Click to edit Master title style - porousmedia.nl · Click to edit Master title style • Click to...

of 130 /130
Transport in Permeable Media TPM Leo Pel, Henk Huinink, David Smeulders, Thomas Arends, Hans van Duijn Faculty of Applied Physics Mechanical Engineering Eindhoven University of Technology The Netherlands [email protected] 5 ECTS 2018 Examination : Oral Transport in porous media 3MT130

Embed Size (px)

Transcript of Click to edit Master title style - porousmedia.nl · Click to edit Master title style • Click to...

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Leo Pel, Henk Huinink, David Smeulders, Thomas Arends, Hans van Duijn

    Faculty of Applied Physics Mechanical Engineering

    Eindhoven University of Technology The Netherlands

    [email protected]

    5 ECTS 2018

    Examination : Oral

    Transport in porous media 3MT130

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Surface tensions

    Curved surface

    Pressure difference

    Unsaturated

    Saturated

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Surface tensions

    Curved surface

    Pressure difference

    wnc rp γ2−=

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    trxµγ2

    =rg

    hργ2

    max =

    Small pores

    • slow absorption

    • but very high

    Large pores

    • fast absorption

    • but low

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Liquid ‘fast’ Vapour ‘slow’

    Same macroscopic pressure: suction

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ( )z

    KDt ∂

    ∂+∇∇=

    ∂∂ )()( θθθθ

    Richards equation

    First order in time and second order in space; require 1. initial condition and 2. boundary conditions Outcome: θ as function x and t

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Some Human Activities that Can

    Contaminate Groundwater

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Radioactive contaminants

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Movie Eric Doehne www.getty.edu/conservation/science

    Madame John’s Legacy 1788

    Cultural Heritage

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Movie Eric Doehne www.getty.edu/conservation/science

    Madame John’s Legacy 1788

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Debris from salt weathering (6 months)

    Movie Eric Doehne www.getty.edu/conservation/science

    Madame John’s Legacy 1788

    New Orleans

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Transport of components saturated non-saturated

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    The laws of Fick First law:

    Second law:

    cDtc 2∇=∂∂

    Concentration peaks are chopped

    02 ∇ c

    1831-1879

    1th : Diffusion

    ∂∂

    ∂∂

    =∂∂

    =∂∂

    xCD

    xxq

    tC x

    cTDtc 2∇=∂∂

    Porous medium

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    cDtc 2∇=∂∂

    cTDtc 2∇=∂∂

    Porous medium

    Path gets longer: tortuosity

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    cDtc 2∇=∂∂

    cTDtc 2∇=∂∂

    Porous medium

    Measure the diffusivity by NMR

    Observation time:

    Time Length 1 10-6 31 nm 1 10-3 1 µm

    1 30 µm

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    R. W. Mair et all, Phys Rev Let 1999

    Example of diffusion measurement by NMR

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    t∂∂θ

    qin qout 0. =∇+∂∂ q

    ∂∂

    ∂∂

    =∂∂

    =∂∂

    xCD

    xxq

    tC

    porx

    There is more: Ad/desorption on pore wall Cs(c)

    http://images.google.com/imgres?imgurl=http://media.ebaumsworld.com/mediaFiles/picture/558765/783109.jpg&imgrefurl=http://www.ebaumsworld.com/pictures/view/783109/&usg=__KSJFzOup1qHczkp25j4b2WbidCk=&h=533&w=400&sz=27&hl=en&start=27&um=1&itbs=1&tbnid=4w69UlJ3vUiwYM:&tbnh=132&tbnw=99&prev=/images%3Fq%3Dbeer%2Bgut%26start%3D21%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4ADBR_enUS309%26ndsp%3D21%26tbs%3Disch:1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    t∂∂θ

    qin qout 0. =∇+∂∂ q

    tS

    xCD

    xxq

    tC

    porx

    ∂∂

    +

    ∂∂

    ∂∂

    =∂∂

    =∂∂

    Sink term due to binding

    http://images.google.com/imgres?imgurl=http://media.ebaumsworld.com/mediaFiles/picture/558765/783109.jpg&imgrefurl=http://www.ebaumsworld.com/pictures/view/783109/&usg=__KSJFzOup1qHczkp25j4b2WbidCk=&h=533&w=400&sz=27&hl=en&start=27&um=1&itbs=1&tbnid=4w69UlJ3vUiwYM:&tbnh=132&tbnw=99&prev=/images%3Fq%3Dbeer%2Bgut%26start%3D21%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4ADBR_enUS309%26ndsp%3D21%26tbs%3Disch:1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Consider changes in the mass of solute by adsorbing onto the solid soil matrix, given by ρbs, where ρb is the soil bulk density and s is the adsorbed concentration in terms of mass of solute per mass of soil

    ( )

    ∂∂

    ∂∂

    =∂+∂

    xcD

    xtsc

    effbρ

    Binding

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ( )

    ∂∂

    ∂∂

    =∂+∂

    xcD

    xtsc

    effbρ

    Binding

    ( )

    ∂∂

    ∂∂

    =∂

    ∂xcD

    xtRc

    eff csR bρ+=1With

    Retardation factor

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ( )

    ∂∂

    ∂∂

    =∂+∂

    xcD

    xtsc

    effbρ

    ( )

    ∂∂

    ∂∂

    =∂

    ∂xcD

    xtRc

    eff csR bρ+=1With

    Simplest case Kcsb =ρ

    ∂∂

    +∂∂

    =∂∂

    xc

    KD

    xtc eff

    1

    KR +=1

    Diffusion gets ‘slower’

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Other mechanism?

    Water flow : advection

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ADVECTION • Chemical transport due to bulk movement of the fluid. • The fastest form of chemical transport in porous

    media. • Concentration decreases in the direction of fluid

    movement.

    xCU

    tC

    ∂∂

    −=∂∂CUq −=

    Darcy law liquid

    ww JUthatNoteJU >→=θ

    Darcy law liquid

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ∂∂

    ∂∂

    =∂∂ CU

    xCD

    xtC

    effθθ

    ∂∂

    ∂∂

    =∂∂ CU

    xCD

    xtC

    eff

    Saturated porous medium

    Non-saturated porous medium: Ion transport only in the liquid

    Transport can only be liquid of component

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    29

    Reasons for Spreading: mechanical dispersions

    Some solute mass travels faster than average, while some solute mass travels slower than average

    Completely dependent on flow

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Completely dependent on flow

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Dispersion

    Mechanical dispersion - caused by motion of the fluid

    Longitudinal dispersion – along the streamline

    Transverse dispersion – perpendicular to flow path

    Flow Direction

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Experiment

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Advection, Diffusion, Dispersion

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ∂∂

    ∂∂

    =∂∂ CU

    xCD

    xtC

    effθθ

    ∂∂

    ∂∂

    =∂∂ CU

    xCD

    xtC

    eff

    Saturated porous medium

    Non-saturated porous medium: Ion transport only in the liquid

    Deff= diffusion + tortuosity + dispersion

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    NaCl

    Wind

    damage

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Damage to rising damp in city of Venice

    2004 2007

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    How are ions moving?

    Characterize the transport?

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM drying

    surface

    airflow

    Wick action conceptual model

    supply

    Drying front at surface (drying externally limited)

    = Liquid velocity is function of drying rate

    = position drying front

    moisture flow

    u=constant

    See also sharp front model C. Hall

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM drying

    surface

    airflow

    Wick action conceptual model

    supply

    moisture flow

    advection

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM drying

    surface

    airflow

    Wick action conceptual model

    supply

    moisture flow

    accumulation > crystallization

    For NaCl max concentration = 6M

    advection

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM drying

    surface

    airflow

    Wick action conceptual model

    supply

    moisture flow

    advection

    (neglect adsorption)

    diffusion

    accumulation leveling off

    competition

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Peclet number

    DLUPe =

    liquid velocity

    length of the sample

    diffusion coefficient of Na in porous medium

    :U:L:D

    competition advection diffusion

    1>Pe1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    effC cD uCt x x

    ∂ ∂ ∂ = − ∂ ∂ ∂

    Diffusion Advection + = flux

    Initial profiles

    Advection diffusion equation for transport

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    effC cD uCt x x

    ∂ ∂ ∂ = − ∂ ∂ ∂

    Initial profiles

    airflow supply

    moisture flow

    advection

    q=0 Ions can not leave

    q= uCo continuous supply

    Boundary conditions

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    effC cD uCt x x

    ∂ ∂ ∂ = − ∂ ∂ ∂ Diffusion Advection

    Boundary conditions: Top : q=0 Bottom : q= uCo

    + = flux

    Simple solution:

    Initial profiles

    • Exponential decay

    • Width peak =4D/U (e-4~0)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    effC cD uCt x x

    ∂ ∂ ∂ = − ∂ ∂ ∂ Diffusion Advection

    Boundary conditions: Top : q=0 Bottom : q= uCo

    After reaching the solubility limit> crystallization

    C*=6 for NaCl

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Na lower sensitivity longer

    measurement time

    Signal proportional

    to

    moisture content

    or

    Na content

    Pulsed NMR signal (spin-echo experiment)

    Information on

    water and ion

    in pores Amplitude spin-echo S~Gρ [1-exp(-TR/T1)] exp(-TE/T2) G = relative sensitivity (for 1H G=1, 23Na=0.1) ρ = density of nuclei

    T1 = spin lattice relaxation

    TR = repetition time experiment

    T2 = spin-spin relaxation time

    TE = spin-echo time

    see,e.g.,E.L. Hahn,Phys. Rev., 80, 580-594 (1950)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Experimental setup

    pump

    NMR measurement

    Measurements

    - NMR moisture profile

    - NMR Na profile

    (only free ions: no crystals)

    1m NaCl reservoir

    electrical level control NaCl

    Step motor

    0% RH air flow

    epoxy coating

    evaporation shield top

    bottom

    100

    mm

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ( )0

    ,1

    2 .eff

    C x t xerfC D t

    = −

    C CDt x x

    ∂ ∂ ∂ = ∂ ∂ ∂

    9 20.8 10 /D m s−= ×

    0 1 2 3 4 5 6 7 8

    x 10-5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    x/sqrt(t) [m s-0.5]

    Na

    conc

    entra

    tion

    [m]

    No airflow > only diffusion

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Results with airflow

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Results

    No 6M ????

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n 1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n

    1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n

    1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n

    1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n

    1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Limestone sample saturated with 1 M NaCl solution

    position

    Con

    cent

    ratio

    n

    1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n

    1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Stone sample saturated with 1 M NaCL solution

    position

    Con

    cent

    ratio

    n

    1

    resolution

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Results

    1D resolution: average over slice

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Results: model fit data

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Results: model fit data

    Max concentration = 6 m

    Decay width ~ 80 mm

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Integral of concentration

    No crystallization

    crystallization at 6 m

    linear increase ucot

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Movie Eric Doehne www.getty.edu/conservation/science

    Madame John’s Legacy 1788

    How to clear a wall (painting) of the salt?

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Conservators: poulticing

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    General idea of poulticing

    poultice substrate

    transport Water absorption

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    poultice substrate What are the mechanisms ???? - time scales?

    - efficiency?

    - poresize dependence?

    General idea of poulticing

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Working principle of poulticing

    Diffusion

    Diffusion of ink in glass of water

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    General idea of poulticing by diffusion

    poultice substrate

    diffusion Water absorption

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    General idea of poulticing by diffusion

    poultice substrate

    diffusion

    TO KEEP THE DIFFUSION GOING

    (maintain sink)

    RENEW POULTICE VERY OFTEN

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    General idea of poulticing by diffusion

    poultice substrate

    diffusion

    TO KEEP THE DIFFUSION GOING

    (maintain sink)

    RENEW POULTICE VERY OFTEN

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    2

    2

    xD

    tC

    ∂∂

    =∂∂ C

    Desalination by diffusion process:

    D (m2s-1) water Bentheimer fired clay brick

    NaCl 1.1 10-9 0.4 10-9 0.8 10-9

    Na2SO4 1.1 10-9 0.4 10-9 0.85 10-9

    In the order of 1 10-9 m2s-1

    TIME SCALE?

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Poulticing side

    (where salt comes out)

    Time in days

    Salt concentration

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Diffusion Pros • If enough time, can have 100 % efficiency • No pore size dependency

    Cons • Slow ( 80% in 10 days for first 25 mm) • Renew poultice very often • Sample wet (long time, bio degradation)) • At end, dry sample (salt damage)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Equations of moisture and ion transport

    ∂∂

    ∂∂

    +

    ∂∂

    ∂∂

    =∂∂

    xCD

    xxD

    xt cθθ

    θ

    ∂∂

    ∂∂

    =∂∂ CU

    xCD

    xtC

    effθθ

    moisture

    salt

    So two couple non-linear partial differential equations

    + boundary conditions

    We do not learn anything !!!!

    The competition

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying

    surface

    airflow

    How do we get salt effloresence???

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying

    surface

    airflow

    moisture flow

    Saline drying conceptual model

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Saline drying conceptual model drying

    surface

    advection airflow

    moisture flow

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Saline drying conceptual model drying

    surface

    airflow

    moisture flow

    accumulation > crystallization

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Saline drying conceptual model drying

    surface

    advection

    (neglect adsorption)

    airflow

    moisture flow

    accumulation

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Saline drying conceptual model drying

    surface

    advection

    (neglect adsorption)

    airflow

    moisture flow

    diffusion

    accumulation leveling off

    competition

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Peclet number

    DLUPe =

    liquid velocity

    length of the sample

    diffusion coefficient of Na in the pores

    :U:L:D

    competition advection diffusion

    1>Pe1

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Drying experiment

    The initially saturated sample is sealed at all sides, except for the top

    The sample is moved by step motor

    The one-dimensional resolution ~ 1 mm

    The measurement of a profile takes ~ 3 hours

    Webcam for visual inspection

    NMR only free Na ions are measured: no crystals

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    NaCl

    Na concentration

    profiles at various

    drying times

    drying surface

    0 days

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying surface

    0 days1

    Pe~3

    NaCl

    Na concentration

    profiles at various

    drying times

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying surface

    NaCl max concentration 6 M

    crystallization

    0 days13

    NaCl

    Na concentration

    profiles at various

    drying times

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying surface

    0 days13

    6

    Pe~0.7

    NaCl

    Na concentration

    profiles at various

    drying times

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying surface

    0 days13

    6

    9

    NaCl

    Na concentration

    profiles at various

    drying times

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying surface

    0 days13

    6

    9

    12,15

    NaCl

    Na concentration

    profiles at various

    drying times

    Pel et al, Applied Physics Letters 81, 2893-2895 (2002)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 days

    13

    6

    9

    12,15

    Pe>1

    Pe

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 5 10 150.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    1

    2

    3

    4

    5

    SavgCavg

    Savg

    Pe < 1Pe > 1

    S

    avgC

    avg (

    mol

    l-1 )

    S avg (-

    )

    time (days)

    Savg is the average (water) saturation of the sample (drying curve)

    Savg Cavg represents the total amount of dissolved NaCl

    I II III

    I: Pe ~ 3 accumulation

    II: Pe ~ 0.7 leveling off

    III: homogeneous at 6 M

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    poultice substrate

    advection

    General idea of poulticing by advection

    Water absorption airflow

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    poultice substrate

    General idea of poulticing by advection

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Demands on poultice Step 1) Water is absorbed from poulice into substrate

    Step 2) Reverse of water flow, i.e., from substrate into poultice

    poultice substrate

    Absorption

    poultice substrate

    Advection

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Maximum height > capillary pressure

    wnc rp γ2=

    Capillary pressure

    Conclusions

    1) A porous material will absorb water

    2) Small porous will absorb water from larger pores

    =

    Water wants to stay

    in small pores

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Demands on poultice

    Step 1) Water is absorbed from poulice into substrate

    poultice substrate

    Absorption

    Poulice : Reservoir pores larger than largest pores in substrate

    reservoir pores

    substrate substrate poultice

    pore size

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    drying

    surface

    airflow

    Widest pores first rPc

    φγ cos2≈

    Capillary pressure

    Desalination phase

    PORES POULTICE SMALLER THAN SUBSTRATE

    poultice substrate

    Advection

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Calcium-silicate brick

    r ∼ 12 nm

    Bentheimer sandstone r ∼ 30 µm

    Plaster (lime:cement:sand = 4:1:10 (v/v)) r ∼ 0.5 µm

    rcalcium-silicate< rplaster< rBentheimer

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 50 100 150 2000

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Bentheimer sandstone

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    150 h

    Plaster Bentheimer sandstone

    10 h

    25 h

    75 h

    25 h0 h

    0 h

    θ (m

    3 /m3 )

    x (mm)

    rplaster< rBentheimer

    moisture

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    drying surface

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    150 h

    Plaster Bentheimer sandstone

    10 h

    25 h

    75 h

    25 h0 h

    0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    moisture

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    150 h

    Plaster Bentheimer sandstone

    10 h

    25 h

    75 h

    25 h0 h

    0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    moisture

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    150 h

    Plaster Bentheimer sandstone

    10 h

    25 h

    75 h

    25 h0 h

    0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    moisture

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 50 100 150 2000

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Bentheimer sandstone

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    150 h

    Plaster Bentheimer sandstone

    10 h

    25 h

    75 h

    25 h0 h

    0 h

    θ (m

    3 /m3 )

    x (mm)

    rplaster< rBentheimer

    moisture

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6

    0.8a Plaster Bentheimer sandstone

    25 h

    10 h

    0 h

    150 h

    75 h

    0 h

    10 h

    25 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150

    0

    1000

    2000

    3000

    4000

    Na c

    onte

    nt (m

    mol

    )t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    Na-content

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    drying surface

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6

    0.8a Plaster Bentheimer sandstone

    25 h

    10 h

    0 h

    150 h

    75 h

    0 h

    10 h

    25 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150

    0

    1000

    2000

    3000

    4000

    Na c

    onte

    nt (m

    mol

    )t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    Na-content

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6

    0.8a Plaster Bentheimer sandstone

    25 h

    10 h

    0 h

    150 h

    75 h

    0 h

    10 h

    25 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150

    0

    1000

    2000

    3000

    4000

    Na c

    onte

    nt (m

    mol

    )t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    Na-content

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    Start of crystallization

    at surface

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6

    0.8a Plaster Bentheimer sandstone

    25 h

    10 h

    0 h

    150 h

    75 h

    0 h

    10 h

    25 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150

    0

    1000

    2000

    3000

    4000

    Na c

    onte

    nt (m

    mol

    )t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    Na-content

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    Efficiency high

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6

    0.8a Plaster Bentheimer sandstone

    25 h

    10 h

    0 h

    150 h

    75 h

    0 h

    10 h

    25 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150

    0

    1000

    2000

    3000

    4000

    Na c

    onte

    nt (m

    mol

    )t (h)

    Plaster Bentheimer sandstone

    rplaster< rBentheimer

    Na-content

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    DLUPe =

    Peclet number

    Water velocity ???

    Mass conservation

    0. =∇+∂∂ q

    tθ 0)( =∇+

    ∂∂ U

    tθθ

    ``)()(

    1)( dxxtx

    xUl

    x∫∂

    ∂= θθ

    From measured moisture profiles

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500

    2

    4

    6

    8

    10

    12

    |U| L

    x 1

    0-9 (

    m2 /s

    )

    D = 1 x 10-9 (m2/s)

    t (h) 0 10 25 75

    Bentheimer sandstoneplaster

    75 h

    25 h

    10 h

    0 h

    x (mm)

    rplaster< rBentheimer

    Peclet number as function position

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    120 h

    Plaster Calcium-silicate brick

    120 h

    60 h

    30 h

    60 h

    30 h

    0 h0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Calcium-silicate brick

    moisture

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    drying surface

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    120 h

    Plaster Calcium-silicate brick

    120 h

    60 h

    30 h

    60 h

    30 h

    0 h0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Calcium-silicate brick

    moisture

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    120 h

    Plaster Calcium-silicate brick

    120 h

    60 h

    30 h

    60 h

    30 h

    0 h0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Calcium-silicate brick

    moisture

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.1

    0.2

    0.3a

    120 h

    Plaster Calcium-silicate brick

    120 h

    60 h

    30 h

    60 h

    30 h

    0 h0 h

    θ (m

    3 /m3 )

    x (mm)0 50 100 150 200

    0

    500

    1000

    1500

    V (m

    m3 )

    t (h)

    Plaster Calcium-silicate brick

    moisture

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6a Plaster Calcium-silicate brick

    120 h

    30 h

    60 h

    0 h

    60 h

    30 h

    0 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150 200

    0

    1000

    2000

    3000

    Na c

    onte

    nt (µ

    mol

    )t (h)

    Plaster Calcium-silicate brick

    Na-content

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    drying surface

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6a Plaster Calcium-silicate brick

    120 h

    30 h

    60 h

    0 h

    60 h

    30 h

    0 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150 200

    0

    1000

    2000

    3000

    Na c

    onte

    nt (µ

    mol

    )t (h)

    Plaster Calcium-silicate brick

    Na-content

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6a Plaster Calcium-silicate brick

    120 h

    30 h

    60 h

    0 h

    60 h

    30 h

    0 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150 200

    0

    1000

    2000

    3000

    Na c

    onte

    nt (µ

    mol

    )t (h)

    Plaster Calcium-silicate brick

    Na-content

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    Backward flow of salt from plaster into brick

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500

    2

    4

    6

    |U| L

    x 1

    0-9 (

    m2 /s

    )

    D = 1 x 10-9 (m2/s)

    t (h) 0 10 20 30 60

    calcium-silicate brickplaster

    x (mm)

    rcalcium-silicate< rplaster Ph.D thesis J. Petković TU-Eindhoven (2005)

    Peclet number as function position

    leveling off

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    0 10 20 30 40 500.0

    0.2

    0.4

    0.6a Plaster Calcium-silicate brick

    120 h

    30 h

    60 h

    0 h

    60 h

    30 h

    0 h

    Na c

    onte

    nt x

    103

    (mol

    /m3 )

    x (mm)0 50 100 150 200

    0

    1000

    2000

    3000

    Na c

    onte

    nt (µ

    mol

    )t (h)

    Plaster Calcium-silicate brick

    Na-content

    rcalcium-silicate< rplaster

    Ph.D thesis J. Petković TU-Eindhoven (2005)

    Efficiency low

    salt remains in substrate

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ion chromatography

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ion chromatography

    MAX DESALINATION

    IF

    PORES POULTICE SMALLER THEN SUBSTRATE

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Conclusion

    Performance =

    Poultice property

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Advection Pros • Fast • Object is dry at the end

    Cons • Pore size dependent

    - adapt poultice to substrate • Renew poultice in time (back diffusion) • Not all salt removed

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Be aware

    wetting = advection for ions

    Accumulation of ions

    drying = advection for ions

    Accumulation of ions

    = not moved

    Diffusion dominant

    Advection dominant

    So salts are moved in

    and

    can not be moved out again

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    ‘Gedanken Experiment’

    sample

    water

    1 cm

    Fired clay brick

    Permeability ~ 10-8 ms-1

    Advection domimant

    Concrete

    Permeability ~ 10-13 ms-1

    Diffusion domimant

    Limitations of advection based poulticing ???

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Influence osmotic pressure

    http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjyzY3FkNLMAhWkHsAKHZ7-AhQQjRwIBw&url=http%3A%2F%2Fchemwiki.ucdavis.edu%2FTextbook_Maps%2FGeneral_Chemistry_Textbook_Maps%2FMap%253A_General_Chemistry_(Petrucci_et_al.)%2F13%253A_Solutions_and_their_Physical_Properties%2F13.07%253A_Osmotic_Pressure&psig=AFQjCNF6C_OidlqzM5JAStCfuacV_T6XIQ&ust=1463048709157236

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Macroscopic pressure = capillary pressure + osmotic pressure

    Water activity (pure water aw=1)

    Effective pore size changes

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM Extreme example

  • Click to edit Master title style

    • Click to edit Master text styles • Second level • Third level • Fourth level • Fifth level

    Transport in Permeable Media

    TPM

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21BindingBindingSlide Number 24Other mechanism?ADVECTIONSlide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43Peclet numberSlide Number 45Slide Number 46Slide Number 47Slide Number 48Slide Number 49Slide Number 50Slide Number 51Slide Number 52Slide Number 53Slide Number 54Slide Number 55Slide Number 56Slide Number 57Slide Number 58Slide Number 59Slide Number 60Slide Number 61Slide Number 62Slide Number 64Slide Number 65Slide Number 66Slide Number 67Slide Number 68Slide Number 69Slide Number 70Slide Number 71Slide Number 72Slide Number 73Slide Number 74Slide Number 75Slide Number 76DiffusionEquations of moisture and ion transportSlide Number 79Slide Number 80Slide Number 81Slide Number 82Slide Number 83Slide Number 84Peclet numberSlide Number 92Slide Number 93Slide Number 94Slide Number 95Slide Number 96Slide Number 97Slide Number 98Slide Number 99Slide Number 100Slide Number 101Slide Number 102Demands on poulticeSlide Number 104Demands on poulticeSlide Number 106Slide Number 107Slide Number 108Slide Number 109Slide Number 110Slide Number 111Slide Number 112Slide Number 113Slide Number 114Slide Number 115Slide Number 116Slide Number 117Slide Number 118Slide Number 119Slide Number 120Slide Number 121Slide Number 122Slide Number 123Slide Number 124Slide Number 125Slide Number 126Slide Number 127Slide Number 128Slide Number 129Slide Number 130ConclusionAdvectionBe awareSlide Number 135Slide Number 136Slide Number 137Slide Number 138Slide Number 139