Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50...

28
Circuits II: Phasors & Complex Numbers ECE 111 Introduction to ECE Jake Glower - Week #9 Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Transcript of Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50...

Page 1: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Circuits II: Phasors

& Complex NumbersECE 111 Introduction to ECE

Jake Glower - Week #9

Please visit Bison Academy for corresponding

lecture notes, homework sets, and solutions

Page 2: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Numbers make a difference. They can create and end empires.

The number zero is an odd concept.

It isn't necessary: Romans had an extensiveeconomy without the number zero

Addition and multipliation is much easier withthe number zero

Roman Numbers Arabic Numbers

XXVII+ CIX

--------------?

27+ 106

------------?

Page 3: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Negative NumbersWeird concept: negative one apple?

The Dutch invented the double-entrybookkeeping system

Keep track of expenses (debits)

Keep track of assets (credits)

Only invest in profitable ventures

With the double-entry bookkeeping systemthe Dutch were able to challenge England,France, and Spain for world dominance.

Page 4: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

"We will bury you"Nikita Khrushchev

Accounting can decide the fate of empires

In the 1960's, the Soviet Union thought theireconomy was growing 20% per year

vs. 4% for the United States

At that rate, by 2000 the Soviet Union would crushthe U.S. ecomomically

Exponential growth is a powerful thing...

Actually, the Soviet economy was shrinking 1-2%per year

Eventually, the size of the goverment (based upon20% growth) could not be supported

Page 5: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Real Numbers & DC Signals1st half of Circuits I

At DC, real numbers canrepresent

Resistors

Voltages

Currents

When working with DC,real numbers are all youneed.

Page 6: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

AC Signals2nd half of Circuits I

All of Circuits II

You need 2 terms to represent a sine wave

Frequency is usually known

x(t) = a cos (ωt) + b sin (ωt)

or

x(t) = r cos (ωt + θ)

Real numbers don't work well

Only one degree of freedom

Two real numbers are needed to represent asine wave 0 1 2 3 4 5 6 7 8 9 10

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

cos(t)sin(t)

Page 7: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Complex Numbers

Complex numbers have two terms

Real Part & Complex Part

Allows you to represent cosine() and sine() terms with a single number

Let

j = −1

A complex number can be written as

x = a + jb = c∠θ

a2 + b2 = c2

tan θ =ba

a + jb

b

a

c

real

imag

Page 8: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Complex Number Math

Addition:

The real parts add and the complex parts add.

(a1 + jb1) + (a2 + jb2) = (a1 + a2) + j(b1 + b2)

Subtraction:

The real parts subtract and the complex parts subtract

(a1 + jb1) − (a2 + jb2) = (a1 − a2) + j(b1 − b2)

Multiplication:

Multiply out: results in a complex number

(a1 + jb1)(a2 + jb2) = a1a2 + ja1b2 + ja2b1 + j2b1b2

= (a1a2 − b1b2) + j(a1b2 + a2b1)

Page 9: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Division: Division also results in a complex number but takes even morecomputations:

a1+jb1

a2+jb2

=

a1+jb1

a2+jb2

a2−jb2

a2−jb2

=

(a1a2+b1b2)+j(−a1b2+a2b1)

a22+b2

2

=

a1a2+b1b2

a22+b2

2

+ j

−a1b2+a2b1

a22+b2

2

Page 10: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

HP Calculators to the Rescue!Free42 is a free app on your cell phone

HP35s is a $60 from Amazon

Download it

Get familiar with it

Use it

HP calculators are worth 10 points on midtermsfrom my experience

Page 11: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Handout (part 1)

Determine the result of the following operations with complex numbers

2 + j3 2 + j3 2 + j3 2 + j3

+ 9 + j4 - 9 + j4 * 9 + j4 ------------

----------- ---------- ----------- 9 + j4

Page 12: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Phasor Representation of cosine()

Euler's identity states that the complex exponential is

ejωt = cos (ωt) + j sin (ωt)

Real part gives you cosinecos (ωt) = real(ejωt

)

Phasor representation of cosine is 1 + j0

1 ↔ cos (ωt)

Page 13: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Phasor representation of a sine wave:

If you multiply by (a + jb)

(a + jb)ejωt = (a + jb)(cos (ωt) + j sin (ωt))

= (a cos (ωt) − b sin (ωt)) + j(. .. )

Take the real part

a + jb ↔ a cos (ωt) − b sin (ωt)

You can also represent voltages in polar form:

r∠θ ↔ r cos (ωt + θ)

Page 14: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Example: Determine the phasor representation for x(t)

The frequency comes from the period

T = 6.28ms

f =1

T= 159.2Hz = 159.2

cycles

second

ω = 2πf = 1000radsec

The amplitude is 5.000 (polar form)

The delay is 57 degrees

θ = −1ms delay

6.28ms period 2π

θ = −1.0 radian = -57.30

meaning

X = 5∠ − 57.30

x(t) = 5 cos (1000t − 57.30)

0 1 2 3 4 5 6 7 8 9 10

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Time (ms)

Vp = 5.0V

Delay = 57 deg

= 1 radian

Period = 6.28ms

x(t)

Page 15: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Phasor Representation for Impedance's

Resistors: V = IR

R → R

Inductors: V = LdI

dt

V = Ld

dt(ejωt

) = jωL ejωt = jωL ⋅ I

L → jωL

Capacitors: V =1

C ∫ I dt

V =1

C ∫ (e jωt); dt =

1

jωC e jωt =

1

jωC I

C →1

jωC

Page 16: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Simplification of RLC circuitsSame as resisitor circuits

Now with complex numbers

Example: Determine the impedance Zab.

-j100 + 300 = 300 - j100

(200) (300 − j100) =

1

200+

1

300−j100

−1

= 123.07 − j15.38

(200) + (123.07 − j15.38) = 323.07 − j15.38

(j300) (323.08 − j15.38) = 156.85 + j161.83

(100) + (156.85 + j161.83) = 256.85 + j161.83

Answer:

Zab = 256.85 + j161.83

100 200 300

-j100200j300

a

b

Page 17: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Example: Determine Zab

Solution

(10) + (−j60) = 10 − j60

(10 − j60) (j50) = 125.00 + j175.00

(125.00 + j175.00) + (40) = 165.00 + j175.00

(165.00 + j175.00) (30 − j20) = 31.42 − j14.98

answer:

Zab = 31.42 − j14.98

-j20 30

40

j50

10-j60

a b

Page 18: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Handout

Problem #2

a

b

20 j30 40

50 j60-j70

Page 19: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Circuit Analysis with Phasors

Same as DC

Now with complex numbers

Example: Determine y(t)

V0 = 10 sin (628t)

Step 1: Replace each term with phasor value

V0 → 0 − j10

R → 400

C →1

jωC= −j159Ω

Step 2: Solve ( Voltage division )

Y =

−j159

−j159+400 (0 − j10) = −3.436 − j1.368

y(t) = −3.436 cos(628t) + 1.368 sin(628t)

Page 20: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

ValidationUse CircuitLab

Input the circuit

Run a Time Domain simulation

The output (orange line) is easier tosee in polar form

Y = −3.436 − j1.368

= 3.698∠ − 1580

Page 21: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Example 2: 3-Stage RC Circuit

Step 1: Convert to phasor form

V0 → 0 − j10

ω = 100

C1 →1

jωC= −j50Ω

C2 →1

jωC= −j40Ω

C3 →1

jωC= −j33.33Ω

5 10 15

100 150 200

200uF 250uF 300uF+

-10 sin(100t)

V0 V1 V2 V3

-j50 -j40 -j33.33

Page 22: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Step 2: Write N equations for N unknowns

V0 = 0 − j10

V1−V0

5 +

V1

100 +

V1

−j50 +

V1−V2

10 = 0

V2−V1

10 +

V2

150 +

V2

−j40 +

V2−V3

15 = 0

V3−V2

15 +

V3

200 +

V3

−j33.33 = 0

5 10 15

100 150 200

200uF 250uF 300uF+

-10 sin(100t)

V0 V1 V2 V3

-j50 -j40 -j33.33

Page 23: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Step 3: Solve. First, group terms

V0 = −j10

−1

5V0 +

1

5+

1

100+

1

−j50+

1

10V1 +

−1

10V2 = 0

−1

10V1 +

1

10+

1

150+

1

−j40+

1

15V2 +

−1

15V3 = 0

−1

15V2 +

1

15+

1

200+

1

−j33.33V3 = 0

Place in matrix form

1 0 0 0

−1

5

1

5+

1

100+

1

−j50+

1

10

−1

10 0

0

−1

10

1

10+

1

150+

1

−j40+

1

15

−1

15

0 0

−1

15

1

15+

1

200+

1

−j33.33

V0

V1

V2

V3

=

−j10

0

0

0

Page 24: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Put into MATLAB and solve

a1 = [1,0,0,0];

a2 = [-1/5,1/5+1/100+1/(-j*50)+1/10,-1/10,0];

a3 = [0,-1/10,1/10+1/150+1/(-j*40)+1/15,-1/15];

a4 = [0,0,-1/15,1/15+1/200+1/(-j*33.33)];

A = [a1;a2;a3;a4]

1.0000 0 0 0

-0.2000 0.3100 + 0.0200i -0.1000 0 0 -0.1000 0.1733 + 0.0250i -0.0667

0 0 -0.0667 0.0717 + 0.0300i

B = [-j*10;0;0;0];

V = inv(A)*B

V0 0 -10.0000i

V1 -1.6314 - 8.0724i

V2 -3.4430 - 5.3506i

V3 -4.4982 - 3.0942i

Page 25: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

V0 0 -10.0000i

V1 -1.6314 - 8.0724i

V2 -3.4430 - 5.3506i

V3 -4.4982 - 3.0942i

meaning

V0 = 10 sin(100t)

V1 = −1.6314 cos (100t) + 8.0742 sin (100t)

V2 = −3.4430 cos (100t) + 5.5306 sin (100t)

V3 = −4.4982 cos (100t) + 3.0942 sin (100t)

Page 26: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

CircuitLab Simulation

Page 27: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

|Vin| |V1| |V2| |V3|

Calculated 10.0000V 8.2356V 6.3627V 5.4596V

CircuitLab 10.00V 8.231V 6.348V 5.435V

Page 28: Circuits II: Phasors & Complex Numbersbisonacademy.com/ECE111/Videos/09 Circutis II.pdf · j50 10-j60 a b. Handout Problem #2 a b 20 j30 40 50 j60-j70. Circuit Analysis with Phasors

Handout

Problem #3:

Convert to phasors

Write the voltage node equations

20 40

50

0.1H

0.2H

0.01F

8 cos(100t)

V0 V1 V2 V3

+

-