Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen...

50
Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin

Transcript of Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen...

Page 1: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Vibrational properties of graphene and graphene

nanoribbons

Christian ThomsenInstitut für Festkörperphysik

TU Berlin

Page 2: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Topics

Nanoribbon vibrations

Graphene under uniaxial strain

Graphene nanoribbons under uniaxial strain

TERS: individual NTs and small bundles

Page 3: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Topics

Nanoribbon vibrations

Graphene under uniaxial strain

Graphene nanoribbons under uniaxial strain

TERS: individual NTs and small bundles

Page 4: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Graphite

Graphene

Nanoribbon strip of graphene

• „quasi 1D-crystal“ periodic in 1 direction

2D-crystal single graphite plane periodic in x-y-plane

3D-crystal sp2-hybridization stacked planes

What are nanoribbons?

Page 5: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Potential for applications

high mobility

easy to prepare

band-gap engineering

Page 6: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

ClassificationZigzagArmchair

width (number of dimers) edge type („chiral” NR not considered here)

N-AGNR N-ZGNR

Page 7: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Wave propagation

: continuous

: quantized

Page 8: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Brillouin zone

Brillouin zone of nanoribbons:

N discrete lines (N: number of dimers)

6 modes for each line

here: 10-AGNR and 10-ZGNR

Page 9: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Electronic properties: Armchair NRs

=> three families of AGNRs, N=3p, N=3p+1, N=3p+2

Son, Cohen, Louie PRL 97, 216803 (2006)

Page 10: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Electronic properties: Zigzag NRs

band gap opens for anti-ferromagneticground state

metallic if spin is notconsidered

Son, Cohen, Louie Nature 444, 347 (2006)

Page 11: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Calculational details

• Siesta: www.uam.es/siesta

• Kohn-Sham self consistent density functional method

• norm-conserving pseudopotentials

• strictly confined atom centered numerical atomic orbitals (NAO) as basis functions

• phonon calculation: finite differences to obtain force constant matrix

Page 12: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Fundamental modes & “overtones”

Interpretation as fundamental modes and overtones

Nanoribbons have 3N modes

E2g corresponds to 0-LO and 0-TO

A wavelength and a wavevector kperp can be assigned to overtones

here: 7-AGNR

||

Page 13: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Width dependence (armchair)

E2g

Page 14: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

LO Softening (armchair)

family dependence also in phonon spectrum

strong softening of the LO phonon in 3p+2 ribbons

Page 15: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Mapping of the overtonesgraphene phonon dispersion:

AGNR KM

ZGNR M

Mohr, CT et al., PRB 76, 035439 (2007)

Mohr, CT et al., PRB 80, 155418 (2009)

Grüneis, et al. PRB 65,155405 (2002)

Page 16: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Mapping of the overtonesMapping of a 15-AGNRand a 8-ZGNR onto the graphene dispersion

Mohr, CT et al., PRB 76, 035439 (2007)

Mohr, CT et al., PRB 80, 155418 (2009)

Grüneis, et al. PRB 65,155405 (2002)

Page 17: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Graphite dispersion

Double resonance:

Grüneis, et al., PRB 65, 155405 (2002)

Reich and CT, Phil. Trans. 362, 2271 (2004)

Inelastic x-ray scattering:

Maultzsch, CT, et al., PRL 92, 075501 (2004)

Mohr, CT et al., PRB 76, 035439 (2007)

unfolding nanoribbons:

Gillen, CT et al., PRB 80, 155418 (2009)

Gillen et al., PRB in print (2010)

Page 18: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Phonon dispersion

Odd N: modes pairwise degenerate at X-point (zone-folding)

4th acoustic mode („1-ZA“)(rotational mode)

Even N: modes pairwise degenerate at X-point

4th acoustic mode („1-ZA“)

compare: Yamada et al, PRB, 77, 054302 (2008))

Page 19: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Topics

Nanoribbon vibrations

Graphene under uniaxial strain

Graphene nanoribbons under uniaxial strain

TERS: individual NTs and small bundles

Page 20: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Mohiuddin, Ferrari et al,. PRB 79, 205433 (2009)Huang, Heinz et al., PNAS 106, 7304 (2009)

Uniaxial strain in graphene

Polarized measurements reveal orientation of graphene sample

Page 21: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Calculational details

• www.quantum-espresso.org

• Kohn-Sham selfconsistent density functional method

• norm-conserving pseudopotentials

• plane-wave basis

• phonon calculation: linear response theory / DFBT(Density Functional Perturbation Theory)

Page 22: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Method

Page 23: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Electronic band structure under strain

Page 24: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Dirac cone at K-point

strains shift the Dirac cone but don’t open a gap

Page 25: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Phonon band structure under strain

Page 26: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Raman spectrum of graphene

Page 27: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Shift of the E2g -mode

shift rate independent of strain direction

Page 28: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Shift of the E2g -mode

Page 29: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Ni et al., ACS Nano 2, 2301 (2008)Mohiuddin, Ferrari et al. PRB 79, 205433 (2009)Huang, Heinz et al., PNAS 106, 7304 (2009)

Comparison with experiments

excellent agreement with Mohiuddin/Ferrari

Mohr, CT, et al., Phys. Rev. B 80, 205410 (2009)

Page 30: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

D and 2D mode: Double resonance

The particular band structure of CNTs allows an incoming resonance at any energy.

The phonon scatters the electron resonantly to the other band.

A defect scatters the electron elastically back to where it can recombine with the hole.

qphonon varies strongly with incident photon energy.

CT and Reich, Phys. Rev. Lett. 85, 5214 (2000)

V 2

p h

E

k

Page 31: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Double resonance: inner and outer

defect- induced D-mode

Page 32: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Strained w/ diff. polarizations

Page 33: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Topics

Nanoribbon vibrations

Graphene under uniaxial strain

Graphene nanoribbons under uniaxial strain

TERS: individual NTs and small bundles

Page 34: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

NR-Band gap under strain

band gap for N=13, 14, 15 AGNRs

linear dependence for small strains

Page 35: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

G+ and G- modes as fct. of strain

N=7

Page 36: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

G- for different NR widths

approaching the dependence of graphene

Page 37: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

approaching the dependence of graphene

G+ for different NR widths

Page 38: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Topics

Nanoribbon vibrations

Graphene under uniaxial strain

Graphene nanoribbons under uniaxial strain

TERS: individual NTs and small bundles

Page 39: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Tip-enhanced Raman spectra

find specific nanotubes, previously identified with AFM

observe the RBM as a function of position along the nanotube

study frequency shifts as a function of sample-tip distance

Hartschuh et al., PRL (2003) and Pettinger et al., PRL (2004)

N.Peica, CT, J. Maultzsch, JRS, submitted (2010)

N. Peica, CT et al., pss (2009)

Page 40: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

TERS setup

Laser wavelength 532 nm

Page 41: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Tip-enhanced Raman spectra

small bundles of individual nanotubes on a silicon wafer

Page 42: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Tip-enhanced Raman spectra

small bundles of individual nanotubes on a silicon wafer

Page 43: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Chirality: Raman spectra

100 200 1400 1500 1600

Inte

nsity

(ar

b. u

nits

)

Raman Shift (cm-1)

HEM

D

RBM

SWNT The Raman spectrum is divided into

• radial breathing mode

• defect-induced mode

• high-energy mode

21

RBM Cd

C

Page 44: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Tip-enhanced Raman spectra

small bundles of individual nanotubes on a silicon wafer

N.Peica, CT, J. Maultzsch, Carbon, submitted (2010)

Page 45: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Sample-tip distance dependence

enhancement factors between 2 103 and 4 104

Page 46: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

RBM spectra

RBM can be observed even if not visible in the far-field spectrum

identified (17,6), (12,8), (16,0), and (12,5) semiconducting NTs from experimental Kataura plots

Popov et al. PRB 72, 035436 (2005)

Page 47: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Frequency shifts in TERS

shifts of 5 cm -1 observed

Page 48: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Frequency shifts in TERS

possible explanation of the small shifts are

• in terms of the double-resonance Raman process of the D and 2D modes (CT, PRL 2000)

• deformation through the tip approach

• sensitive reaction of the electronic band structure

Page 49: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Conclusions

• Vibrations of graphene nanoribbons• mapping of overtones on graphene (graphite)

dispersion

• Uniaxial strain in graphene• comparison to experiments

• TERS specta of individual NTs• large enhancement factors

• NTs identified

• possible observation of small frequency shifts

Page 50: Christian Thomsen Vibrational properties of graphene and graphene nanoribbons Christian Thomsen Institut für Festkörperphysik TU Berlin.

Christian Thomsen

Acknowledgments

Janina Maultzsch Technische Universität Berlin

Nils Rosenkranz Technische Universität Berlin

Marcel Mohr Technische Universität Berlin

Niculina Peica Technische Universität Berlin