Circuitry of cardiovascular system and structure-function relationship

99
Circuitry of cardiovascular system and structure-function relationship Dr. Shafali

description

Circuitry of cardiovascular system and structure-function relationship. Dr. Shafali. Learning Objectives. Describe the organization of the circulatory system E xplain how the systemic and pulmonary circulations are linked physically and physiologically - PowerPoint PPT Presentation

Transcript of Circuitry of cardiovascular system and structure-function relationship

Page 1: Circuitry of cardiovascular system and structure-function relationship

Circuitry of cardiovascular system and structure-function relationship

Dr. Shafali

Page 2: Circuitry of cardiovascular system and structure-function relationship
Page 3: Circuitry of cardiovascular system and structure-function relationship

Learning Objectives

• Describe the organization of the circulatory system and its function

• Explain how the systemic and pulmonary circulations are linked physically and physiologically

• Understand the relationship between flow, velocity, and cross-sectional area

Page 4: Circuitry of cardiovascular system and structure-function relationship

Learning Objectives

• Understand the relationship between pressure, flow, and resistance in the vasculature .

• Define resistance and conductance. Understand the effects of adding resistance in series vs. in parallel on total resistance and flow.

Page 5: Circuitry of cardiovascular system and structure-function relationship

Functions of circulation

• Supply the tissues with nutrients• Removal of waste product of tissue

metabolism• Control blood flow to the skin and limbs to

regulate heat loss• Aids in body’s defence mechanisms by

delivering antibodies ,platelets and leucocytes to the affected area of the body.

Page 6: Circuitry of cardiovascular system and structure-function relationship
Page 7: Circuitry of cardiovascular system and structure-function relationship

General features of the cardiovascular system

Page 8: Circuitry of cardiovascular system and structure-function relationship
Page 9: Circuitry of cardiovascular system and structure-function relationship
Page 10: Circuitry of cardiovascular system and structure-function relationship
Page 11: Circuitry of cardiovascular system and structure-function relationship

120

Page 12: Circuitry of cardiovascular system and structure-function relationship

Pulmonary and systemic circulations

Page 13: Circuitry of cardiovascular system and structure-function relationship
Page 14: Circuitry of cardiovascular system and structure-function relationship

• Cardiac output and heart rate of the two circuits are equal, so stroke volumes are the same.

• Despite this, all pressures are higher in the systemic (peripheral) circuit. This shows that the vessels of the circuits are very different. The systemic circuit has much higher resistance and much lower compliance than the pulmonary circuit.

• The lower pressures mean that the work of the right ventricle is much lower.

• In addition, the lower capillary pressure protects against the development of pulmonary edema

Page 15: Circuitry of cardiovascular system and structure-function relationship
Page 16: Circuitry of cardiovascular system and structure-function relationship
Page 17: Circuitry of cardiovascular system and structure-function relationship

NORMAL BLOOD PRESSURE IN DIFFERENT PORTIONS OF CIRCULATORY SYSTEM

Page 18: Circuitry of cardiovascular system and structure-function relationship

• Local arteriolar dilation decreases arteriolar resistance, which increases flow and pressure downstream (more pressure and more flow get downstream).

• Local arteriolar constriction increases arteriolar resistance, and flow and pressure decrease downstream

Page 19: Circuitry of cardiovascular system and structure-function relationship
Page 20: Circuitry of cardiovascular system and structure-function relationship
Page 21: Circuitry of cardiovascular system and structure-function relationship

Types of blood vessels

1. Windkessel vessels/Distensible vessels- aorta ,pulmonary artery and their large branches.

2. Resistance vessels– arterioles ,metarterioles and pre capillary sphincter.

3. Exchange vessels—capillaries4. Capacitance vessels- venules and veins5. Shunt vessels or Thoroughfare vessels/A-V

shunts

Page 22: Circuitry of cardiovascular system and structure-function relationship
Page 23: Circuitry of cardiovascular system and structure-function relationship

COMPLIANCE OF BLOOD VESSELS• The compliance or capacitance of a blood vessel

describes the volume of blood the vessel can hold at a given pressure. Compliance is related to distensibility and is given by the following equation:

where C ,Compliance (mL/mm Hg) ,V Volume (mL), P Pressure (mm Hg)

• The equation for compliance states that the higher the compliance of a vessel, the more volume it can hold at a given pressure.

Page 24: Circuitry of cardiovascular system and structure-function relationship
Page 25: Circuitry of cardiovascular system and structure-function relationship
Page 26: Circuitry of cardiovascular system and structure-function relationship

• Compliance is essentially how easily a vessel is stretched;(and remain so)

• If a vessel is easily stretched, it is considered very compliant. The opposite is noncompliant or stiff.

• Elasticity is the inverse of compliance. A vessel that has high elasticity (a large tendency to rebound from a stretch) has low compliance.

Page 27: Circuitry of cardiovascular system and structure-function relationship

a. 15:1b. 10:1c. 1:1d. 1:10e. 1:20

15

750

Page 28: Circuitry of cardiovascular system and structure-function relationship

Which one of the following values is greater in the pulmonary circulation than in the systemic circulation?

a. The mean arterial pressureb. The arterial resistancec. The vascular complianced. The blood flowe. The sympathetic tone

Page 29: Circuitry of cardiovascular system and structure-function relationship

BLOOD DISTRIBUTION IN DIFFERENT PARTS OF CIRCULATORY SYSTEM

Page 30: Circuitry of cardiovascular system and structure-function relationship
Page 31: Circuitry of cardiovascular system and structure-function relationship

Blood Volume

• The largest blood volume in the cardiovascular system is in the systemic veins.

• The second largest blood volume is in the pulmonary system.

• Both represent major blood reservoirs.• The systemic veins and the pulmonary vessels

have very high compliance compared to the systemic arteries; this is primarily responsible for the distribution of blood volume.

Page 32: Circuitry of cardiovascular system and structure-function relationship

CHARACTERISTICS OF SYSTEMIC VEINS

• Systemic veins are about 20 times more compliant than systemic arteries.

• Veins also contain about 70% of the systemic blood volume and thus represent the major blood reservoir.

• In the venous system, then, a small change in pressure causes a large change in venous volume

Page 33: Circuitry of cardiovascular system and structure-function relationship
Page 34: Circuitry of cardiovascular system and structure-function relationship

Example-Hemorrhage

• Cause venous pressure to decreases. • Because veins are very compliant vessels, this

loss of distending pressure causes a significant passive constriction of the veins and a decrease in blood stored in those veins.

• The blood removed from the veins will now contribute to the circulating blood volume (cardiac output), a compensation for the consequences of hemorrhage.

Page 35: Circuitry of cardiovascular system and structure-function relationship

Volume loading (infusion of fluid)

• Increases venous pressure. The increased pressure distends the veins; this is a passive dilation.

• The volume of fluid stored in the veins increases, which means that some of the infused volume will not contribute to cardiac output.

• The large volume and compliant nature of the veins act to buffer changes in venous return and cardiac output.

Page 36: Circuitry of cardiovascular system and structure-function relationship

• Because of the high compliance of veins, large increases of pressure occur mainly with substantial increases of volume, as in congestive heart failure, or with massive sympathetic activity that reduces compliance.

• Similarly, substantial decreases of central venous pressure occur with large loss of volume.

• An exception is the effect of posture, which can lower central venous pressure, even though blood volume has not changed.

• This is because gravity causes blood to pool in the dependent veins.

The actual venous return to the heart is determined by the venous pressure gradient.

Page 37: Circuitry of cardiovascular system and structure-function relationship
Page 38: Circuitry of cardiovascular system and structure-function relationship

Total Cross-Sectional Area

Page 39: Circuitry of cardiovascular system and structure-function relationship

Velocity of the Bloodstream

• Velocity, as relates to fluid movement, is the distance that a particle of fluid travels with respect to time, and it is expressed in units of distance per unit time (e.g., cm/sec).

• Flow, is the rate of displacement of a volume of fluid, and it is expressed in units of volume per unit time (e.g., cm3/sec).

Page 40: Circuitry of cardiovascular system and structure-function relationship

• In a rigid tube, velocity (v) and flow (Q) are related to one another by the cross-sectional area (A) of the tube

Page 41: Circuitry of cardiovascular system and structure-function relationship

Total cross sectional area

Page 42: Circuitry of cardiovascular system and structure-function relationship
Page 43: Circuitry of cardiovascular system and structure-function relationship
Page 44: Circuitry of cardiovascular system and structure-function relationship

• The extent to which velocity is increased by stenosis is defined by the equation of continuity:

Page 45: Circuitry of cardiovascular system and structure-function relationship
Page 46: Circuitry of cardiovascular system and structure-function relationship

Factors influencing velocity• Cross sectional area of segment• Phase – Systolic phase ↑ velocity Diastolic phase ↓ velocity Viscosity - ↑viscosity ↓ velocity ↓ viscosity ↑ velocity

Applied physiology Velocity decreases in heart failure.

Page 47: Circuitry of cardiovascular system and structure-function relationship

Velocity of circulation

Page 48: Circuitry of cardiovascular system and structure-function relationship
Page 49: Circuitry of cardiovascular system and structure-function relationship
Page 50: Circuitry of cardiovascular system and structure-function relationship

• In most arterial locations, the dynamic component will be a negligible fraction of the total pressure.

• However, at sites of an arterial constriction or obstruction, the high flow velocity is associated with a large kinetic energy, and therefore the dynamic pressure component may increase significantly.

• Hence, the pressure would be reduced and perfusion of distal segments will be correspondingly decreased.

Page 51: Circuitry of cardiovascular system and structure-function relationship

Q. The greatest pressure decrease in the circulation occurs across the arterioles because(A) they have the greatest surface area(B) they have the greatest cross-sectional area(C) the velocity of blood flow through them is

the highest(D) the velocity of blood flow through them is

the lowest(E) they have the greatest resistance

Page 52: Circuitry of cardiovascular system and structure-function relationship

Q. A 25 year old graduate student while going for her lectures on her power bike skids off the road and sustains a fracture to her right leg. The fractured leg is bleeding profusely. At the ER, her blood pressure is determined to be low. Homeostatic mechanisms in stabilizing the blood pressure will include increases in total peripheral resistance. The site of highest resistance in the vasculature is in the;

A. ArteriolesB. VenulesC. CapillariesD. Large arteriesE. Veins

Page 53: Circuitry of cardiovascular system and structure-function relationship

Q. A healthy 32-year-old woman participates in a clinical study. Her blood volume is 5,200mL. Images are obtained to determine the volume of blood in various vessels in various body positions at rest and during exercise. While lying supine, which of the following vascular structures will most likely contain the largest portion of the total blood volume in this woman?

A. The left ventricleB. The right ventricleC. The pulmonary vasculatureD. Veins and venulesE. Vena cavaeF. CapillariesG. Arterioles

Page 54: Circuitry of cardiovascular system and structure-function relationship

A MD 2 student is performing experiments on blood flow in various vessels. She came to the conclusion that the velocity of blood flow is slowest in the capillaries. The most likely reason for this is:

A.Capillaries have the smallest cross-sectional areaB. Capillaries have the largest cross-sectional areaC. Decreased in blood viscosity in the capillariesD.Single stream of blood flowE. Decreased in turbulence

Page 55: Circuitry of cardiovascular system and structure-function relationship

• In order to maintain constant flow through a tube with varying diameters, which of the following would be true( where A1 and A2 represent cross sectional areas, and V1 and V2 represents the corresponding flow velocities)?

a. V1=V2b. V1=A1× V2c. A2= A1 ×V1/V2d. V1=A1 ×A2/V2e. V1 ×A2=V2 ×A1

Page 56: Circuitry of cardiovascular system and structure-function relationship

BLOOD FLOW

• Quantity of blood that passes a given point of circulation in a given period of time.

Units= ml/min • Normal blood flow is – streamline or

laminar(Silent) • Random flow in a vessel - Turbulent flow• In laminar flow , the velocity of flow is greater in

the center than the outer edges .

Page 57: Circuitry of cardiovascular system and structure-function relationship
Page 58: Circuitry of cardiovascular system and structure-function relationship

DEMONSTRATION OF LAMINAR & TURBULENT BLOOD FLOW

Page 59: Circuitry of cardiovascular system and structure-function relationship
Page 60: Circuitry of cardiovascular system and structure-function relationship

• Laminar flow is flow in layers.

• Laminar flow occurs throughout the normal cardiovascular system, excluding flow in the heart.

• The layer with the highest velocity is in the center of the tube.

• Turbulent flow is non layered flow.

• It creates murmurs. These are heard as bruits in vessels with severe stenosis.

• It produces more resistance than laminar flow.

Page 61: Circuitry of cardiovascular system and structure-function relationship
Page 62: Circuitry of cardiovascular system and structure-function relationship

CRITICAL VELOCITY • The maximal velocity at which the flow becomes

turbulent .• Expressed in REYNOLDS NUMBER .• R= PDV / • P= Density of blood (1), D = diameter of vessel ,

V= Velocity of blood flow (cm/sec) , = viscosity in poises

• When number is 2000 – TURBULENCE occurs .

Page 63: Circuitry of cardiovascular system and structure-function relationship

IN THE CLINIC – turbulent flow

• Usually accompanied by audible vibrations, detected with a stethoscope .

• When the turbulence occurs in the heart, the resultant sound is termed a murmur; when it occurs in a vessel, the sound is termed a bruit.

• E.g- In severe anemia, (1) the reduced viscosity of blood and (2) the high flow velocities associated with the high cardiac output .

• Blood clots, or thrombi, are more likely to develop in turbulent than in laminar flow.

Page 64: Circuitry of cardiovascular system and structure-function relationship

Velocity effects

Page 65: Circuitry of cardiovascular system and structure-function relationship

Axial streaming and flow velocity

Page 66: Circuitry of cardiovascular system and structure-function relationship

Viscosity

• is directly proportional to haematocrit,plasma prot, diameter of vessel(capillaries plasma skimming).

• And inversely proportional to temp ,flow rates.

Page 67: Circuitry of cardiovascular system and structure-function relationship

Shear Stress on the Vessel Wall

Flowing blood creates a force on the endothelium that is parallel to the long axis of the vessel. This shear stress (γ) is proportionate to viscosity (ɳ) times the shear rate (dy/dr), which is the rate at which the axial velocity increases from the vessel wall toward the lumen.

Page 68: Circuitry of cardiovascular system and structure-function relationship

IN THE CLINIC - Dissecting aneurysm• In certain types of arterial disease, particularly

hypertension, the subendothelial layers of vessels tend to degenerate locally, and small regions of the endothelium may lose their normal support.

• The viscous drag on the arterial wall may cause a tear between a normally supported and an unsupported region of the endothelial lining.

• Blood may then flow from the vessel lumen through the rift in the lining and dissect between the various layers of the artery. Such a lesion is called a dissecting aneurysm. It occurs most often in the proximal portions of the aorta and is extremely serious.

Page 69: Circuitry of cardiovascular system and structure-function relationship

WALL TENSION

• La Place law: States that tension in the wall of a cylinder (T) is equal to the product of the transmural pressure (P) and the radius (r) divided by the wall thickness (w):

T= P r/w

Page 70: Circuitry of cardiovascular system and structure-function relationship
Page 71: Circuitry of cardiovascular system and structure-function relationship

• Because of their narrow lumens (i.e., small radius), the thin-walled capillaries can withstand high internal pressures without bursting.

• This property can be explained in terms of the law of Laplace

Page 72: Circuitry of cardiovascular system and structure-function relationship
Page 73: Circuitry of cardiovascular system and structure-function relationship

IN THE CLINIC- Dilated heart

• If the heart becomes greatly distended with blood during diastole, as may occur with cardiac failure, it functions less efficiently.

• More energy is required (greater wall tension) for the distended heart to eject a given volume of blood per beat than is required for a normal undilated heart.

• The less efficient pumping of a distended heart is an example of Laplace's law, which states that the tension in the wall of a vessel or chamber (in this case the ventricles) equals transmural pressure (pressure across the wall, or distending pressure) times the radius of the vessel or chamber.

Page 74: Circuitry of cardiovascular system and structure-function relationship

Critical Closing Pressure

Page 75: Circuitry of cardiovascular system and structure-function relationship

Estimation of blood flow through various parts of the body

• Use of flow meters – (Direct method) In animals Electromagnetic flow meter

• Plethysmography• Ficks principle – Also used to measure Cardiac

output ,renal/coronary / cerebral blood flow can be estimated

• Indicator dilution technique• PAH clearance• By doppler study

Page 76: Circuitry of cardiovascular system and structure-function relationship

Plethysmography

Page 77: Circuitry of cardiovascular system and structure-function relationship

Poiseuille’s Law Describes the Relationship

Between Pressure and Flow

Page 78: Circuitry of cardiovascular system and structure-function relationship

• In electrical theory, Ohm's law states that the resistance, R, equals the ratio of voltage drop, E, to current flow, I.

Page 79: Circuitry of cardiovascular system and structure-function relationship
Page 80: Circuitry of cardiovascular system and structure-function relationship

Poiseuille Equation

Page 81: Circuitry of cardiovascular system and structure-function relationship
Page 82: Circuitry of cardiovascular system and structure-function relationship
Page 83: Circuitry of cardiovascular system and structure-function relationship
Page 84: Circuitry of cardiovascular system and structure-function relationship

EFFECT OF VESSEL DIAMETER ON BLOODFLOW

Page 85: Circuitry of cardiovascular system and structure-function relationship

Viscosity• Viscosity is a property of a fluid that is a

measure of the fluid’s internal resistance to flow.

• Viscosity is the frictional resistance in between the laminae of the flowing fluid .

• Frictional resistance is due to red cells and plasma proteins.

• The greater the viscosity, the greater the resistance.

• The prime determinant of blood viscosity is the hematocrit.

Page 86: Circuitry of cardiovascular system and structure-function relationship
Page 87: Circuitry of cardiovascular system and structure-function relationship
Page 88: Circuitry of cardiovascular system and structure-function relationship
Page 89: Circuitry of cardiovascular system and structure-function relationship

Q A 53-year-old woman is found, by arteriography, to have 50% narrowing of her left renal artery. What is the expected change in blood flow through the stenotic artery?

(A)Decrease to ½(B) Decrease to ¼(C) Decrease to 1/8

(D) Decrease to 1/16

(E) No change

Page 90: Circuitry of cardiovascular system and structure-function relationship

Hemodynamics - Summary

Page 91: Circuitry of cardiovascular system and structure-function relationship

• A 56 yr old female is admitted to the hospital for a hysterectomy. After surgery, she is transferred to the intensive care unit. Her mean systemic blood pressure is 100mmHg and her resting cardiac output is 4 L/min. Which of the following is total peripheral resistance in this patient?

a. 0.025(ml/min)/mmHgb. 0.025 mmHg/(mL/min)c. 40( ml/min)/mmHgd. 40 (mmHg/(mL/min)e. 4000 (ml/min)/mmHgf. 4000 (mmHg/(mL/min)

Page 92: Circuitry of cardiovascular system and structure-function relationship

Series Versus Parallel Circuits

• Series

Page 93: Circuitry of cardiovascular system and structure-function relationship
Page 94: Circuitry of cardiovascular system and structure-function relationship

Parallel

Page 95: Circuitry of cardiovascular system and structure-function relationship
Page 96: Circuitry of cardiovascular system and structure-function relationship
Page 97: Circuitry of cardiovascular system and structure-function relationship

3.6ml/min45ml/min90ml/min135ml/min160ml/min

Page 98: Circuitry of cardiovascular system and structure-function relationship

0.0625mm hg/l/min0.05 mm hg/l/min0.04 mm hg/l/min0.03 mm hg/l/min

Page 99: Circuitry of cardiovascular system and structure-function relationship

• The circuit below has an inflow pressure of 120 mmHg and an outflow pressure of 40 mmHg. Resistance is each of the vessel shown is 2mmHg/ml/min( R1=R2=R3=R4=2mmHg/ml/min).What is the total peripheral resistance of the circuit shown in the picture below?

a. 8 mmHg/ml/minb. 4 mmHg/ml/minc. 2 mmHg/ml/mind. 1 mmHg/ml/mine. 0.5 mmHg/ml/min