Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. ·...

34
1 1 Reaction Mechanisms of Surrogate Fuels C. K. Law, Princeton University Fuels Summit September 8-10, 2008 Topics of Presentation : 1. Flame speed determination in counterflow 2. Flame speed determination in propagating spherical flame 3. Reduced mechanisms

Transcript of Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. ·...

Page 1: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Click to edit Master title style

111

Reaction Mechanisms of Surrogate Fuels

C. K. Law, Princeton University

Fuels SummitSeptember 8-10, 2008

Topics of Presentation:1. Flame speed determination in counterflow2. Flame speed determination in propagating

spherical flame3. Reduced mechanisms

Page 2: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

22

Click to edit Master title style

222

1. Determination of Laminar Flame Speeds using the Counterflow

(n-Heptane)

Page 3: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

33

Click to edit Master title style

333

Schematic of Counterflow Apparatus

Page 4: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

4

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

44

Click to edit Master title style

444

Matrix of Experimental Conditions

• Pressure: 0.5, 1.0, 1.5, 2.0 atmospheres• Temperature: 298, 350K• O2 concentration: 21, 18%• Equivalence ratio: 0.7 – 1.4

Page 5: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

5

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

55

Click to edit Master title style

555

Raw Data & Density Scaling

10

20

30

40

50

60

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Flam

e Sp

eed,

Suo

(cm

/s)

Equivalence Ratio, φ

1 atm, 298 K (Davis & Law [1])

0.5 atm, 350 K

1 atm, 350 K

1.5 atm, 350 K

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Equivalence Ratio, φ

1 atm, 298 K (Davis & Law [1])0.5 atm, 350 K

1 atm, 350 K

1.5 atm, 350 K

Mas

s Fl

ux, f

(kg/

m2 -

s)

Data reduction throughmass flux: f =Raw Data on o

uusρous

Page 6: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

6

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

66

Click to edit Master title style

666

Pressure Scaling

-4

-3

-2

-1

0

-1 .0 -0 .5 0 .0 0 .5 1 .0

2ln[

f (kg

/m2 -

s)]

ln [p (a tm )]

φ = 0 .8 , p = 1 -2 a tm

n = 1 .5

n = 1 .3φ = 1 .4 , p = 1 -2 a tm

φ = 0 .6 , p = 0 .5 -1 a tm

n = 1 .4

φ = 1 , p = 0 .5 -1 a tm

n = 1 .7

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1 atm, 298 K1 atm, 350 K1.5 atm, 350 K0.5 atm, 350 K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Equivalence Ratio, φ

Scal

ed M

ass

Flux

, (f x

p-n

/2) (

kg/m

2 -s)

Determination of reaction order based on calculation

Final correlation (n=1.5)

Page 7: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

7

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

77

Click to edit Master title style

777

Comparison with Wang Mechanism

10

20

30

40

50

60

70

80

0.6 0.8 1.0 1.2 1.4 1.6

1 2981 3501.5 3500.5 3502 350

Flam

e Sp

eed,

Suo

(cm

/s)

Equivalence Ratio, φ

p (atm) Tu (K)

1.5 atm, 350 K

1 atm, 350 K

Page 8: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

8

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

88

Click to edit Master title style

888

2. Determination of Laminar Flame Speeds using the Constant-

Pressure Bomb

Page 9: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

9

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

99

Click to edit Master title style

999

(Novel) Experimental Apparatus

• Double chamber design allows: – Constant pressure

during flame propagation– High pressure (~60 atm.)

• Heating pads over outer wall allows vaporization of liquid fuel at constant temperature

Page 10: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

10

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1010

Click to edit Master title style

101010

Issues on Data Accuracy

• Mixture stoichiometry for pre-vaporized liquid fuels

• Residual ignition energy• Chamber confinement and geometry

effects• Nonlinear flame evolution, especially for

Le>1 flames, characteristic of lean hydrocarbon/air mixtures (C>2)

Page 11: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

11

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1111

Click to edit Master title style

111111

Mixture Stoichiometry• Heated chamber ensures fuel vaporization• Thorough mixing of all tubings and

chamber• Equivalence ratio triple checked

– Calculated volume of fuel relative to chamber volume

– Measured partial pressure of fuel– Gas sampled and analyzed with gas

chromatograph

Page 12: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

12

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1212

Click to edit Master title style

121212

Residual Ignition Energy

50 100 150 200 250 300 350 400 450 5000

20

40

60

80

100

120

140

160

κ (1/s)

s b (cm

/s)

Quasi-Steady Propagation

Increasing Ignition Energy

Page 13: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

13

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1313

Click to edit Master title style

131313

Chamber Diameter Increased with Mk II Design

0 100 200 300 400 5000

50

100

150

200

250

κ (1/s)

Sb (c

m/s

)n-Butane/air, 1 atm, φ=0.85

Smaller Chamber

Larger Chamber Diameter

Page 14: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

14

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1414

Click to edit Master title style

141414

Chamber Confinement & Geometry

0 50 100 150 200 250 3000

20

40

60

80

100

120

140

160

180

200

220

κ (1/s)

Sb (c

m/s

)Flame Radius of 1.8 cm

Useful data forextrapolation

Systematically change boundary conditions and determine radius at which boundary conditions influence propagation

Page 15: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

15

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1515

Click to edit Master title style

151515

Linear & Nonlinear Extrapolations

ob

bob

bob

b

sL

ss

ss κ2ln

22

−=⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

κbobb Lss −=Linear:

Nonlinear:

•Easy to use•Generally adopted in determinations of laminar flame speeds•Used in most of this study as its accuracy is adequate

•Potentially more accurate•Potential complications from initial and unsteady effects•Needs further study

Page 16: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

16

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1616

Click to edit Master title style

161616

Range of Extrapolation (Lean Pentane)

0 200 400 600 800 1000

100

150

200

250

κ (1/s)

s b (cm

/s)

UsefulData

BoundaryInfluence

Transient Ignition

Linear Extrapolation

Nonlinear Extrapolation

Page 17: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

17

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1717

Click to edit Master title style

171717

Range of Extrapolation (Rich Pentane)

0 100 200 300 400 500 600 700 80050

100

150

200

κ (1/s)

s b (cm

/s)

Transient IgnitionUsefulData

BoundaryInfluence

Nonlinear Extrapolation

Linear Extrapolation

Page 18: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

18

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

1818

Click to edit Master title style

181818

Linear vs. Nonlinear Extrapolation

Page 19: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

20

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2020

Click to edit Master title style

202020

Comparison with USC Data (1 atm)

Page 20: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

22

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2222

Click to edit Master title style

222222

3. An Integrated Approach for Systematic

Reduction of Large Kinetic Mechanisms

Page 21: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

23

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2323

Click to edit Master title style

232323

Need for Mechanism Reduction

• Detailed mechanisms are

– (Supposedly) accurate and comprehensive

– Large and stiff

• Drastically reduced mechanisms are necessary for large-scale simulations of large hydrocarbons and their mixtures

Page 22: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

24

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2424

Click to edit Master title style

242424

Major Challenges in Computational Simulation Involving Complex Fuels

101 102 103 104

102

103

104

before 2000 2000 to 2005 after 2005

iso-ocatane (LLNL)

iso-ocatane (ENSIC-CNRS)

n-butane (LLNL)

CH4 (Konnov)

neo-pentane (LLNL)

C2H4 (San Diego)CH4 (Leeds)

Methyl Decanoate(LLNL)

C16 (LLNL)

C14 (LLNL)C12 (LLNL)

C10 (LLNL)

USC C1-C4USC C2H4

PRF

n-heptane (LLNL)

skeletal iso-octane (Lu & Law)skeletal n-heptane (Lu & Law)

1,3-ButadieneDME (Curran)C1-C3 (Qin et al)

GRI3.0Num

ber o

f rea

ctio

ns

Number of species

GRI1.2 pre-20002000 – 2005post-2005

Number of Species

Num

ber o

f Rea

ctio

ns

nC7H16

C11H22O2

1000 2000 300010-15

10-12

10-9

10-6

Sho

rtest

Spe

cies

Tim

e S

cale

, Sec

Temperature

Ethylene,p = 1 atmT0 = 1000K

n-Heptane, p = 50 atmT0 = 800K

Typical flow time

Large Size Chemical Stiffness

, K

, I

I ≈ 5K

• High simulation cost- Size- Stiffness

• Massive output

Page 23: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

25

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2525

Click to edit Master title style

252525

Strategy for Static Mechanism & Stiffness Reduction

Directed Relation Graph (DRG)

Detailed mechanism561 species

DRG Aided Sensitivity Analysis

Reduced mechanism52 species, 48 global-steps

Analytic QSS solution

Unimportant ReactionElimination

Isomer Lumping

Skeletal mechanism78 species, 359 reactions

Skeletal mechanism188 species, 939 reactions

Skeletal mechanism78 species, 317 reactions

“Skeletal” mechanism68 species, 283 reactions

QSS ReductionReduced mechanism

52 species, 48 global-steps

QSS Graph

Diffusive Species Bundling

Reduced mechanism52 species

14 diffusive species

Page 24: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

26

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2626

Click to edit Master title style

262626

Demonstration of Reduction Strategies & Efficiency

• Candidate fuel: n-Heptane

• LLNL-Westbrook mechanism

• K = 561 Species

• I = 2539 (~ 5K) Elementary reactions

• Final reduced mechanism

• K = 55 Species

• K – M = 55 – 4 = 51 Lumped reactions

(M = No. of elements)

Page 25: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

27

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2727

Click to edit Master title style

272727

Homogeneous ApplicationsIgnition Delay PSR Extinction

1500

1600

1700

1800

1900

2000

1E-6 1E-4 1E-2 1E+0 1E+2

Residence Time, sec

Detailed68-species55-species

1200

1300

1400

1500

1400

1800

2200

Tem

pera

ture

, K

n-heptaneT1 = 300K

φ = 0.5

φ = 1.0

φ = 1.5

p = 50 atm

1

5

50

51

50

51

1E-7

1E-5

1E-3

1E-1

1E+1

Detailed68-species55-species

1E-7

1E-5

1E-3

1E-1

1E+1

Igni

tion

Del

ay, (

sec)

1E-7

1E-5

1E-3

1E-1

1E+1

0.5 1 1.5

1000/T, (1/K)

φ = 0.5

φ = 1.0

φ = 1.5

n-heptane

p = 1 atm5

50

5

50

50

5

1

1

Page 26: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

28

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2828

Click to edit Master title style

282828

Laminar Flame Speeds

0.6 0.8 1.0 1.2 1.4 1.6

0

20

40

60

Detailed 78-species 68-species 55-species without bundling 55-species with bundling Davis & Law, 1998 Huang et al, 2004

Lam

inar

Fla

me

Spe

ed, c

m/s

ec

Equivalence Ratio

p = 1 atmT0= 300K

n-heptane

Page 27: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

29

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

2929

Click to edit Master title style

292929

Reduction of A Monster Mechanism

0

1000

2000

3000

4000

0 0.1 0.2 0.3 0.4 0.5

MD -air

Senkin & PSRp: 1 atmφ: 0.5 ~ 1.5T0: 900 ~ 1300K (senkin) 300K (PSR)

Detailed mechanism(LLNL 2007):

~3000 species ~8500 reactions

Skeletal mechanism: ~700 reactions

125 species

Methyldecanoate, n-C9H19C(=O)OCH3

Relative error tolerance, ε

Num

ber o

f spe

cies

Page 28: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

30

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3030

Click to edit Master title style

303030

Mechanism Validation

10-6 10-5 10-4 10-3 10-2 10-1 100800

1000

1200

1400

1600

Tem

pera

ture

, K

Residence Time, s

p = 1 atmφ = 1.0

10-5 10-4 10-3 10-2 10-1 100

1500

2000

2500

0.5

0.7

Tem

pera

ture

, K

Residence Time, s

Methyl Decanoate - AirPSRp = 1 atmT0 = 300K

φ = 1.0

Auto-Ignition PSR

Page 29: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

31

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3131

Click to edit Master title style

313131

Summary• Laminar flame speeds measured:

– n-Heptane in the counterflow– n-Pentane in the high-pressure bomb

• Considerable development of the high-pressure bomb technique for experimentation with large hydrocarbons– Fuel pre-vaporization and mixing – Ignition transient & complex flame dynamics– Chamber confinement and asymmetry– Linear vs. nonlinear extrapolation

• Suite of methods developed for reduction of size and stiffness of large mechanisms

• Ready for production mode?– Further improvement of experimental technique– Need guidance on experimental matrix

Page 30: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

32

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3232

Click to edit Master title style

323232

Thank You!

Page 31: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

33

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3333

Click to edit Master title style

333333

Backup Slides

Page 32: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

34

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3434

Click to edit Master title style

343434

Operating Limits of Experimentation by Liquid Fuel Condensation

0.5 1 1.5 2300

320

340

360

380

400

3 atm4 atm5 atm

10 atm15 atm20 atm30 atm

40 atm50 atm

φ

Tem

pera

ture

(K)

n-Octane

0.5 1 1.5 2300

320

340

360

380

400

3 atm5 atm

10 atm15 atm20 atm30 atm40 atm50 atm

φ

Tem

pera

ture

(K)

n-Heptane

0.5 1 1.5 2300

320

340

360

380

400

10 atm15 atm20 atm

30 atm40 atm50 atm

φ

Tem

pera

ture

(K)

n-Hexane

0.5 1 1.5 2300

320

340

360

380

400

20 atm30 atm40 atm50 atm

φ

Tem

pera

ture

(K)

n-Pentane

Page 33: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

35

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3535

Click to edit Master title style

353535

Comparisons

• Need to add comparison to Professor Wang’s mechanism

Page 34: Click to edit Master title style Reaction Mechanisms of Click to edit … · 2008. 10. 27. · Click to edit Master title style • Click to edit Master text styles • Second level

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

36

Click to edit Master title style

• Click to edit Master text styles• Second level• Third level• Fourth level• Fifth level

3636

Click to edit Master title style

363636

Reduction of iso-Octane Mechanism

• Original: 857 species, 3605 reactions• Skeletal: 233 species, 676 reactions• Reduced: 78 species, 207 reactions