Class 06 Handout

download Class 06 Handout

of 19

Transcript of Class 06 Handout

  • 7/25/2019 Class 06 Handout

    1/19

    Fluid Mechanics AS102

    Class Note No: 06

    Wednesday, August 8, 2007

  • 7/25/2019 Class 06 Handout

    2/19

  • 7/25/2019 Class 06 Handout

    3/19

    Review: C. C. S. & Tensor Analysis - differentiations

    two important relations:

    gk

    ul =

    m

    k l

    gm

    g

    k

    ul =

    kl ngn (2)

    m

    k l:=

    1

    2

    gmn(gnk

    ul

    +gnl

    uk

    gkl

    un

    ) (3)

    the christoffel symbols of the second kind

  • 7/25/2019 Class 06 Handout

    4/19

    Review: C. C. S. & Tensor Analysis - differentiations

    scalars:

    = (x) = (u) {= (u)} (4)

    =

    umgm

    =;mgm

    {=

    umg

    m

    } (5)

    um =

    un

    um

    un (6)

    1st order covariant tensor

  • 7/25/2019 Class 06 Handout

    5/19

    Review: C. C. S. & Tensor Analysis - differentiationsvectors:

    a= ak(u)gk=ak(u)gk

    {=ak(u)gk =ak(u)gk} (7)

    case 1:

    a=am;lglgm , am;l := am

    ul +

    mk l

    ak

    2nd o.mixed t. Understand the rule (8)

    case 2:

    a= am;lglgm , am;l :=

    am

    ul

    k

    m l

    ak

    2nd o.covariant t. understand the rule (9)

    am;l=g

    mn

    an;l (10)

  • 7/25/2019 Class 06 Handout

    6/19

    Review: C. C. S. & Tensor Analysis - differentiationsuseful formula:

    diva := a= gk

    uk[algl] =g

    k

    uk[algl]

    = gk al ;kgl=ak;k (11)

    2 := =gl

    ul[gm

    um] =gl

    ul[,mg

    m]

    = gl,m;lgm =glm(

    2

    ulum

    k

    m l

    uk) (12)

    curla := a= gk

    uk(alg

    l) =gk

    uk(alg

    l)

    = gk(al;kgl) =al;kgkgl (13)

    ba = (bmgm)gk

    uka=bk

    uk(algl)

    = b

    k

    a

    l

    ;kgl (14)

  • 7/25/2019 Class 06 Handout

    7/19

    Curvilinear Coordinate Systems & Tensor Analysis

    Todays topic:

    # differentiation of

    the 2nd order tensors

    # example to apply the learned ruels equations of motion in curvilinear c. s.

  • 7/25/2019 Class 06 Handout

    8/19

    Curvilinear Coordinate Systems & Tensor Analysis

    2nd order tensors A= Aij(u)gigj ...:

    A = gk uk

    A= gk uk

    (Aijgigj)

    = gk

    Aij

    ukgigj+ A

    ijgi

    ukgj+ A

    ijgigj

    uk

    = gk

    Aij

    ukgigj+ Aij

    mi k

    gmgj + Aijgi

    m

    j kgm

    =

    Amn

    uk +

    m

    i k

    Ain +

    n

    j k

    Amj

    gkgmgn

    = Amn

    ;kg

    k

    gmgn (15)

    Amn;k := Amn

    uk +

    m

    i k

    Ain +

    n

    j k

    Amj (16)

    third order tensor of mixed

  • 7/25/2019 Class 06 Handout

    9/19

    Review: C. C. S. & Tensor Analysis - differentiations

    find the pattern:

    am;l= am

    ul +

    mk l

    ak , am;l=

    am

    ul

    k

    m l

    ak (17)

    am;l=gmnan;l (18)

    Amn;k = Amn

    uk +

    m

    i k

    Ain +

    n

    j k

    Amj (19)

    (17) as the starting point, covariant / contravariant;

    orders, number of free indexes;

    positions of & correspondences between the indexes

    Amn;k= Amn

    uk +

    m

    i k

    Ain

    j

    n k

    Amj (20)

  • 7/25/2019 Class 06 Handout

    10/19

    Curvilinear Coordinate Systems & Tensor Analysis

    useful formula:

    gij;m=gij;m=0 (21) to show the 1st:

    1 gij;ma third order mixed tensor (the consequence of diff.)

    2 in a rectangular c.s.

    gij ij, gij ;m ij;m=

    ij

    xm=0

    3

    gij;m= ui

    xp

    uj

    xq

    xr

    umpq;r=0

    the characteristic of tensors: if a tensor is zero in onespecific coordinate system, it is zero in other coordinatesystems. (roughly speaking)

  • 7/25/2019 Class 06 Handout

    11/19

    Curvilinear Coordinate Systems & Tensor Analysisuseful formula:

    examples of product rules

    (Aij bk);m=Aij;mbk+ A

    ij bk;m

    (Aij bj);m=Aij;mbj+A

    ij bj;m (22)

    #

    Aij;mbk+ A

    ij bk;m=

    Aij

    um +

    i

    m l

    Alj

    + j

    m l

    Ail

    bk+ Aij bk

    um l

    m k

    bl

    =

    um(Aij bk) +

    i

    m l

    Alj bk+

    j

    m l

    Ail bk

    l

    m kAij bl= (Aij bk);m

  • 7/25/2019 Class 06 Handout

    12/19

    Curvilinear Coordinate Systems & Tensor Analysis

    useful formula:

    A = gk

    ukA= gk

    ukA=gk

    uk(Aijgigj)

    = gkAij

    ukgigj+ A

    ijgi

    ukgj+ A

    ijgigj

    uk

    = gk

    Aij

    ukgigj+ A

    ij

    m

    i k

    gmgj+ A

    ijgi

    m

    j k

    gm

    = Amn

    um

    + m

    i mAin +

    n

    j mAmj gn

    = Amn;mgn (23)

  • 7/25/2019 Class 06 Handout

    13/19

    Curvilinear Coordinate Systems & Tensor Analysis

    equations of motion (conservations of mass & linear momentum):

    t + v+v= 0, (24)

    vt + vv f= 0 (25)

    # to apply the equations, we need the corresponding

    component forms !!

    = (um, t), v= vi(um, t)gi =vi(um, t)gi,

    =ij(um, t)gigj, f=fi(um, t)gi

    gi independent of timet

  • 7/25/2019 Class 06 Handout

    14/19

    Curvilinear Coordinate Systems & Tensor Analysis

    equations of motion (conservations of mass & linear momentum):

    v= vk;k, v=vk;k,

    v

    t =

    vi

    t gi,

    vv= vk vi;kgi, =ki;kgi (26)

    t + v

    k;k+vk;k =0, (27)

    vit + v

    kvi;k

    ki

    ;k fi =0 (28)

  • 7/25/2019 Class 06 Handout

    15/19

    Curvilinear Coordinate Systems & Tensor Analysis

    equations of motion

    (conservations of mass & linear momentum):

    # another perspective to look at the issue

    we have the following component forms of the equations inarectangularcoordinate system (from the conservations of

    mass & linear momentum)

    t

    +vk,k+ vk,k=0, (29)

    vit

    +vkvi,k

    ki,k fi=0 (30)

    how to write the corresponding equations in acurvilinearc.s. ?

    (if needed in application, for the sake of convenience)

    C ili C di S T A l i

  • 7/25/2019 Class 06 Handout

    16/19

    Curvilinear Coordinate Systems & Tensor Analysis

    # another perspective to look at the issue

    define

    ai :=

    vi

    t +vkvi,k

    ki,k fi in(xm)

    ai :=vi

    t + vkvi;kki;k fi in(um)

    show that such a defined ai is a 1st order contravarianttensor

    ai = ui

    xmam=0, see equation (30)

    vi

    t + vkvi;k

    ki;k f

    i =0 (31)

    C ili C di S & T A l i

  • 7/25/2019 Class 06 Handout

    17/19

    Curvilinear Coordinate Systems & Tensor Analysis

    equations of motion

    (conservations of mass & linear momentum):

    # example for ij, ij

    for a Newtonian fluid,

    ki=Pki+(vk,i+vi,k), in(xm) (32)

    ki =Pgki +(vk;lgli + vi;lg

    kl) (33)

    ki;k=P;kgki +(v

    k;l);kg

    li + (vi;l);kgkl

    (34)(vi;l);k=

    ukvi;l+

    i

    m k

    vm;l

    m

    l k

    vi;m (35)

    further simplfication in an orthogonal c.s.

    C ili C di t S t & T A l i

  • 7/25/2019 Class 06 Handout

    18/19

    Curvilinear Coordinate Systems & Tensor Analysis

    This Fridays tutorial time

    11:00am 11:50am

    ... the equations of motion in a cylindrical c.s. ...

    & the concept of physical components

    C ili C di t S t & T A l i

  • 7/25/2019 Class 06 Handout

    19/19

    Curvilinear Coordinate Systems & Tensor Analysis

    derive the specific expressions for (find the rules for orthogonal

    c. s. first)

    the cylindrical c. s.

    2

    1 2

    =

    2

    2 1

    =

    1

    r,

    1

    2 2

    = r, other= 0 (36)

    the spherical c. s.

    1

    2 2

    =r,

    1

    3 3

    =rsin2,

    2

    1 2

    = ..=

    1

    r

    23 3

    =sin cos,

    31 3

    =..= 1

    r 3

    2 3

    =..= cot, (37)