Click to edit Master title style - porousmedia.nl · Click to edit Master title style • Click to...
Embed Size (px)
Transcript of Click to edit Master title style - porousmedia.nl · Click to edit Master title style • Click to...
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Leo Pel, Henk Huinink, David Smeulders, Thomas Arends, Hans van Duijn
Faculty of Applied Physics Mechanical Engineering
Eindhoven University of Technology The Netherlands
5 ECTS 2018
Examination : Oral
Transport in porous media 3MT130
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Surface tensions
Curved surface
Pressure difference
Unsaturated
Saturated
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Surface tensions
Curved surface
Pressure difference
wnc rp γ2−=
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
trxµγ2
=rg
hργ2
max =
Small pores
• slow absorption
• but very high
Large pores
• fast absorption
• but low
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Liquid ‘fast’ Vapour ‘slow’
Same macroscopic pressure: suction
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
( )z
KDt ∂
∂+∇∇=
∂∂ )()( θθθθ
Richards equation
First order in time and second order in space; require 1. initial condition and 2. boundary conditions Outcome: θ as function x and t
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Some Human Activities that Can
Contaminate Groundwater
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Radioactive contaminants
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Movie Eric Doehne www.getty.edu/conservation/science
Madame John’s Legacy 1788
Cultural Heritage
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Movie Eric Doehne www.getty.edu/conservation/science
Madame John’s Legacy 1788
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Debris from salt weathering (6 months)
Movie Eric Doehne www.getty.edu/conservation/science
Madame John’s Legacy 1788
New Orleans
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Transport of components saturated non-saturated
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
The laws of Fick First law:
Second law:
cDtc 2∇=∂∂
Concentration peaks are chopped
02 ∇ c
1831-1879
1th : Diffusion
∂∂
∂∂
=∂∂
=∂∂
xCD
xxq
tC x
cTDtc 2∇=∂∂
Porous medium
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
cDtc 2∇=∂∂
cTDtc 2∇=∂∂
Porous medium
Path gets longer: tortuosity
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
cDtc 2∇=∂∂
cTDtc 2∇=∂∂
Porous medium
Measure the diffusivity by NMR
Observation time:
Time Length 1 10-6 31 nm 1 10-3 1 µm
1 30 µm
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
R. W. Mair et all, Phys Rev Let 1999
Example of diffusion measurement by NMR
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
t∂∂θ
qin qout 0. =∇+∂∂ q
tθ
∂∂
∂∂
=∂∂
=∂∂
xCD
xxq
tC
porx
There is more: Ad/desorption on pore wall Cs(c)
http://images.google.com/imgres?imgurl=http://media.ebaumsworld.com/mediaFiles/picture/558765/783109.jpg&imgrefurl=http://www.ebaumsworld.com/pictures/view/783109/&usg=__KSJFzOup1qHczkp25j4b2WbidCk=&h=533&w=400&sz=27&hl=en&start=27&um=1&itbs=1&tbnid=4w69UlJ3vUiwYM:&tbnh=132&tbnw=99&prev=/images%3Fq%3Dbeer%2Bgut%26start%3D21%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4ADBR_enUS309%26ndsp%3D21%26tbs%3Disch:1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
t∂∂θ
qin qout 0. =∇+∂∂ q
tθ
tS
xCD
xxq
tC
porx
∂∂
+
∂∂
∂∂
=∂∂
=∂∂
Sink term due to binding
http://images.google.com/imgres?imgurl=http://media.ebaumsworld.com/mediaFiles/picture/558765/783109.jpg&imgrefurl=http://www.ebaumsworld.com/pictures/view/783109/&usg=__KSJFzOup1qHczkp25j4b2WbidCk=&h=533&w=400&sz=27&hl=en&start=27&um=1&itbs=1&tbnid=4w69UlJ3vUiwYM:&tbnh=132&tbnw=99&prev=/images%3Fq%3Dbeer%2Bgut%26start%3D21%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4ADBR_enUS309%26ndsp%3D21%26tbs%3Disch:1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Consider changes in the mass of solute by adsorbing onto the solid soil matrix, given by ρbs, where ρb is the soil bulk density and s is the adsorbed concentration in terms of mass of solute per mass of soil
( )
∂∂
∂∂
=∂+∂
xcD
xtsc
effbρ
Binding
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
( )
∂∂
∂∂
=∂+∂
xcD
xtsc
effbρ
Binding
( )
∂∂
∂∂
=∂
∂xcD
xtRc
eff csR bρ+=1With
Retardation factor
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
( )
∂∂
∂∂
=∂+∂
xcD
xtsc
effbρ
( )
∂∂
∂∂
=∂
∂xcD
xtRc
eff csR bρ+=1With
Simplest case Kcsb =ρ
∂∂
+∂∂
=∂∂
xc
KD
xtc eff
1
KR +=1
Diffusion gets ‘slower’
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Other mechanism?
Water flow : advection
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
ADVECTION • Chemical transport due to bulk movement of the fluid. • The fastest form of chemical transport in porous
media. • Concentration decreases in the direction of fluid
movement.
xCU
tC
∂∂
−=∂∂CUq −=
Darcy law liquid
ww JUthatNoteJU >→=θ
Darcy law liquid
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
−
∂∂
∂∂
=∂∂ CU
xCD
xtC
effθθ
−
∂∂
∂∂
=∂∂ CU
xCD
xtC
eff
Saturated porous medium
Non-saturated porous medium: Ion transport only in the liquid
Transport can only be liquid of component
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
29
Reasons for Spreading: mechanical dispersions
Some solute mass travels faster than average, while some solute mass travels slower than average
Completely dependent on flow
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Completely dependent on flow
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Dispersion
Mechanical dispersion - caused by motion of the fluid
Longitudinal dispersion – along the streamline
Transverse dispersion – perpendicular to flow path
Flow Direction
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Experiment
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Advection, Diffusion, Dispersion
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
−
∂∂
∂∂
=∂∂ CU
xCD
xtC
effθθ
−
∂∂
∂∂
=∂∂ CU
xCD
xtC
eff
Saturated porous medium
Non-saturated porous medium: Ion transport only in the liquid
Deff= diffusion + tortuosity + dispersion
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
NaCl
Wind
damage
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Damage to rising damp in city of Venice
2004 2007
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
How are ions moving?
Characterize the transport?
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM drying
surface
airflow
Wick action conceptual model
supply
Drying front at surface (drying externally limited)
= Liquid velocity is function of drying rate
= position drying front
moisture flow
u=constant
See also sharp front model C. Hall
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM drying
surface
airflow
Wick action conceptual model
supply
moisture flow
advection
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM drying
surface
airflow
Wick action conceptual model
supply
moisture flow
accumulation > crystallization
For NaCl max concentration = 6M
advection
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM drying
surface
airflow
Wick action conceptual model
supply
moisture flow
advection
(neglect adsorption)
diffusion
accumulation leveling off
competition
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Peclet number
DLUPe =
liquid velocity
length of the sample
diffusion coefficient of Na in porous medium
:U:L:D
competition advection diffusion
1>Pe1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
effC cD uCt x x
∂ ∂ ∂ = − ∂ ∂ ∂
Diffusion Advection + = flux
Initial profiles
Advection diffusion equation for transport
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
effC cD uCt x x
∂ ∂ ∂ = − ∂ ∂ ∂
Initial profiles
airflow supply
moisture flow
advection
q=0 Ions can not leave
q= uCo continuous supply
Boundary conditions
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
effC cD uCt x x
∂ ∂ ∂ = − ∂ ∂ ∂ Diffusion Advection
Boundary conditions: Top : q=0 Bottom : q= uCo
+ = flux
Simple solution:
Initial profiles
• Exponential decay
• Width peak =4D/U (e-4~0)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
effC cD uCt x x
∂ ∂ ∂ = − ∂ ∂ ∂ Diffusion Advection
Boundary conditions: Top : q=0 Bottom : q= uCo
After reaching the solubility limit> crystallization
C*=6 for NaCl
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Na lower sensitivity longer
measurement time
Signal proportional
to
moisture content
or
Na content
Pulsed NMR signal (spin-echo experiment)
Information on
water and ion
in pores Amplitude spin-echo S~Gρ [1-exp(-TR/T1)] exp(-TE/T2) G = relative sensitivity (for 1H G=1, 23Na=0.1) ρ = density of nuclei
T1 = spin lattice relaxation
TR = repetition time experiment
T2 = spin-spin relaxation time
TE = spin-echo time
see,e.g.,E.L. Hahn,Phys. Rev., 80, 580-594 (1950)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Experimental setup
pump
NMR measurement
Measurements
- NMR moisture profile
- NMR Na profile
(only free ions: no crystals)
1m NaCl reservoir
electrical level control NaCl
Step motor
0% RH air flow
epoxy coating
evaporation shield top
bottom
100
mm
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
( )0
,1
2 .eff
C x t xerfC D t
= −
C CDt x x
∂ ∂ ∂ = ∂ ∂ ∂
9 20.8 10 /D m s−= ×
0 1 2 3 4 5 6 7 8
x 10-5
0
0.5
1
1.5
2
2.5
3
3.5
4
x/sqrt(t) [m s-0.5]
Na
conc
entra
tion
[m]
No airflow > only diffusion
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Results with airflow
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Results
No 6M ????
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n 1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n
1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n
1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n
1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n
1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Limestone sample saturated with 1 M NaCl solution
position
Con
cent
ratio
n
1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n
1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Stone sample saturated with 1 M NaCL solution
position
Con
cent
ratio
n
1
resolution
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Results
1D resolution: average over slice
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Results: model fit data
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Results: model fit data
Max concentration = 6 m
Decay width ~ 80 mm
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Integral of concentration
No crystallization
crystallization at 6 m
linear increase ucot
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Movie Eric Doehne www.getty.edu/conservation/science
Madame John’s Legacy 1788
How to clear a wall (painting) of the salt?
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Conservators: poulticing
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
General idea of poulticing
poultice substrate
transport Water absorption
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
poultice substrate What are the mechanisms ???? - time scales?
- efficiency?
- poresize dependence?
General idea of poulticing
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Working principle of poulticing
Diffusion
Diffusion of ink in glass of water
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
General idea of poulticing by diffusion
poultice substrate
diffusion Water absorption
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
General idea of poulticing by diffusion
poultice substrate
diffusion
TO KEEP THE DIFFUSION GOING
(maintain sink)
RENEW POULTICE VERY OFTEN
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
General idea of poulticing by diffusion
poultice substrate
diffusion
TO KEEP THE DIFFUSION GOING
(maintain sink)
RENEW POULTICE VERY OFTEN
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
2
2
xD
tC
∂∂
=∂∂ C
Desalination by diffusion process:
D (m2s-1) water Bentheimer fired clay brick
NaCl 1.1 10-9 0.4 10-9 0.8 10-9
Na2SO4 1.1 10-9 0.4 10-9 0.85 10-9
In the order of 1 10-9 m2s-1
TIME SCALE?
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Poulticing side
(where salt comes out)
Time in days
Salt concentration
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Diffusion Pros • If enough time, can have 100 % efficiency • No pore size dependency
Cons • Slow ( 80% in 10 days for first 25 mm) • Renew poultice very often • Sample wet (long time, bio degradation)) • At end, dry sample (salt damage)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Equations of moisture and ion transport
∂∂
∂∂
+
∂∂
∂∂
=∂∂
xCD
xxD
xt cθθ
θ
−
∂∂
∂∂
=∂∂ CU
xCD
xtC
effθθ
moisture
salt
So two couple non-linear partial differential equations
+ boundary conditions
We do not learn anything !!!!
The competition
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying
surface
airflow
How do we get salt effloresence???
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying
surface
airflow
moisture flow
Saline drying conceptual model
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Saline drying conceptual model drying
surface
advection airflow
moisture flow
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Saline drying conceptual model drying
surface
airflow
moisture flow
accumulation > crystallization
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Saline drying conceptual model drying
surface
advection
(neglect adsorption)
airflow
moisture flow
accumulation
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Saline drying conceptual model drying
surface
advection
(neglect adsorption)
airflow
moisture flow
diffusion
accumulation leveling off
competition
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Peclet number
DLUPe =
liquid velocity
length of the sample
diffusion coefficient of Na in the pores
:U:L:D
competition advection diffusion
1>Pe1
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Drying experiment
The initially saturated sample is sealed at all sides, except for the top
The sample is moved by step motor
The one-dimensional resolution ~ 1 mm
The measurement of a profile takes ~ 3 hours
Webcam for visual inspection
NMR only free Na ions are measured: no crystals
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
NaCl
Na concentration
profiles at various
drying times
drying surface
0 days
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying surface
0 days1
Pe~3
NaCl
Na concentration
profiles at various
drying times
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying surface
NaCl max concentration 6 M
crystallization
0 days13
NaCl
Na concentration
profiles at various
drying times
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying surface
0 days13
6
Pe~0.7
NaCl
Na concentration
profiles at various
drying times
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying surface
0 days13
6
9
NaCl
Na concentration
profiles at various
drying times
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying surface
0 days13
6
9
12,15
NaCl
Na concentration
profiles at various
drying times
Pel et al, Applied Physics Letters 81, 2893-2895 (2002)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 days
13
6
9
12,15
Pe>1
Pe
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 5 10 150.0
0.2
0.4
0.6
0.8
1.0
0
1
2
3
4
5
SavgCavg
Savg
Pe < 1Pe > 1
S
avgC
avg (
mol
l-1 )
S avg (-
)
time (days)
Savg is the average (water) saturation of the sample (drying curve)
Savg Cavg represents the total amount of dissolved NaCl
I II III
I: Pe ~ 3 accumulation
II: Pe ~ 0.7 leveling off
III: homogeneous at 6 M
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
poultice substrate
advection
General idea of poulticing by advection
Water absorption airflow
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
poultice substrate
General idea of poulticing by advection
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Demands on poultice Step 1) Water is absorbed from poulice into substrate
Step 2) Reverse of water flow, i.e., from substrate into poultice
poultice substrate
Absorption
poultice substrate
Advection
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Maximum height > capillary pressure
wnc rp γ2=
Capillary pressure
Conclusions
1) A porous material will absorb water
2) Small porous will absorb water from larger pores
=
Water wants to stay
in small pores
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Demands on poultice
Step 1) Water is absorbed from poulice into substrate
poultice substrate
Absorption
Poulice : Reservoir pores larger than largest pores in substrate
reservoir pores
substrate substrate poultice
pore size
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
drying
surface
airflow
Widest pores first rPc
φγ cos2≈
Capillary pressure
Desalination phase
PORES POULTICE SMALLER THAN SUBSTRATE
poultice substrate
Advection
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Calcium-silicate brick
r ∼ 12 nm
Bentheimer sandstone r ∼ 30 µm
Plaster (lime:cement:sand = 4:1:10 (v/v)) r ∼ 0.5 µm
rcalcium-silicate< rplaster< rBentheimer
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 50 100 150 2000
500
1000
1500
V (m
m3 )
t (h)
Plaster Bentheimer sandstone
0 10 20 30 40 500.0
0.1
0.2
0.3a
150 h
Plaster Bentheimer sandstone
10 h
25 h
75 h
25 h0 h
0 h
θ (m
3 /m3 )
x (mm)
rplaster< rBentheimer
moisture
Ph.D thesis J. Petković TU-Eindhoven (2005)
drying surface
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
150 h
Plaster Bentheimer sandstone
10 h
25 h
75 h
25 h0 h
0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
moisture
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
150 h
Plaster Bentheimer sandstone
10 h
25 h
75 h
25 h0 h
0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
moisture
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
150 h
Plaster Bentheimer sandstone
10 h
25 h
75 h
25 h0 h
0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
moisture
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 50 100 150 2000
500
1000
1500
V (m
m3 )
t (h)
Plaster Bentheimer sandstone
0 10 20 30 40 500.0
0.1
0.2
0.3a
150 h
Plaster Bentheimer sandstone
10 h
25 h
75 h
25 h0 h
0 h
θ (m
3 /m3 )
x (mm)
rplaster< rBentheimer
moisture
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6
0.8a Plaster Bentheimer sandstone
25 h
10 h
0 h
150 h
75 h
0 h
10 h
25 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150
0
1000
2000
3000
4000
Na c
onte
nt (m
mol
)t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
Na-content
Ph.D thesis J. Petković TU-Eindhoven (2005)
drying surface
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6
0.8a Plaster Bentheimer sandstone
25 h
10 h
0 h
150 h
75 h
0 h
10 h
25 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150
0
1000
2000
3000
4000
Na c
onte
nt (m
mol
)t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
Na-content
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6
0.8a Plaster Bentheimer sandstone
25 h
10 h
0 h
150 h
75 h
0 h
10 h
25 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150
0
1000
2000
3000
4000
Na c
onte
nt (m
mol
)t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
Na-content
Ph.D thesis J. Petković TU-Eindhoven (2005)
Start of crystallization
at surface
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6
0.8a Plaster Bentheimer sandstone
25 h
10 h
0 h
150 h
75 h
0 h
10 h
25 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150
0
1000
2000
3000
4000
Na c
onte
nt (m
mol
)t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
Na-content
Ph.D thesis J. Petković TU-Eindhoven (2005)
Efficiency high
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6
0.8a Plaster Bentheimer sandstone
25 h
10 h
0 h
150 h
75 h
0 h
10 h
25 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150
0
1000
2000
3000
4000
Na c
onte
nt (m
mol
)t (h)
Plaster Bentheimer sandstone
rplaster< rBentheimer
Na-content
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
DLUPe =
Peclet number
Water velocity ???
Mass conservation
0. =∇+∂∂ q
tθ 0)( =∇+
∂∂ U
tθθ
``)()(
1)( dxxtx
xUl
x∫∂
∂= θθ
From measured moisture profiles
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500
2
4
6
8
10
12
|U| L
x 1
0-9 (
m2 /s
)
D = 1 x 10-9 (m2/s)
t (h) 0 10 25 75
Bentheimer sandstoneplaster
75 h
25 h
10 h
0 h
x (mm)
rplaster< rBentheimer
Peclet number as function position
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
120 h
Plaster Calcium-silicate brick
120 h
60 h
30 h
60 h
30 h
0 h0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Calcium-silicate brick
moisture
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
drying surface
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
120 h
Plaster Calcium-silicate brick
120 h
60 h
30 h
60 h
30 h
0 h0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Calcium-silicate brick
moisture
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
120 h
Plaster Calcium-silicate brick
120 h
60 h
30 h
60 h
30 h
0 h0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Calcium-silicate brick
moisture
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.1
0.2
0.3a
120 h
Plaster Calcium-silicate brick
120 h
60 h
30 h
60 h
30 h
0 h0 h
θ (m
3 /m3 )
x (mm)0 50 100 150 200
0
500
1000
1500
V (m
m3 )
t (h)
Plaster Calcium-silicate brick
moisture
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6a Plaster Calcium-silicate brick
120 h
30 h
60 h
0 h
60 h
30 h
0 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150 200
0
1000
2000
3000
Na c
onte
nt (µ
mol
)t (h)
Plaster Calcium-silicate brick
Na-content
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
drying surface
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6a Plaster Calcium-silicate brick
120 h
30 h
60 h
0 h
60 h
30 h
0 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150 200
0
1000
2000
3000
Na c
onte
nt (µ
mol
)t (h)
Plaster Calcium-silicate brick
Na-content
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6a Plaster Calcium-silicate brick
120 h
30 h
60 h
0 h
60 h
30 h
0 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150 200
0
1000
2000
3000
Na c
onte
nt (µ
mol
)t (h)
Plaster Calcium-silicate brick
Na-content
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
Backward flow of salt from plaster into brick
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500
2
4
6
|U| L
x 1
0-9 (
m2 /s
)
D = 1 x 10-9 (m2/s)
t (h) 0 10 20 30 60
calcium-silicate brickplaster
x (mm)
rcalcium-silicate< rplaster Ph.D thesis J. Petković TU-Eindhoven (2005)
Peclet number as function position
leveling off
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
0 10 20 30 40 500.0
0.2
0.4
0.6a Plaster Calcium-silicate brick
120 h
30 h
60 h
0 h
60 h
30 h
0 h
Na c
onte
nt x
103
(mol
/m3 )
x (mm)0 50 100 150 200
0
1000
2000
3000
Na c
onte
nt (µ
mol
)t (h)
Plaster Calcium-silicate brick
Na-content
rcalcium-silicate< rplaster
Ph.D thesis J. Petković TU-Eindhoven (2005)
Efficiency low
salt remains in substrate
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
ion chromatography
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
ion chromatography
MAX DESALINATION
IF
PORES POULTICE SMALLER THEN SUBSTRATE
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Conclusion
Performance =
Poultice property
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Advection Pros • Fast • Object is dry at the end
Cons • Pore size dependent
- adapt poultice to substrate • Renew poultice in time (back diffusion) • Not all salt removed
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Be aware
wetting = advection for ions
Accumulation of ions
drying = advection for ions
Accumulation of ions
= not moved
Diffusion dominant
Advection dominant
So salts are moved in
and
can not be moved out again
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
‘Gedanken Experiment’
sample
water
1 cm
Fired clay brick
Permeability ~ 10-8 ms-1
Advection domimant
Concrete
Permeability ~ 10-13 ms-1
Diffusion domimant
Limitations of advection based poulticing ???
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Influence osmotic pressure
http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjyzY3FkNLMAhWkHsAKHZ7-AhQQjRwIBw&url=http%3A%2F%2Fchemwiki.ucdavis.edu%2FTextbook_Maps%2FGeneral_Chemistry_Textbook_Maps%2FMap%253A_General_Chemistry_(Petrucci_et_al.)%2F13%253A_Solutions_and_their_Physical_Properties%2F13.07%253A_Osmotic_Pressure&psig=AFQjCNF6C_OidlqzM5JAStCfuacV_T6XIQ&ust=1463048709157236
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Macroscopic pressure = capillary pressure + osmotic pressure
Water activity (pure water aw=1)
Effective pore size changes
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM Extreme example
-
Click to edit Master title style
• Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level
Transport in Permeable Media
TPM
Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21BindingBindingSlide Number 24Other mechanism?ADVECTIONSlide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Peclet numberSlide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58Slide Number 59Slide Number 60Slide Number 61Slide Number 62Slide Number 64Slide Number 65Slide Number 66Slide Number 67Slide Number 68Slide Number 69Slide Number 70Slide Number 71Slide Number 72Slide Number 73Slide Number 74Slide Number 75Slide Number 76DiffusionEquations of moisture and ion transportSlide Number 79Slide Number 80Slide Number 81Slide Number 82Slide Number 83Slide Number 84Peclet numberSlide Number 92Slide Number 93Slide Number 94Slide Number 95Slide Number 96Slide Number 97Slide Number 98Slide Number 99Slide Number 100Slide Number 101Slide Number 102Demands on poulticeSlide Number 104Demands on poulticeSlide Number 106Slide Number 107Slide Number 108Slide Number 109Slide Number 110Slide Number 111Slide Number 112Slide Number 113Slide Number 114Slide Number 115Slide Number 116Slide Number 117Slide Number 118Slide Number 119Slide Number 120Slide Number 121Slide Number 122Slide Number 123Slide Number 124Slide Number 125Slide Number 126Slide Number 127Slide Number 128Slide Number 129Slide Number 130ConclusionAdvectionBe awareSlide Number 135Slide Number 136Slide Number 137Slide Number 138Slide Number 139