35

Evolution of Content Popularity

Creators: Increase the popularity of the content 1

Distributors: Optimally control delivery mechanisms 2

In�uence spread models (from viral marketing) can be employed

1David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003

2Chandramani Singh, Anurag Kumar, Rajesh Sundaresan and Eitan Altman, �OptimalForwarding in Delay Tolerant Networks with Multiple Destinations�, WiOpt 2011V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 6 / 35

Evolution of Content Popularity

Creators: Increase the popularity of the content 1

Distributors: Optimally control delivery mechanisms 2

In�uence spread models (from viral marketing) can be employed

1David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003

2Chandramani Singh, Anurag Kumar, Rajesh Sundaresan and Eitan Altman, �OptimalForwarding in Delay Tolerant Networks with Multiple Destinations�, WiOpt 2011V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 6 / 35

Our Contributions

Set up Markov models for the co-evolution of content popularity and

delivery

Derive o.d.e. limits (�uid limits) from the Markov models

Show that the popularity evolution model under study, is equivalent to

the SIR epidemic model

Use the �uid limits to solve various optimization problems for both the

content creator and the content distributor

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 7 / 35

Our Contributions

Set up Markov models for the co-evolution of content popularity and

delivery

Derive o.d.e. limits (�uid limits) from the Markov models

Show that the popularity evolution model under study, is equivalent to

the SIR epidemic model

Use the �uid limits to solve various optimization problems for both the

content creator and the content distributor

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 7 / 35

Our Contributions

Set up Markov models for the co-evolution of content popularity and

delivery

Derive o.d.e. limits (�uid limits) from the Markov models

Show that the popularity evolution model under study, is equivalent to

the SIR epidemic model

Use the �uid limits to solve various optimization problems for both the

content creator and the content distributor

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 7 / 35

Our Contributions

Set up Markov models for the co-evolution of content popularity and

delivery

Derive o.d.e. limits (�uid limits) from the Markov models

Show that the popularity evolution model under study, is equivalent to

the SIR epidemic model

Use the �uid limits to solve various optimization problems for both the

content creator and the content distributor

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 7 / 35

Our Contributions

Set up Markov models for the co-evolution of content popularity and

delivery

Derive o.d.e. limits (�uid limits) from the Markov models

Show that the popularity evolution model under study, is equivalent to

the SIR epidemic model

Use the �uid limits to solve various optimization problems for both the

content creator and the content distributor

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 7 / 35

Outline

1 Motivation

2 System Model

3 Fluid limits

4 Optimization Problems

5 Concluding Remarks

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 8 / 35

System ModelSpread of single item of content among a homogeneous population of

mobile nodes

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Evolution of popularity (HILT Model)

Evolution of availability (SI Model)

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

Figure: Various states and the transitions in the Co-evolution model

Central server to broadcast popularity information at regular intervals

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 9 / 35

System ModelSpread of single item of content among a homogeneous population of

mobile nodes

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Evolution of popularity (HILT Model)

Evolution of availability (SI Model)

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

Figure: Various states and the transitions in the Co-evolution model

Central server to broadcast popularity information at regular intervals

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 9 / 35

System ModelSpread of single item of content among a homogeneous population of

mobile nodes

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Evolution of popularity (HILT Model)

Evolution of availability (SI Model)

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

Figure: Various states and the transitions in the Co-evolution model

Central server to broadcast popularity information at regular intervalsV. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 9 / 35

Network setup for PopularityHomogeneous In�uence Linear Threshold model (HILT Model)3

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

Figure: HILT Model

Complete network on N , N = |N |In�uence edge weights γN = Γ

N−1Random threshold Θi ∼ F , i ∈ N

3David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 10 / 35

Network setup for PopularityHomogeneous In�uence Linear Threshold model (HILT Model)3

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

Figure: HILT Model

Complete network on N , N = |N |

In�uence edge weights γN = ΓN−1

Random threshold Θi ∼ F , i ∈ N

3David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 10 / 35

Network setup for PopularityHomogeneous In�uence Linear Threshold model (HILT Model)3

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

Figure: HILT Model

Complete network on N , N = |N |In�uence edge weights γN = Γ

N−1

Random threshold Θi ∼ F , i ∈ N

3David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 10 / 35

Network setup for PopularityHomogeneous In�uence Linear Threshold model (HILT Model)3

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

Figure: HILT Model

Complete network on N , N = |N |In�uence edge weights γN = Γ

N−1Random threshold Θi ∼ F , i ∈ N

3David Kempe, Jon Kleinberg and Éva Tardos,�Maximizing the Spread of In�uence ina Social Network�, In Proceedings of KDD 2003V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 10 / 35

Popularity Evolution

��������������������������������������������������������

��������������������������������������������������������������������������������������������

������������������������������������

����������������������������������������

����������������������������������������

A(k)

A(k − 1) = B(k)

N

A(U )

D(1)

D(k)

A(0)

Figure: Spread of In�uence in the HILT Model

A relay j /∈ A(k − 1) becomes a destination at time k , if

γN |A(k − 1)| ≥ Θj

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 11 / 35

Content Spread (SI model)

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

k=1k=0 k=2 k=3

Popularity updates

Possible destination copy Possible relay copy

Each pair of nodes meet at points of a Poisson process with rate λN

Possible destination copy: i ∈ A(k)\X (k) meets j ∈ X (k)⋃Y(k)

Copy occurs with probability α

Possible relay copy: i ∈ S(k)\Y(k) meets j ∈ X (k)⋃Y(k)

Copy occurs with probability σ

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 12 / 35

Content Spread (SI model)

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

k=1k=0 k=2 k=3

Popularity updates

Possible destination copy Possible relay copy

Each pair of nodes meet at points of a Poisson process with rate λN

Possible destination copy: i ∈ A(k)\X (k) meets j ∈ X (k)⋃Y(k)

Copy occurs with probability α

Possible relay copy: i ∈ S(k)\Y(k) meets j ∈ X (k)⋃Y(k)

Copy occurs with probability σ

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 12 / 35

Outline

1 Motivation

2 System Model

3 Fluid limits

4 Optimization Problems

5 Concluding Remarks

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 13 / 35

HILT model

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

��������������������������������������������������������

��������������������������������������������������������������������������������������������

������������������������������������

����������������������������������������

����������������������������������������

A(k)

A(k − 1) = B(k)

N

A(U )

D(1)

D(k)

A(0)

Let A(k) = |A(k)|, D(k) = |D(k)| and B(k) = |B(k)|(B(k),D(k)) is a Markov chain

Kurtz theorem 4: Convergence of Markov chains to their �uid limits

4Thomas G. Kurtz, �Solutions of Ordinary Di�erential Equations as Limits of PureJump Markov Processes�, J. Appl. Prob. 7, 49-58 (1970)V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 14 / 35

HILT model

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

��������������������������������������������������������

��������������������������������������������������������������������������������������������

������������������������������������

����������������������������������������

����������������������������������������

A(k)

A(k − 1) = B(k)

N

A(U )

D(1)

D(k)

A(0)

Let A(k) = |A(k)|, D(k) = |D(k)| and B(k) = |B(k)|

(B(k),D(k)) is a Markov chain

Kurtz theorem 4: Convergence of Markov chains to their �uid limits

4Thomas G. Kurtz, �Solutions of Ordinary Di�erential Equations as Limits of PureJump Markov Processes�, J. Appl. Prob. 7, 49-58 (1970)V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 14 / 35

HILT model

γN = ΓN−1, Γ ≤ 1

Θi ∼ FγN i

γN

��������������������������������������������������������

��������������������������������������������������������������������������������������������

������������������������������������

����������������������������������������

����������������������������������������

A(k)

A(k − 1) = B(k)

N

A(U )

D(1)

D(k)

A(0)

Let A(k) = |A(k)|, D(k) = |D(k)| and B(k) = |B(k)|(B(k),D(k)) is a Markov chain

Kurtz theorem 4: Convergence of Markov chains to their �uid limits4Thomas G. Kurtz, �Solutions of Ordinary Di�erential Equations as Limits of Pure

Jump Markov Processes�, J. Appl. Prob. 7, 49-58 (1970)V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 14 / 35

Scaling and Drift EquationsScaled Markov process (BN(t),DN(t)) evolving over mini-slots

(B(k + 1), D(k + 1))(B(k),D(k))1N

(BN(t), DN(t))

(BN(t + 1), DN(t + 1))

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

������������������������������������������������������������������������

������������������������������������������������������������������������

��������������������

��������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

�������������������������

�������������������������

DN(t)CN(t)BN(t)

DN(t + 1)

BN(t + 1)

Each infectious destination in DN(t) attempts to in�uence the relayswith probability 1

NI Success: Contributes its in�uence of Γ

N−1 and moves to BN(t + 1)I Failure: Stays in the DN(t + 1)

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 15 / 35

Scaling and Drift EquationsScaled Markov process (BN(t),DN(t)) evolving over mini-slots

(B(k + 1), D(k + 1))(B(k),D(k))1N

(BN(t), DN(t))

(BN(t + 1), DN(t + 1))

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

������������������������������������������������������������������������

������������������������������������������������������������������������

��������������������

��������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

�������������������������

�������������������������

DN(t)CN(t)BN(t)

DN(t + 1)

BN(t + 1)

Each infectious destination in DN(t) attempts to in�uence the relayswith probability 1

NI Success: Contributes its in�uence of Γ

N−1 and moves to BN(t + 1)I Failure: Stays in the DN(t + 1)

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 15 / 35

Scaling and Drift Equations

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

������������������������������������������������������������������������

������������������������������������������������������������������������

��������������������

��������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

�������������������������

�������������������������

DN(t)CN(t)BN(t)

DN(t + 1)

BN(t + 1)

CN(t) =DN(t)

N+ ZN

b (t + 1)

BN(t + 1) = BN(t) + CN(t)

DN(t + 1) = DN(t) + E[F (γN(BN(t) + CN(t)))− F (γNB

N(t))

1− F (γNBN(t))

]×(

N − BN(t)− DN(t)

)− CN(t) + ZN

d (t + 1)

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 16 / 35

Scaling and Drift Equations

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

������������������������������������������������������������������������

������������������������������������������������������������������������

��������������������

��������������������

����������������������������������������������������������������������

����������������������������������������������������������������������

��������������������������������������������������������������������������������

��������������������������������������������������������������������������������

�������������������������

�������������������������

DN(t)CN(t)BN(t)

DN(t + 1)

BN(t + 1)

CN(t) =DN(t)

N+ ZN

b (t + 1)

BN(t + 1) = BN(t) + CN(t)

DN(t + 1) = DN(t) + E[F (γN(BN(t) + CN(t)))− F (γNB

N(t))

1− F (γNBN(t))

]×(

N − BN(t)− DN(t)

)− CN(t) + ZN

d (t + 1)

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 16 / 35

Fluid Limit for Interest Evolution - HILT ModelDe�ning BN(t), CN(t) and DN(t) as the fractional processes, we can

then state the following theorem

Theorem

Given the interest evolution Markov process (BN(t), DN(t)), for thethreshold distribution with density f (·), with bounded f ′(·) and hazard

function hF (x) = f (x)1−F (x) , we have for each T > 0 and each ε > 0,

P(

sup0≤u≤T

∣∣∣∣(BN(bNuc), DN(bNuc))−(b(u), d(u)

)∣∣∣∣ > ε

)N→∞→ 0

where (b(u), d(u)) is the unique solution to the o.d.e.,

b = d (1)

d = hF (Γb)Γd(1− b − d)− d (2)

with initial conditions (b(0) = 0, d(0) = d0).

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 17 / 35

Fluid Limit for Interest Evolution - HILT ModelDe�ning BN(t), CN(t) and DN(t) as the fractional processes, we can

then state the following theorem

Theorem

Given the interest evolution Markov process (BN(t), DN(t)), for thethreshold distribution with density f (·), with bounded f ′(·) and hazard

function hF (x) = f (x)1−F (x) , we have for each T > 0 and each ε > 0,

P(

sup0≤u≤T

∣∣∣∣(BN(bNuc), DN(bNuc))−(b(u), d(u)

)∣∣∣∣ > ε

)N→∞→ 0

where (b(u), d(u)) is the unique solution to the o.d.e.,

b = d (1)

d = hF (Γb)Γd(1− b − d)− d (2)

with initial conditions (b(0) = 0, d(0) = d0).

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 17 / 35

HILT Model: E�ect of Threshold Distribution

Uniform threshold distribution: hF (x) = 11−x . Let r = 1− Γ + Γd0

then we have,

b(t) =d0

r− d0

re−rt (3)

d(t) = d0e−rt (4)

Exponential distribution with parameter β: hF (x) = β(memoryless). The �uid limit is the solution to the o.d.e.,

b = d

d = βΓd(1− b − d)− d

This is equivalent to the SIR epidemic model with infection rate βΓand recovery rate of 1

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 18 / 35

HILT Model: E�ect of Threshold Distribution

Uniform threshold distribution: hF (x) = 11−x . Let r = 1− Γ + Γd0

then we have,

b(t) =d0

r− d0

re−rt (3)

d(t) = d0e−rt (4)

Exponential distribution with parameter β: hF (x) = β(memoryless). The �uid limit is the solution to the o.d.e.,

b = d

d = βΓd(1− b − d)− d

This is equivalent to the SIR epidemic model with infection rate βΓand recovery rate of 1

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 18 / 35

HILT Model: E�ect of Threshold Distribution

Uniform threshold distribution: hF (x) = 11−x . Let r = 1− Γ + Γd0

then we have,

b(t) =d0

r− d0

re−rt (3)

d(t) = d0e−rt (4)

Exponential distribution with parameter β: hF (x) = β(memoryless). The �uid limit is the solution to the o.d.e.,

b = d

d = βΓd(1− b − d)− d

This is equivalent to the SIR epidemic model with infection rate βΓand recovery rate of 1

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 18 / 35

Coevolution - HILT-SI Model

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

Px(k)

Qxy(k)

Py(k)

k=1k=0 k=2 k=3

Popularity updates

Possible destination copy Possible relay copy

Probability that a destination node without the content, receives it in

the given time slot = 1− e−λNα(X (k)+Y (k)) and similarly for a relay

Px(k)dist.

= Bin

(A(k)− X (k), λNα(X (k) + Y (k))

)Py (k)

dist.= Bin

(N − A(k)− Y (k), λNσ(X (k) + Y (k))

)Qxy (k)

dist.= Bin

(Y (k),

γND(k)

1− γNB(k)

)

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 19 / 35

Coevolution - HILT-SI Model

want = 0

want = 1

have = 1

want = 1

have = 0

want = 0

have = 0

have = 1

Relays

Destinations

Y(k)

S(k)\Y(k)

X (k)

A(k)\X (k)

Px(k)

Qxy(k)

Py(k)

k=1k=0 k=2 k=3

Popularity updates

Possible destination copy Possible relay copy

Probability that a destination node without the content, receives it in

the given time slot = 1− e−λNα(X (k)+Y (k)) and similarly for a relay

Px(k)dist.

= Bin

(A(k)− X (k), λNα(X (k) + Y (k))

)Py (k)

dist.= Bin

(N − A(k)− Y (k), λNσ(X (k) + Y (k))

)Qxy (k)

dist.= Bin

(Y (k),

γND(k)

1− γNB(k)

)V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 19 / 35

Drift Equations

X (k + 1)− X (k) = λNα(X (k) + Y (k))(A(k)− X (k))

+γND(k)

1− γNB(k)Y (k) + Zx(k)

Y (k + 1)− Y (k) = λNσ(X (k) + Y (k))(N − A(k)− Y (k))

− γND(k)

1− γNB(k)Y (k) + Zy (k)

where Zx(k) and Zy (k) are noise terms with zero mean conditional on the

history of the joint evolution process until period k .

Obtain �uid limit by working with the fractional scaled process which

evolves over mini-slots of width 1N

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 20 / 35

ODE limit of HILT-SI Model

Theorem

Given the joint evolution Markov process (BN(t), DN(t), XN(t), Y N(t)), we havefor each T > 0 and each ε > 0,

P(

sup0≤u≤T

∣∣∣∣(BN(bNuc), DN(bNuc), XN(bNuc), Y N(bNuc))

−(b(u), d(u), x(u), y(u)

)∣∣∣∣ > ε

)N→∞→ 0

where (b(u), d(u), x(u), y(u)) is the unique solution to

b = d ; d =Γd

1− Γb(1− b − d)− d (5)

x = λα(x + y)(a− x) +Γd

1− Γby (6)

y = λσ(x + y)(1− a− y)− Γd

1− Γby (7)

with initial conditions (b(0) = 0, d(0) = d0, x(0) = x0, y(0) = y0).V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 21 / 35

Accuracy of Fluid limits (Scaled process)

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

Time (t)

Sca

led

pro

ce

ss a

nd

th

e O

DE

a(t) s(t) x(t) y(t)

N=100 N=500N=1000

Γ=0.9, α=1.σ=0.2, λ=1

Figure: Comparison of the scaled HILT-SI process for various values of N with thecorresponding �uid limit.V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 22 / 35

Accuracy of Fluid limits (Original process)

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

Time (t)

Fra

ctio

n o

f th

e p

op

ula

tio

n

a(t) s(t) x(t) y(t)Γ = 0.9; α = 0.3;σ = 0.2; λ =1;N=1000

Figure: Comparison of the unscaled HILT-SI process (N = 1000) with thecorresponding �uid limit. The solid lines indicate the evolution of o.d.e. solutions.Shown in dots alongside are multiple runs of the original discrete process.V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 23 / 35

Outline

1 Motivation

2 System Model

3 Fluid limits

4 Optimization Problems

5 Concluding Remarks

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 24 / 35

Interest evolution

Content creators: Wish to maximize the level of popularity achieved

Do not have control over in�uence weight Γ or the threshold

distribution F ,

Only parameter under control is d0

Optimal d0 to obtain given b∞

d0 =b∞(1− Γ)

1− b∞Γ(8)

Time to reach target β (β < d0r), given d0

T (β, d0, Γ) =1

rln

(1− r

1− βd0r

)(9)

with r = 1− Γ + Γd0.

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 25 / 35

Interest evolution

Content creators: Wish to maximize the level of popularity achieved

Do not have control over in�uence weight Γ or the threshold

distribution F ,

Only parameter under control is d0

Optimal d0 to obtain given b∞

d0 =b∞(1− Γ)

1− b∞Γ(8)

Time to reach target β (β < d0r), given d0

T (β, d0, Γ) =1

rln

(1− r

1− βd0r

)(9)

with r = 1− Γ + Γd0.

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 25 / 35

Interest evolution

Content creators: Wish to maximize the level of popularity achieved

Do not have control over in�uence weight Γ or the threshold

distribution F ,

Only parameter under control is d0

Optimal d0 to obtain given b∞

d0 =b∞(1− Γ)

1− b∞Γ(8)

Time to reach target β (β < d0r), given d0

T (β, d0, Γ) =1

rln

(1− r

1− βd0r

)(9)

with r = 1− Γ + Γd0.

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 25 / 35

Interest evolution

Content creators: Wish to maximize the level of popularity achieved

Do not have control over in�uence weight Γ or the threshold

distribution F ,

Only parameter under control is d0

Optimal d0 to obtain given b∞

d0 =b∞(1− Γ)

1− b∞Γ(8)

Time to reach target β (β < d0r), given d0

T (β, d0, Γ) =1

rln

(1− r

1− βd0r

)(9)

with r = 1− Γ + Γd0.

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 25 / 35

Optimizations in Coevolution

Delivering to as many destinations as possible by a �xed time

Content is time-dependent and its usefulness expires by that �xed time

Maximize target spread

max{σ:y(τ)≤ζ}

x(τ)

Deliver the content to a given fraction of destinations as early as

possible

De�ne τη = inf{t : x(t) ≥ η}

Minimize reach timemin

{σ:y(τη)≤ζ}τη

In both cases, the constraint is on the number of wasted copies to

relays

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 26 / 35

Optimizations in Coevolution

Delivering to as many destinations as possible by a �xed time

Content is time-dependent and its usefulness expires by that �xed time

Maximize target spread

max{σ:y(τ)≤ζ}

x(τ)

Deliver the content to a given fraction of destinations as early as

possible

De�ne τη = inf{t : x(t) ≥ η}

Minimize reach timemin

{σ:y(τη)≤ζ}τη

In both cases, the constraint is on the number of wasted copies to

relays

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 26 / 35

Optimizations in Coevolution

Delivering to as many destinations as possible by a �xed time

Content is time-dependent and its usefulness expires by that �xed time

Maximize target spread

max{σ:y(τ)≤ζ}

x(τ)

Deliver the content to a given fraction of destinations as early as

possible

De�ne τη = inf{t : x(t) ≥ η}

Minimize reach timemin

{σ:y(τη)≤ζ}τη

In both cases, the constraint is on the number of wasted copies to

relays

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 26 / 35

Optimizations in Coevolution

Delivering to as many destinations as possible by a �xed time

Content is time-dependent and its usefulness expires by that �xed time

Maximize target spread

max{σ:y(τ)≤ζ}

x(τ)

Deliver the content to a given fraction of destinations as early as

possible

De�ne τη = inf{t : x(t) ≥ η}

Minimize reach timemin

{σ:y(τη)≤ζ}τη

In both cases, the constraint is on the number of wasted copies to

relays

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 26 / 35

Optimizations in Coevolution

Delivering to as many destinations as possible by a �xed time

Content is time-dependent and its usefulness expires by that �xed time

Maximize target spread

max{σ:y(τ)≤ζ}

x(τ)

Deliver the content to a given fraction of destinations as early as

possible

De�ne τη = inf{t : x(t) ≥ η}

Minimize reach timemin

{σ:y(τη)≤ζ}τη

In both cases, the constraint is on the number of wasted copies to

relays

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 26 / 35

Maximize target spread (Variation w.r.t. τ )

τ - Target time

ζ - Constraint on wasted copies

σ - Copy probability to relays

0 2 4 6 8 10 12 14 150

0.2

0.4

0.6

0.8

1

τ

x(τ

)* , y(τ

)* , σ

*

σ*

x(τ)*, ζ = 0.3

y(τ)*, ζ = 0.3

Figure: Maximize target spread: The optimal solution plotted for a �xed value ofζ and varying τ .

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 27 / 35

Maximize target spread (Variation w.r.t. ζ)τ - Target time

ζ - Constraint on wasted copies

σ - Copy probability to relays

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

ζ

x(τ

)* , y(τ

)* , σ

*

σ*

x(τ)*, τ = 6

y(τ)*, τ = 6

Figure: Maximize target spread: The optimal solution plotted for a �xed value ofτ and varying ζ.

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 28 / 35

Minimize reach time (Variation w.r.t. η)η - Target fraction

τη - Time to reach target fraction

ζ - Constraint on wasted copies

σ - Copy probability to relays

0.2 0.3 0.4 0.5 0.6 0.70

0.2

0.4

0.6

0.8

1

η

σ*

0.2 0.3 0.4 0.5 0.6 0.70

10

20

σ* , ζ=0.2

τη*, ζ = 0.2 τ

η*

Figure: Minimize reach time: The optimal solution plotted for a �xed value of ζand varying η.

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 29 / 35

Minimize reach time (Variation w.r.t. ζ)η - Target fraction

τη - Time to reach target fraction

ζ - Constraint on wasted copies

σ - Copy probability to relays

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

ζ

σ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

σ*, η = 0.5

τη, η = 0.5

τη

Figure: Minimize reach time: The optimal solution plotted for a �xed value of ηand varying ζ.V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 30 / 35

Outline

1 Motivation

2 System Model

3 Fluid limits

4 Optimization Problems

5 Concluding Remarks

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 31 / 35

Our Contributions

Set up Markov models for the co-evolution of content popularity and

delivery

Derive o.d.e. limits (�uid limits) from the Markov models

Show that the popularity evolution model under study, is equivalent to

the SIR epidemic model

Use the �uid limits to solve various optimization problems for both the

content creator and the content distributor

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 32 / 35

Future Work

Decentralized spread of both popularity and the content

Incentive schemes for the relay nodes to carry the content

Leecher behavior - nodes can delete the content after consumption

Inter-mobile contact duration not su�cient for full transfer

Generalize the framework for multiple P2P content

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 33 / 35

Future Work

Decentralized spread of both popularity and the content

Incentive schemes for the relay nodes to carry the content

Leecher behavior - nodes can delete the content after consumption

Inter-mobile contact duration not su�cient for full transfer

Generalize the framework for multiple P2P content

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 33 / 35

Future Work

Decentralized spread of both popularity and the content

Incentive schemes for the relay nodes to carry the content

Leecher behavior - nodes can delete the content after consumption

Inter-mobile contact duration not su�cient for full transfer

Generalize the framework for multiple P2P content

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 33 / 35

Future Work

Decentralized spread of both popularity and the content

Incentive schemes for the relay nodes to carry the content

Leecher behavior - nodes can delete the content after consumption

Inter-mobile contact duration not su�cient for full transfer

Generalize the framework for multiple P2P content

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 33 / 35

Future Work

Decentralized spread of both popularity and the content

Incentive schemes for the relay nodes to carry the content

Leecher behavior - nodes can delete the content after consumption

Inter-mobile contact duration not su�cient for full transfer

Generalize the framework for multiple P2P content

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 33 / 35

Funding Organizations

Indo-French Center for the Promotion of Advanced Research

(CEFIPRA)

Department of Science and Technology, Govt. of India

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 34 / 35

Thank you

V. Srinivasan (IISc, Bangalore) Co-evolution of Popularity and Delivery March 2012 35 / 35