CMOS Wideband Noise Canceling LNAs and Receivers: A ...Condition for Noise Cancellation: Aaux = 1 β...

50
Thanks to Indrajit Das CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial Nagarjuna Nallam Department of Electronics and Electrical Engineering, IIT Guwahati, Assam 781039, India

Transcript of CMOS Wideband Noise Canceling LNAs and Receivers: A ...Condition for Noise Cancellation: Aaux = 1 β...

  • Thanks to Indrajit Das

    CMOS Wideband Noise Canceling

    LNAs and Receivers: A Tutorial

    Nagarjuna Nallam

    Department of Electronics and Electrical Engineering,

    IIT Guwahati, Assam 781039, India

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Preliminaries: Noise in Electronics

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    No

    isyR

    No

    isle

    ssR

    4KT∆f/R

    No

    isle

    ss

    MO

    SF

    ET

    No

    isy

    MO

    SF

    ET

    4KT γαgm∆f

  • Preliminaries: Noise factor

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    +

    Amp

    Pi Po

    Ni No

    SNRi =PiNi

    ; SNRo =PoNo

    = Gain.PiGain.Ni+NA

    ;

    Noise factor = SNRiSNRo

    = PiNi.NoPo

    = 1 + NAGain.Ni

    > 1

    If expressed in dB, Noise factor is referred as Noise figure and is

    always > 0 dB.

  • Preliminaries: Noise factor of a cascaded system

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    +

    Po

    RsG2, F2G1, F1

    Ps

    P1

    +

    Fcas =PiPo.NoNs

    = 1G1G2

    .G1G2Ns+G2.NA1+NA2Ns

    Fcas − 1 = NA1G1Ns +NA2

    G1G2Ns

    = (F1 − 1) + F2−1G1

  • Preliminaries: Noise figure of the receiver

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    IFprocessingPA LNA

    PTx PRx

    RF source RF source

    Data

    (NF)Rx is dominated by (NF)LNA

    frequency

    PowerSets up the Noise floor

    Only the signals whose

    amplitudes are greater

    than the noise floor of

    the Rx can be detected.

  • Preliminaries: LNA specifications

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Chip

    SAW

    PCB

    LNA

    Mixer

    Γ = 0

    few mm

    few µm

    Maximize voltage

    filter

    1. Zin looking into the pin of the chip (i.e., including the pad and package parasitics) should be

    50 Ω.

    2. Output matching is not needed as the track length from the LNA output to the mixer input is

    ≪ λ.

    3. Large gain, large IIP3 and small NF are needed.

  • Why wideband?

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Modern radio receivers need to support multiple wireless

    standards which span across the frequency spectrum!

    Two ways of supporting:

    Multiple Narrowband radios Wideband radio

    f1 f2 fn f1 f2 fn

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Common Gate (CG) Wideband LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Vdd

    ve

    vin

    Rs

    RL

    vout

    vb

    Rin =r0+RLgmr0+1

    ≈ 1gm

    M0voutvin

    = (gmr0+1)RLr0+Rs+RL+gmr0Rs

    NFCG = 1 +γ

    gmRs+

    RsRL

    (1 +1

    gmRs)2 (1)

  • Resistive Shunt Feedback (RSF) Wideband LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Vdd

    vg

    Rf

    vout

    voutvin

    ≈ 1− gmRfRs

    vin

    Rin =1

    gm1

    vb M2

    M1

    NFRSF = 1 +4RsRf

    + γgm1Rs + γgm2Rs (2)

  • Wideband Noise Canceling LNAs†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Source (Rs)

    Matching

    Voltage-sensing

    Amplifier Stage

    Amplifier Stage

    Combiner

    (a)

    Zinm

    Zinv

    v2inm

    †F. Bruccoleri, E. Klumperink, and B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling, IEEE J.

    Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb 2004.

  • Wideband Noise Canceling LNAs†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    −Aaux

    v′out

    Rf

    (b)

    Source (Rs)

    Matching

    Voltage-sensing

    Amplifier Stage

    Amplifier Stage

    Combiner

    (a)

    Zinm

    Zinv

    Rs

    v2inm

    †F. Bruccoleri, E. Klumperink, and B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling, IEEE J.

    Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb 2004.

  • Wideband Noise Canceling LNAs†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    −Aaux

    v′out

    Rf

    (b)

    Source (Rs)

    Matching

    Voltage-sensing

    Amplifier Stage

    Amplifier Stage

    Combiner

    (a)

    Zinm

    Zinv

    Rs

    v2inm

    †F. Bruccoleri, E. Klumperink, and B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling, IEEE J.

    Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb 2004.

  • Wideband Noise Canceling LNAs†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    −Aaux

    v′out

    Rf

    (b)

    Source (Rs)

    Matching

    Voltage-sensing

    Amplifier Stage

    Amplifier Stage

    Combiner

    (a)

    Zinm

    Zinv

    Rs

    v2inm

    †F. Bruccoleri, E. Klumperink, and B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling, IEEE J.

    Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb 2004.

  • Wideband Noise Canceling LNAs†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Vdd Vdd

    −Av

    vout

    Vb

    vout

    Rf

    (b) [2 - 3] (c) [4 - 6]

    Source (Rs)

    Matching

    Voltage-sensing

    Amplifier Stage

    Amplifier Stage

    (a) [2]

    Combiner

    Zinm

    Zinv

    Rs

    Rs

    v2inm

    †F. Bruccoleri, E. Klumperink, and B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling, IEEE J.

    Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb 2004.

  • Wideband Noise Canceling Receiver†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    vinRinRs

    v2Rin

    IRin

    VRin

    rmIRin

    αVRin

    v′out

    Noise canceling Condition isrm = αRs

    (a)

    ve

    outp

    outn

    †D. Murphy, H. Darabi, A. Abidi, A. Hafez, A. Mirzaei, M. Mikhemar, and M.-C. Chang, A blocker-tolerant, noise-cancelling

    receiver suitable for wideband wireless applications, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2943-2963, Dec 2012.

  • Wideband Noise Canceling Receiver†

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    vinRinRs

    v2Rin

    IRin

    VRin

    rmIRin

    αVRin

    vin

    RinRs

    −gm

    v′out v′out

    Voltage Measurement Path(α = −gmRaux)

    Current Measurement Path(rm = Rm)

    Noise canceling Condition isrm = αRs

    (a) (b)

    Raux

    Rmve

    outp

    outn ve

    outp

    outn

    †D. Murphy, H. Darabi, A. Abidi, A. Hafez, A. Mirzaei, M. Mikhemar, and M.-C. Chang, A blocker-tolerant, noise-cancelling

    receiver suitable for wideband wireless applications, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2943-2963, Dec 2012.

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Feedforward Noise Canceling

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Add a feed forward amplifier to nullify the noise of main amplifier at the

    output [13].

    Am Σ

    Nm

    Delay(τ1)

    Σ

    Attenuator(γ1) Σ

    (τ2)Delay

    Aaux

    XZ

    YA

    Y

    X1

  • Feedforward Noise Canceling

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Add a feed forward amplifier to nullify the noise of main amplifier at the

    output [13].

    Am Σ

    Nm

    Delay(τ1)

    Σ

    Attenuator(γ1) Σ

    (τ2)Delay

    Aaux

    XZ

    YA

    Y

    X1

    γ1 =1

    Am, X1 = γ1Nm

    YA = Aaux(γ1 Nm) Y = AmX +Nm

    Z = Y − YA = AmX +Nm(1−Aauxγ1)

    If, Aaux =1

    γ1, Z = AmX

    Noise Canceling Condition is Aaux = Am =1

    γ1

  • Feedback Noise Reduction

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    AmX Y

    Σ Σ

    N1

    β

    e

    e = X1+Amβ

    AmX Y

    Σ Σ

    β

    Y = AmX1+Amβ

  • Feedback Noise Reduction

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    AmX Y

    Σ Σ

    N1

    β

    e

    e = X1+Amβ

    (a) (b)

    e = −βNm1+Amβ

    AmX Y

    Σ Σ

    β

    AmY

    Σ Σ

    Nm

    β

    Y = Nm1+Amβ

    Y = AmX1+Amβ

  • Feedback-Feedforward Noise Canceling

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    e = X1+Amβ

    − βNm1+Amβ

    XAmΣ Σ

    Nm

    β

    Aaux

    ΣZ

    YA

    Y = AmX1+Amβ

    + Nm1+Amβ

    e =X

    1 +Amβ− βNm

    1 +Amβ(3)

    Y =AmX

    1 +Amβ+

    Nm1 +Amβ

    (4)

  • Feedback-Feedforward Noise Canceling

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    e = X1+Amβ

    − βNm1+Amβ

    XAmΣ Σ

    Nm

    β

    Aaux

    ΣZ

    YA

    Aaux =1β

    No Nm iff

    Y = AmX1+Amβ

    + Nm1+Amβ

    Condition for Noise Cancellation:

    Aaux =1β

    Overall Gain at NC condition:

    ZX =

    YX +

    YAX =

    Am1+Amβ

    +1/β

    1+Amβ=

    1β or Aaux

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Macro Model of a MOSFET

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    vs

    −gm

    vs ioutiout

    Σ

    (a) (b)

    Σ

    in

    vg

    vgiout

    iout

  • Macro Model of a MOSFET in CG configuration

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    vs

    −gm

    vs ioutiout

    Σ

    (a) (b)

    Σ

    in

    vg

    vgiout

    iout

    gm

    vs ioutiout

    Σiout

    iniout

    vs

    (c)

  • Macro Model of a MOSFET in CS configuration

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    vs

    −gm

    vs ioutiout

    Σ

    (a) (b)

    Σ

    in

    vg

    vgiout

    iout

    −gm Σvg iout

    in

    gm

    vs ioutiout

    Σiout

    invg

    ioutiout

    vs

    (d) CS configuration(c) CG configuration

  • Macro Model of a Resistor

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    RfX Y

    (a)

    iyixvx vy

    ix = iy

    in

  • Macro Model of a Resistor

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    RfX Y

    (a)

    iyixvx vy

    ix = iy

    in

    ix = iy (5)

    ix = (vxRf

    )− ( vyRf

    ) + in (6)

  • Macro Model of a Resistor

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    RfX Y

    (a)

    iyixvx vy

    ix = iy

    in

    1Rf

    Rf

    (b)

    in iy vy

    Y

    ixvx

    X

    ix = (vxRf

    )− ( vyRf

    ) + in

  • Macro Model of a Resistor

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    RfX Y

    (a)

    iyixvx vy

    ix = iy

    in

    1Rf

    1Rf

    RfRf

    (c)†

    in

    iy vy

    Y

    ixvx

    X

    1Rf

    Rf

    (b)

    in iy vy

    Y

    ixvx

    X

    ix = (vxRf

    )− ( vyRf

    ) + in

    in

    †D. H. Mahrof, E. A. M. Klumperink, Z. Ru, M. S. Oude Alink and B. Nauta, Cancellation of opamp virtual ground imperfections

    by a negative conductance applied to improve RF receiver linearity, IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1112-1124,

    May 2014.

  • Macro Model of a Resistor

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    RfX Y

    (a)

    1Rf

    Rfiy

    (d)

    Σ

    in

    iyixvx vy

    ix = iy

    in

    X

    ix

    Y

    iy vy

    1Rf

    1Rf

    RfRf

    (c)†

    in

    iy vy

    Y

    ixvx

    X

    vx

    1Rf

    Rf

    (b)

    in iy vy

    Y

    ixvx

    X

    ix = (vxRf

    )− ( vyRf

    ) + in

    in

    †D. H. Mahrof, E. A. M. Klumperink, Z. Ru, M. S. Oude Alink and B. Nauta, Cancellation of opamp virtual ground imperfections

    by a negative conductance applied to improve RF receiver linearity, IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1112-1124,

    May 2014.

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Equivalent Model of a Common Gate LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Vdd

    ve

    gmve

    ioutiout

    Σ

    (a) (b)

    vin

    Rs

    RsvinRs

    RL

    RL

    Σ

    in

    vout

    vout

    ie

    Figure 1: (a) A CG amplifier, and (b) a feedback model of it.

    ve =1

    1+gmRsvin − Rs/RL1+gmRs vn

    vout =gmRL

    1+gmRsvin +

    11+gmRs

    vn, where vn = in RL

  • Equivalent Model of a NC Common Gate LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    gmve

    ioutiout

    Σ

    RsvinRs

    RL

    Σ

    inv′out

    Aaux

    ie

    Σ

    vout

    Noise canceling condition: Aaux =RLRs

  • Simulation of CG NC-LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Vdd = 1.8 V

    ve

    vin

    outp outn

    −Aaux50 Ω

    350 Ω

    80µ0.18µ

    v′out

    2.5 mA

    β = RsRL

    = 17

    VCVS

    β = RsRL

    = 17

    Aaux =1β

    = 7

  • Simulation of CG NC-LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    4 5 6 7 8 9 100

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Auxiliary Amplifier Gain (Aaux)

    50 MHz100 MHz

    500 MHz1 GHz

    No

    ise

    atv′ out

    inn

    V/s

    qrt

    (Hz)

    Aaux =1β= 7

    1

    2

    3

    4

    5

    6

    7

    8

    Frequency (Hz)

    v′out = outp − outnoutp

    10M 100M 1G 10G

    Vo

    lta

    ge

    Ga

    in

    |v′outvin

    | = | 1β| = 7

    (a)

    (b)

  • Equivalent Model of the NC RSF LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    −gm Σ

    in

    Σ

    Rf

    Rs

    ve

    vinRs

    v′out

    ioutiout

    −1− RfRs

    Σ

    1Rf

    Rf

    1Rf

    vout

    ve =1

    1+gmRsvin +

    Rs/Rf1+gmRs

    vn

    vout =1−gmRf1+gmRs

    vin +1+Rs/Rf1+gmRs

    vn

  • Simulation of RSF NC-LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Vdd = 1.8 V

    50 Ω 250 Ω

    vin

    −Aaux

    Σv′out

    vout70 µ0.18 µ

    160 µ0.18 µ

    β = RsRf

    = 15

    ve

    1.38 mA

    VCVS

    NC condition: Aaux = 1 +1β = 6

    Gain of amplifier at NC = 1/β = 5

  • Simulation of RSF NC-LNA

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    0

    1

    2

    3

    4

    5

    6v′out/vinvout/vin

    10M 100M 1G 10G

    Frequency (Hz)

    Vo

    lta

    ge

    Ga

    in |v′outvin

    | = | 1β| = 5

    |β| = RsRf

    = 15

    3 4 5 6 7 8 90

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    1.8

    Gain of the auxiliary amplifier (|Aaux|)

    100 MHz

    500 MHz1 GHz

    No

    ise

    volta

    ge

    inn

    V/√

    (Hz)

    |Aaux| = 1 + 1β = 6

    Noise cancellation occurs at |Aaux| = 1 + 1β instead

    of 1β

    due to the bidirectional nature of Rf .

    (a)

    (b)

  • Equivalent Model of a Wideband Receiver

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    Rs

    vin

    (b)

    ve

    Rin Rm

    veoutn

    rmioutiout

    outn

    iout

    1Rin

    Σ

    in

    Rin

    (a)rm =

    Rmπ

    Rs

    vindue to themixer gain

    ve =1

    1+ RsRin

    vin − −Rs/rm1+ RsRin

    vn

    outn =−rm/Rin1+ Rs

    Rin

    vin +1

    1+ RsRin

    vn, where vn = − inrm

  • Simulation of the Wideband NC Receiver

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    vin

    50 Ω50 Ω

    −gm

    v′out

    250 Ω

    250 Ω

    outn

    outpV CCS

    V CV S

    V CV S

    gm = 20mS

    Iaux

    Im

  • Simulation of a Wideband NC Receiver

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    0

    0.20.4

    0.60.8

    11.2

    1.41.6

    1.82

    Relative input frequency (Hz)

    v′out/vinoutn/vin

    1 10 100 1K 10K 100K 1M 10M 100M200M

    Vo

    lta

    ge

    ga

    in

    |v′outvin

    | = | 1β| = | 5

    π| = 1.59

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.50

    0.05

    0.1

    0.15

    0.2

    0.25

    Auxiliary path gain (Aaux)

    Ou

    tpu

    tn

    ois

    evo

    lta

    ge

    inn

    V/√

    Hz

    β = πRsRm

    = π5

    Aaux =1β= 5

    π≈ 1.59

    PNOISE analysis

    (a)

    (b)

    |outpvin

    | = | Am1+Amβ

    | = |2.5π| = 0.79

  • Outline

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Preliminaries

    • Introduction to wideband noise canceling (NC) LNAs andreceivers

    • Review of feedback and feedforward models for NC

    • Macro models of MOSFETs and resistors

    • Equivalent models of NC circuits and simulations

    • Conclusions

  • Conclusions

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    • Shown that the NC is a feedback-feedforward technique

    • In a NC amplifier/receiver, if the feedback factor of the mainamplifier/receiver is β, then the gain of the auxiliary amplifier/receiver(Aaux) needed to cancel the noise of the main amplifier/receiver isequal to |1/β|

    • Under this noise canceling condition, the overall gain of theNC-wideband amplifier/receiver is equal to |1/β|

    Indrajit Das, Nagarjuna Nallam, “The Role of Feedback in Noise Canceling LNAsand Receivers“, to appear in IEEE Micro. Mag.

  • References

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    [ 1 ] B. Razavi, RF Microelectronics. Upper Saddle River, New Jersey: Prentice Hall Press, 2011, ch. 5.

    [ 2 ] F. Bruccoleri, E. Klumperink, and B. Nauta, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,

    IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb 2004.

    [ 3 ] Y.H. Yu, Y.S. Yang, and Y.J. Chen, A compact wideband CMOS low noise amplifier with gain flatness enhancement, IEEE

    J. Solid-State Circuits, vol. 45, no. 3, pp. 502-509, March 2010.

    [ 4 ] C.F. Liao and S.I. Liu, A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers, IEEE J. Solid-State

    Circuits, vol. 42, no. 2, pp. 329-339, Feb 2007.

    [ 5 ] W.H. Chen, G. Liu, B. Zdravko, and A. Niknejad, A highly linear broadband CMOS LNA employing noise and distortion

    cancellation, IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1164-1176, May 2008.

    [ 6 ] S. Blaakmeer, E. Klumperink, D. Leenaerts, and B. Nauta, Wideband Balun-LNA with simultaneous output balancing,

    noise-canceling and distortion-canceling, IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, June 2008.

    [ 7 ] D. Murphy, H. Darabi, A. Abidi, A. Hafez, A. Mirzaei, M. Mikhemar, and M.-C. Chang, A blocker-tolerant, noise-cancelling

    receiver suitable for wideband wireless applications, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2943-2963, Dec 2012.

    [ 8 ] D. Murphy, H. Darabi, and H. Xu, A noise-cancelling receiver resilient to large harmonic blockers, IEEE J. Solid-State

    Circuits, vol. 50, no. 6, pp. 1336-1350, June 2015.

    [ 9 ] C. McNeilage, E. Ivanov, P. Stockwell, and J. Searls, Review of feedback and feedforward noise reduction techniques, in

    Frequency Control Symposium, 1998. Proceedings of the 1998 IEEE International, May 1998, pp. 146-155.

    [ 10 ] D. Mahrof, E. Klumperink, Z. Ru, M. Oude Alink, and B. Nauta, Cancellation of opamp virtual ground imperfections by a

    negative conductance applied to improve RF receiver linearity, IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1112-1124, May

    2014.

  • Notes

    N. Nallam, “CMOS Wideband Noise Canceling LNAs and Receivers: A Tutorial”, 2016 APMC, New Delhi, India.

    OutlineOutlinePreliminaries: Noise factorPreliminaries: Noise in ElectronicsPreliminaries: Noise factor of a cascaded systemPreliminaries: Noise figure of the receiverPreliminaries: LNA specificationsWhy wideband?OutlineCommon Gate (CG) Wideband LNAResistive Shunt Feedback (RSF) Wideband LNAWideband Noise Canceling LNAsWideband Noise Canceling LNAsWideband Noise Canceling LNAsWideband Noise Canceling LNAsWideband Noise Canceling LNAsWideband Noise Canceling ReceiverWideband Noise Canceling ReceiverOutlineFeedforward Noise CancelingFeedforward Noise CancelingFeedback Noise ReductionFeedback Noise ReductionFeedback-Feedforward Noise CancelingFeedback-Feedforward Noise CancelingOutlineMacro Model of a MOSFETMacro Model of a MOSFET in CG configurationMacro Model of a MOSFET in CS configurationMacro Model of a ResistorMacro Model of a ResistorMacro Model of a ResistorMacro Model of a ResistorMacro Model of a ResistorOutlineEquivalent Model of a Common Gate LNA Equivalent Model of a NC Common Gate LNASimulation of CG NC-LNASimulation of CG NC-LNAEquivalent Model of the NC RSF LNASimulation of RSF NC-LNASimulation of RSF NC-LNAEquivalent Model of a Wideband ReceiverSimulation of the Wideband NC ReceiverSimulation of a Wideband NC ReceiverOutlineConclusionsReferencesNotes