CIVL%2131%)%Stacs% - Department of Civil Engineering - … Two.pdf ·  ·...

40
CIVL 2131 Sta-cs Basic Vector Opera-ons Addi-on and Subtrac-on of Coplanar Forces Phrase Transla+on It has been long known I haven't bothered to check the references It is known I believe It is believed I think It is generally believed My group and I think There has been some discussion Nobody agrees with me It can be shown Take my word for it It is proven It agrees with something mathema-cal

Transcript of CIVL%2131%)%Stacs% - Department of Civil Engineering - … Two.pdf ·  ·...

CIVL  2131  -­‐  Sta-cs  Basic  Vector  Opera-ons  Addi-on  and  Subtrac-on  of  Coplanar  Forces  

Phrase     Transla+on  

It  has  been  long  known   I  haven't  bothered  to  check  the  references  

It  is  known   I  believe  

It  is  believed   I  think  

It  is  generally  believed   My  group  and  I  think  

There  has  been  some  discussion   Nobody  agrees  with  me  

It  can  be  shown   Take  my  word  for  it  

It  is  proven   It  agrees  with  something  mathema-cal  

Objec-ves  

  Understand  and  be  able  to  u-lize  vectors  to  represent  forces  

  Understand  how  forces  represented  as  vectors  can  be  added  together  to  find  the  resultant  of  a  series  of  coplanar  forces  

  Understand  how  a  force  can  be  resolved  into  components  using  the  parallelogram  law  

January 20, 2010 Basic Vector Operations 2

Tools  

  Law  of  Sines  

  Law  of  Cosines  

  Basic  Trigonometry  

  Pythagorean  Theorem  

January 20, 2010 Basic Vector Operations 3

Forces,  Moments,  and  Vectors  

  In  Sta-cs  we  will  be  concerned  with  two  basic  elements  of  mechanics  

  Forces  –  the  tendency  to  cause  movement  along  an  axis  and  

 Moments  –  the  tendency  to  cause  movement  around  an  axis  

January 20, 2010 Basic Vector Operations 4

Forces,  Moments,  and  Vectors  

  Both  Forces  and  Moments  can  be  mathema-cally  represented  as  vectors  which  allows  us  to  have  both  a  consistent  representa-on  and  a  convenient  set  of  tools  for  manipula-ng  the  elements  for  analysis  

January 20, 2010 Basic Vector Operations 5

Forces,  Moments,  and  Vectors  

  Vectors  are  mathema-cal  representa-ons  which  have  two  components  

 Magnitude  and  

 Direc-on  

January 20, 2010 Basic Vector Operations 6

Forces,  Moments,  and  Vectors  

  If  a  quan-ty  can  be  represented  by  magnitude  only,  then  it  is  a  scalar  and  doesn’t  follow  the  rules  of  vector  manipula-on  

January 20, 2010 Basic Vector Operations 7

Forces,  Moments,  and  Vectors  

  Vectors  are  convenient  representa-on  because  we  have  both  graphical  and  analy-cal  tools  to  work  with  them  

  Remember,  a  vector  has  both  magnitude  and  direc-on  

January 20, 2010 Basic Vector Operations 8

Forces,  Moments,  and  Vectors  

 Graphically,  we  can  represent  our  vector  quan--es  (forces  and  moments)  by  using  an  arrow  

  If  we  are  going  to  use  a  graphical  solu-ons,  the  length  of  the  arrow  will  represent  the  magnitude  of  the  quan-ty  and  the  direc-on  of  the  arrow  will  represent  the  direc-on  of  the  quan-ty  

January 20, 2010 Basic Vector Operations 9

Forces,  Moments,  and  Vectors  

  For  example  if  we  have  two  forces,  Force  1  (F1)  and  Force  2  (F2)  and  they  are  ac-ng  at  some  point  in  space,  we  could  draw  them  

January 20, 2010 Basic Vector Operations 10

Forces,  Moments,  and  Vectors  

  From  the  drawing,  we  can  see  that  F1  has  a  greater  magnitude  than  F2  

  This  is  only  possible  if  we  draw  the  vectors  to  scale  

January 20, 2010 Basic Vector Operations 11

Forces,  Moments,  and  Vectors  

 We  could  describe  the  direc-ons  as  sort  of  up  and  right  and  more  up  than  right  but  some  right  

 Not  a  lot  of  informa-on  there  

January 20, 2010 Basic Vector Operations 12

Forces,  Moments,  and  Vectors  

 While  the  representa-on  is  quite  fine  and  the  direc-ons  are  evident  to  someone  looking  at  the  drawing,  a  more  consistent  representa-on  requires  that  we  generate  some  reference  

January 20, 2010 Basic Vector Operations 13

Forces,  Moments,  and  Vectors  

  The  most  convenient  reference  would  one  that  would  allow  for  consistent  opera-ons  on  what  was  being  represented  

 One  of  the  ways  u-lized  is  by  the  placing  of  an  axis  on  the  system  

January 20, 2010 Basic Vector Operations 14

Forces,  Moments,  and  Vectors  

 Now  there  is  no  fixed  coordinate  axis  in  space,  what  we  are  dealing  with  is  a  mathema-cal  representa-on  so  we  get  to  decide  on  where  the  axis  are  going  to  be  and  how  they  are  going  to  be  oriented  

January 20, 2010 Basic Vector Operations 15

Forces,  Moments,  and  Vectors  

  Conven-onally,  we  choose  an  x  axis  that  is  parallel  with  the  boZom  of  the  page  and  with  a  posi-ve  direc-on  directed  to  the  right.  

  The  posi-ve  direc-on  of  the  axis  is  from  the  origin  to  the  axis  label.  

January 20, 2010 Basic Vector Operations 16

Forces,  Moments,  and  Vectors  

  Also  by  conven-on,  we  usually  have  the  y  axis  parallel  with  the  sides  of  the  page  and  the  +  y  from  the  origin  to  the  axis  label  (upward)  

January 20, 2010 Basic Vector Operations 17

Forces,  Moments,  and  Vectors  

 Don’t  get  confused  if  you  see  other  axis  configura-ons,  the  one  that  I  have  shown  is  just  the  most  common  

January 20, 2010 Basic Vector Operations 18

Forces,  Moments,  and  Vectors  

  This  will  allow  us  to  describe  the  forces  (vectors)  in  reference  to  the  axis  system.  

January 20, 2010 Basic Vector Operations 19

Forces,  Moments,  and  Vectors  

 When  you  use  vectors  in  your  wriZen  work,  indicate  that  a  variable  is  a  vector  by  pu]ng  a  small  arrow  over  the  top  of  the  symbol  you  are  using  to  represent  the  vector  

January 20, 2010 Basic Vector Operations 20

Forces,  Moments,  and  Vectors  

  You  will  probably  see  textbooks  and  presenta-ons  using  bold  face  type  to  represent  vectors  but  when  you  write  the  work  out,  you  don’t  have  that  op-on  so  use  the  arrow.  

January 20, 2010 Basic Vector Operations 21

Forces,  Moments,  and  Vectors  

  To  describes  the  force  we  can  use  the  reference  system  (x  and  y  axis)  that  we  have  developed.  

January 20, 2010 Basic Vector Operations 22

Forces,  Moments,  and  Vectors  

  Assuming  that  we  have  drawn  the  vectors  to  some  scale,  the  length  of  the  line  represen-ng  the  vector  would  give  the  magnitude  of  the  vector.  

January 20, 2010 Basic Vector Operations 23

Forces,  Moments,  and  Vectors  

  If  the  length  of  the  line  represen-ng  the  vector  was  2  inches  long  and  the  scale  selected  was  1  inch  =  50  N,  then  the  2  inch  vector  would  have  a  magnitude  of  100  N  

January 20, 2010 Basic Vector Operations 24

Forces,  Moments,  and  Vectors  

 Normally,  we  do  not  show  the  scale.  Rather  we  label  the  vector  with  its  magnitude.  However,  remember  that  there  is  a  scale  being  used.  

January 20, 2010 Basic Vector Operations 25

Forces,  Moments,  and  Vectors  

 We  can  also  describe  the  direc-on  of  the  vector  in  terms  of  the  coordinate  system  used.  

  Typically,  we  describe  the  direc-on  by  giving  the  angle  the  vector  makes  CCW  from  the  +x  axis  

January 20, 2010 Basic Vector Operations 26

Adding  Vector  Quan--es  

  If  we  use  consistent  references,  we  can  use  mathema-cal  opera-ons  to  combine  the  effects  of  vector  quan--es  

January 20, 2010 Basic Vector Operations 27

Adding  Vector  Quan--es  

  For  example,  if  we  could  add  these  two  forces  together  to  see  what  the  net  effect  of  their  ac-on(s)  would  be  

January 20, 2010 Basic Vector Operations 28

Adding  Vector  Quan--es  

 No-ce  that  we  start  by  drawing  the  vectors  on  the  coordinate  reference  plane  we  have  chosen.  

January 20, 2010 Basic Vector Operations 29

Adding  Vector  Quan--es  

  A  reasonable  first  guess  at  the  magnitude  of  the  combined  forces  might  be  to  just  add  the  magnitudes  of  the  forces  together  

 What  do  you  think  the  problem  would  be  with  doing  that?  

January 20, 2010 Basic Vector Operations 30

Adding  Vector  Quan--es  

 Which  direc-on  would  the  resultant  (the  sum  of  the  two  forces)  act  in?  

January 20, 2010 Basic Vector Operations 31

Adding  Vector  Quan--es  

 With  vectors  that  act  at  the  same  point,  we  have  a  simple  method  of  performing  the  addi-on  

January 20, 2010 Basic Vector Operations 32

Adding  Vector  Quan--es  

 We  choose  one  of  the  vectors  to  remain  fixed  

  In  this  case  we  will  choose  F1  

January 20, 2010 Basic Vector Operations 33

Adding  Vector  Quan--es  

 We  then  move  the  other  vector  (F2),  keeping  its  direc-on,  un-l  its  tail  is  at  the  head  of  the  first  (F1)  

January 20, 2010 Basic Vector Operations 34

Adding  Vector  Quan--es  

  Then  we  construct  the  resultant  (F)  by  drawing  a  new  vector  from  the  tail  of  the  sta-onary  vector  (F1)  to  the  head  of  the  vector  we  moved  (F2)  

January 20, 2010 Basic Vector Operations 35

Adding  Vector  Quan--es  

  F1  and  F2  are  known  as  the  components  

of  F  

  F  is  known  as  the  resultant  of  F1  and  F2  

January 20, 2010 Basic Vector Operations 36

Adding  Vector  Quan--es  

  If  you  knew  the  magnitude  and  direc-on  of  F1  and  F2,  you  could  find  the  magnitude  and  direc-on  of  F  using  trigonometry  and  geometry  

  This  is  because  of  the  consistent  representa-on    

January 20, 2010 Basic Vector Operations 37

Adding  Vector  Quan--es  

Page  22  in  a  review  of  this  topic.  

January 20, 2010 Basic Vector Operations 38

An  Example  Problem  

January 20, 2010 Basic Vector Operations

F2-1. Determine the magnitude of the resultant force acting on the screw eye and its direction measured from the x-axis

39

An  Example  Problem  

January 20, 2010 Basic Vector Operations

F2-3. Detemine the magnitude of the resultant force and its direction measured counterclockwise from the positive x-axis.

40