Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg

32
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, 26.05.2003 Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy)

description

Exploring atomic fragmentation with COLTRIMS (Cold Target Re coil Ion Momentum Spectroscopy). Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg. IPHE, Université de Lausanne, 26.05.2003. Experiment - The “Reaction-Microscope”. - PowerPoint PPT Presentation

Transcript of Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg

  • Christina DimopoulouMax-Planck-Institut fr Kernphysik, Heidelberg

    IPHE, Universit de Lausanne, 26.05.2003

    Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy)

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Momentum Spectroscopy: Principlelanding zone(detector)velocity,angletime-of-flight and landing position => initial velocity and angle i.e. initial momentum vector

  • electrons position sensitive multi-hitProjectile:Cold Target: supersonic atomic jet molecules clustersDetectors:recoilionsE-fieldRecoil Ion Momentum Spectroscopy single photons intense lasers charged particles t;x,y,z) ~ eVB-field ~ meVReaction Microscope

  • Ion Time-of-flight Ex. Multi-photonionisation of Ar

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Single Photons . . . Intense LaserTarget JetLaserIon DetectorElectron DetectorTi:Sa Laserphoton energy: 1.5 eV (T=2.7 fs)pulse length (FWHM): 30 fsintensity: Imax~1016 W/cm2repetition rate: 3 kHz

  • e1

    Ee

    Ee

    Weak Field:

    Photo Absorption(Einstein 1905)

    Ee ~

    Stronger Field:

    Multi-PhotonIonisation(Gppert-Meier 1931)

    Strong Field:

    Tunnel -Ionisation

  • Multi-photon Single Ionisationelectrons

  • Intense Laser: Single Ionisation =30 fs Ey(t)tI 1015 W/cm2 pulseT=2/=2.7 fs Drift momentum2.1.

  • Intense Laser : Double IonisationsequentialLarochelle et. al J. Phys. B31 (1998)Orders of magnitude difference due to e-e correlation1.1015 W/cm2non-sequential3.1015 W/cm2Moshammer et al. PRL 2000

  • Ne1+

    Ne2+

    1014

    Ion Signal (arb. units)

    Intensity W/cm2

    1015

    1016

  • Non-sequential Double IonisationKuchiev 1987Schafer et al. 1993Ne2+

  • shake - off

    Fittinghoff et al 1992

  • coll. tunnelling

    Eichmann et al 1999

  • e1,e2

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Ion Induced femtosec FieldsExample: Electron Capture

  • Electron Capture: Precision Spectr.

  • Electron Capture: Precision Spectr.capture into n=4excellent resolution: 0.7eV FWHM excellent precision: 3-100 meVmany states resolved simultaneouslyno selection rules

  • 10

    20

    30

    40

    50

    60

    70

    0,0

    0,1

    0,2

    0,3

    0,4

    Q-value / eV

    scattering angle

    Q

    / mrad

    10

    20

    30

    40

    50

    60

    70

    0

    500

    1000

    1500

    Projectile excitation

    x10

    2s 3

    l

    2p 3

    l

    2s 4

    l

    1,3

    L

    counts

    Q value / eV

    Scattering angle / mrad

    Q-value / eV

    counts

    Q-value / eV

  • FWHM 0.72 eV

    2s4d

    1

    D

    2s4d

    3

    D

    2s4p

    1

    P

    2s4s

    1

    S

    2s4s

    3

    S

    counts

    Q value / eV

    Q-value / eV

    counts

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Studies with Highly Charged IonsPrecision Spectroscopy Dynamics of formation: many-electron flux (correlated?)3. Rearrangement processesQuestions:Formation of hollow atomst 1 fs

  • The HITRAP Reaction Microscope Increased Acceptance and Q-Value Resolution Coincident detection of ions, electrons and photons

  • Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Laser Assisted Electron CaptureLaser & ion induced fields combinedLaserI ~ 1013 W/cm2, ~ ns

  • -03 0 0.3Laser Assisted Electron CaptureIntensity1013 W/cm2Ion Longitudinal MomentumImpact ParameterIon Longitudinal Momentum+ pdrift (t0)

  • 10

    20

    30

    40

    50

    60

    70

    0,0

    0,1

    0,2

    0,3

    0,4

    Q-value / eV

    scattering angle

    Q

    / mrad

    Scattering angle / mrad

    Q-value / eV

  • -03 0 0.3Laser Assisted Electron CaptureImpact ParameterIon Longitudinal MomentumT.Kirchner PRL 2002+ pdrift (t0)-03 0 0.3Intensity1013 W/cm2Ion Longitudinal Momentum-0.3 0 0.3

  • 10

    20

    30

    40

    50

    60

    70

    0,0

    0,1

    0,2

    0,3

    0,4

    Q-value / eV

    scattering angle

    Q

    / mrad

    Scattering angle / mrad

    Q-value / eV

  • -03 0 0.3Laser Assisted Electron CaptureImpact ParameterIon Longitudinal MomentumT.Kirchner PRL 2002-03 0 0.3Intensity1013 W/cm2Ion Longitudinal Momentum-0.3 0 0.3

  • Scattering angle / mrad

    Q-value / eV

    counts

    Q-value / eV

  • Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Sub-attosecond Ion Induced FieldsHeisenbergs as microscopeInstantan of the initial two (many)-electronwave function

  • Sub-attosecond Ion Induced FieldsHeisenbergs as microscope

  • R. Moshammer, H. Kollmus, D. Fischer, B. Feuerstein, C. Hhr, A. Dorn, C.D. Schrter, A. Rudenko, C. Dimopoulou, K. Zrost, V. Jesus, J. R. Crespo Lopez-Urrutia, A. Voitkiv, T. Kirchner, J. UllrichMax-Planck Institut, HeidelbergH. Rottke, C. Trump, B. BapatE. Eremina, W. SandnerUMR, RollaM. Schulz, R.E. Olson, D. MadisonMax-Born Institut, Berlin Navrangpura, IndiaGSI, DarmstadtS. Hagmann, R. Mann

  • Electron Capture: Precision Spectr.

  • Curve Crossing Model

    c = Q / 2E Half coulomb angle

  • Ne7+ + He

    Ne6+(2s4) + He+

    Ne6+(2p3) + He+

    Ne6+(2s3) + He+

    r

    E

    Q-value / eV

    E

  • Q-value / eV

    c

    way in

    way out

    Scattering angle / mrad

  • Curve Crossing Model

    c = Q / 2E Half coulomb angle

  • Ne7+ + He

    Ne6+(2s4) + He+

    Ne6+(2p3) + He+

    Ne6+(2s3) + He+

    r

    E

    Q-value / eV

    E

  • Recoil Ion Momentum Spectroscopy

  • Reaction Microscope

  • Intense Laser: Single Ionisation =30 fs Ey(t)tI 1015 W/cm2 pulseT=2/=2.7 fs Drift momentum1.2.

  • tunnelling

    Pion =-Pe 0

    e1

  • Rescattering: DynamicstEy(t)y(t)e1Ne1+e2e1Ne2+time delayt0