Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger...

55
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 1 Cryopumping – Basics and Applications Chris Day Forschungszentrum Karlsruhe, Institute for Technical Physics Nuclear Fusion Programme Final version

Transcript of Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger...

Page 1: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 1

Cryopumping – Basics and Applications

Chris Day

Forschungszentrum Karlsruhe, Institute for Technical PhysicsNuclear Fusion Programme

Final version

Page 2: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 2

Outline

Introduction.

Cryopumping mechanisms (condensation, sorption).

Cryopump sub-systems and issues in their design.

Commercial cryopumps.

Tailor-made cryopumps.

Examples.

Page 3: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 3

Site of Forschungszentrum Karlsruhe

Institute of Technical Physics

FZK: ~ 3500 people

FUSION Programme:~ 220 FTE

FZK features three Research Areas:- Structure of Matter(neutrino mass, ANKA)

- Key Technologies(micro, nano, grid)

- Energy (fusion, fission, biomass)

FZK is responsible for 2/3 of the EU Contributions to ITER.

Page 4: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 4

Pump classification (1)

Sliding VaneRotary Pump

MolecularDrag Pump

TurbomolecularPump

Fluid EntrainmentPump

VACUUM PUMPS(METHODS)

ReciprocatingDisplacement Pump

Gas TransferVacuum Pump

DragPump

EntrapmentVacuum Pump

Positive DisplacementVacuum Pump

KineticVacuum Pump

RotaryPump

DiaphragmPump

PistonPump

Liquid RingPump

RotaryPiston Pump

RotaryPlunger Pump

RootsPump

Multiple VaneRotary Pump

DryPump

AdsorptionPump

Cryopump

GetterPump

Getter IonPump

Sputter IonPump

EvaporationIon Pump

Bulk GetterPump

Cold TrapIon TransferPump

GaseousRing Pump

TurbinePump

Axial FlowPump

Radial FlowPump

EjectorPump

Liquid JetPump

Gas JetPump

Vapor JetPump

DiffusionPump

DiffusionEjector Pump

Self PurifyingDiffusion Pump

FractionatingDiffusion Pump

Condenser

SublimationPump

mechanical pumps:

Rotary vane, screw, scroll, rootsmomentum transfer:

Diffusion, turbo

Capture vacuum pumps:

Non-continuous ion, getter, cryo

Page 5: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 5

1E-111E-91E-71E-51E-31E-11E+11E+31E+5

Pressure (Pa)

1E-111E-91E-71E-51E-31E-11E+11E+31E+5

PISTON,DIAPHRAGM

ROTARY VANE

ROOTS

DIFFUSION

TURBOMOLECULAR

GETTER

CRYOGENIC

Pump classification (2)

For a cryopump in the applicable pressure range (molecular flow regime)holds: Pumping Speed S = constant.

But:

Page 6: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 6

Typical pumping speed curve shape

log (Pressure inside the pump)

molecularflow regime

transitionalflow regime

Kn= =10

Break-Down

mean free pathpump dimension

At constant temperature, but variable

Gas flow

Page 7: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 7

Cryopumping – How does it work?

Definition according to ISO:

……A cryopump is a vacuum pump which captures the gas by surfaces cooled to temperatures below 120 K …..

Pumping of helium, hydrogen?

Cryopumps exploit the most elementary form of producing vacuum by lowering the temperature. They are capture pumps which remove gas molecules by sorption or condensation/re-sublimation.

4. 2K 20K 27K 77K

LHe LH2 LNe LN2

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E-1 1E+0 1E+1 1E+2 1E+3Temperature (K)

Sat

urat

ion

Pre

ssur

e(P

a)

³He

H2

D2

T2

Ne

N2

Ar

CO

O2

CH4

CO2

H2O

He

Page 8: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 8

Limits of Cryocondensation: Hydrogen as example

1E-16

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

1E+2

3 3.5 4 4.5 5 5.5 6

Temperature (K)

Sat

urat

ion

pres

sure

(Pa)

H2 HD HT D2 DT T2

Thermodynamic equilibrium Net pumping speed of Zero

Rule of thumb in design: oversaturation by two decades in pressure

Example H2:Achievement of p=10-4 Pa (T(eq)= 4.2 K) requires 3.6 K (p(eq)=10-6 Pa)

For D2: peff(T=4.2K)=10-6 Pa < 10-4 Pa

not okay for H2 !

okay for D2 !

Efficiency of cryocondensation is close to the theoretical maximum, i.e. practically all particles hitting the pumping cryosurface are pumped.

stainless steelSS / Cu / Al

Build-upOf ice-layer

Page 9: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 9

Use of Cryosorption to pump H2 and He @ 4.2 K

Pumping of the gas via physisorption at the cold cryosorbent.The pumping effect is given by the porosity of the material (pore size distribution rather than BET surface).

Zeolites (molecular sieve)

Activated charcoal

Sintered metal

Porous ceramics

Condensed gas frost (most commonly argon)

The porous materials are bonded to the cooled surfaces (by means of a glue/cement/braze/…).

Additional design parameter: Not only pressure and temperature, but also the gas load saturation effects.

stainless steelSS / Cu / Al

stainless steelSS / Cu / Al

Charcoal is the Standard material

Page 10: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 10

Operation point of the cryosorption pump is given by the sorption isotherms

The efficiency of cryosorption is lower than for condensation (you need more hits before the particle becomes immobilized), but the achievable equilibrium pressures are always lower, e.g. H2: p=10-4 Pa: T(eq)=20 K.

0

5

10

15

20

25

30

1E-04 1E-03 1E-02 1E-01

Pressure (Pa)A

dsor

bed

Vol

ume

(cm

³/g)

10 K

hydrogen on charcoal helium on charcoal

Page 11: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 11

Cryosorbent Material Assessment

Refrigerator cold head allows for all temperatures between 3.5 K and 90 K

Sample holder with activated charcoal

Qualification of new Materials and Quality Assurance of different Manufacturing Batches

Page 12: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 12

Microscopic views

0

100

200

300

400

500

600

0 20 40 60 80 100 120

Pressure (kPa)

Ads

orbe

d V

olum

e (c

m³ S

TP/g

)

D2 23.7 K H2 23.7 K

D2 40 K

H2 40 K

D2 77.4 K

H2 77.4 K

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 5 10 15 20 25 30 35 40

Pore Width (Å)

d(V

ads)

/dw

(cm

³/Å/g

)

this work, 3 samples

Belgian Army NBC, 4 samples

Granular, highly activated, hydrophobic activated charcoal (1.2 mm)

Cryosorbent Material Assessment – Example charcoal

H2, D2

1 mm

10 µm

100 µm

Pressure (Pa)

Gas

Loa

d ((

Pa·

m³)

/cm

²)

1E-5

1E-4

1E-3

1E-2

1E-1

1E-7 1E-6 1E-5 1E-4

He

H2

D2

Type I sorptionisotherm

Page 13: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 13

1E-02 1E-01 1E+00 1E+01

Spec. Gas Load [(mol He)/(m² coated surface)]

0

1

2

3

4

5

6

Spec

. Pum

p. S

peed

[L/(s

cm

²)] DEGUSORB SCII GFF30 ROTH.

17 mol He/kg carbon 100 mol/kg 25 mol/kg 4 mol/kg Mass specific

He capacities:

Choice for the ´best´ cryosorption material: He @ 5K

The optimum material is not only given by sorption issues,But the complete panel set-up has to be taken into account.The coating may lead to different conclusions for powders/granules/pellets.

material aspects

sorption data,equilibria,pore distribution

application aspects

compatibility with bonding agent,thermal cycling,coating technique

optimum panel

best (dynamic)pumping performancefor H2, D2 , He and their mixtures at 5K

+ =

What counts is the surface-related capacity, not the mass-related value.

Cyl. Pellets; Granules; powders

Page 14: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 14

The elementary features of a cryopump set-up: Baffles + shields, pumping panels, and cryosupply

Tailor-madein-vessel cryopump,4.4 m x 1.5 m LHe @ 4.2 KS=400 m³/s (H2)

Tailor-madeITER Torus cryopump,With integrated valve.Valve DN 800, SCHe (4 bar) @ 4.2 KS=100 m³/s (all gases)

Commercial Refrigerator-Cryopump,Up to about 60 m³/s,DN 1200,Cryogen-free

Page 15: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 15

Cryopump elements are given by cryogenic issues

.min=Δ+++= HQQQQ RadGFtot&&&&&

)( 42

4111212 TTACQ −⋅⋅=&

211221

122112 )1()1(1 ϕϕεε

ϕεεσ⋅⋅−⋅−−

⋅⋅⋅=C

1. Solid heat conduction

2. Residual gas heat conduction12QtQRad&& ⋅=

3. Thermal radiation 4. Phase change enthalpy

TALQF Δ⋅∼ ·/λ&

Source: Haefer

log (Pressure)

MOLECULAR FLOW REGIME

CONTINUUMFLOW REGIMETRANSITION

CONVECTIVEFLOW REGIME

Kn=10 Kn=1 Kn=0,1 Kn=0,01 Kn=0,001

Page 16: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 16

Consequences

Cryopumps can in principle provide the maximum theoretical (´black hole´) pumping speed Sid, if the cold surfaces are installed directly in the vacuum recipient (i.e. without any conductance limiting flanges). However, the baffles which are needed due to cryogenic reasons reduce thepumping speed to the practically achievable value. That reduction is beingdescribed by the capture probability c<1:

The ideal pumping speed is reduced for a real pump- first by the limited transmission probability w of a particle on the way from the

vessel volume on the pumping surface- then by a non 100% sticking probability α of a particle at the pumping surface.

AM

TRcScS id ⋅⋅⋅⋅

⋅=⋅=π2

That means, in addition to the usually given values for molecular mass M of the gas being pumped, temperature T, and the inlet cross-section A:The essential design task is to tailor the capture probability function c max; Different pump designs should be judged via the parameter c, and not directly via S.

Page 17: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 17

Contributions to c

Transmission probability w of the particle from pump inlet to the pumping surface 0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

Temperatur (K)

He

H2

N2,Ne

D2

Sticking coefficient α

0.001 0.01 0.1 1Gasbeladung (Pa m³/cm²)

0

0.5

1

1.5

2

12.510

7.55

Tempe

ratur

(K)

·

Helium

Strong gas species dependency

Pum

ping

Spe

ed (a

rbitr

ary

units

)

Stic

king

coe

ffici

ent

1111−+≈

wc α

Geometry influence (constant)

Influence of the pumping mechanism (big or small values, forsorption a complicated function of the pumping history)

Separation of the contributions for a simple geometry:

Source: Haefer

Page 18: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 18

Liquid He bath cryopump

LHe Bath

Pumppanel 1

Pumppanel 2(Ar frost Spraysystem)

Inlet-baffle(blackened)

JET

Page 19: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 19

The commercial refrigerator cryopump

GM-Prozess

2-stage GiffordMcMahonrefrigeratorwith closedcompressed helium circuit.

See your hand-outs of the talk

On Cryogenics by Philippe Lebrun

Page 20: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 20

Vacuum chamber

Inlet baffle (80 to 100K),in contact with the first cold head stage

Pumping surface (15 K), in contact with the second cold head stage, with condensation on front and sorption on back

Thermal radiation shield

Connection to the forepumps (only for regeneration)

Source: Müller, Leybold

The commercial refrigerator cryopump: set-up

Page 21: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 21

The commercial refrigerator cryopump: parametersWater

Sid=14.9 l/(s·cm²) @ 300 Kw=1, α=1 c=1

S=Sid=14.9 l/(s·cm²) (Black hole pumping speed)

Nitrogen

Sid=11.9 l/(s·cm²) @ 300 KW=0.25, α=1 c=0.25S=0.25·Sid=3 l/(s·cm²)

Cryosorbed Gas

H2: Sid=44.6 l/(s·cm²) @ 300 KHe: Sid=31.5 l/(s·cm²) @ 300 K

H2: w=0.25, α=0.6 c=0.21S=0.21·Sid=9.3 l/(s·cm²)

He: w=0.25, α=0.3 c=0.16S=0.16·Sid=5 l/(s·cm²)

Page 22: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 22

Standardised criteria for refrigerator-cooled cryopumps

1. Pumping speed2. Maximum throughput3. Pumping capacity:

The pumping speed decreases with an increasing amount of pumped gas. Especially for adsorbed gases, the pumping speed asymptotically reaches zero. To have a comparable and reproducible measure, the pumping capacity is defined as the quantity of gas, which has been pumped until pumping speed has been reduced to 50% of the initial value. The test for determining the capacity shall be run at constant throughput, sothat a decrease of 50% in pumping speed is indicated by doubling the pressure.

4. Ultimate pressure (of the baked pump, after 24 hours).5. Cool-down time (from ambient to 100/20 K). 6. Crossover:

The crossover is defined by the maximum amount of nitrogen gas, which can be admitted into the pump in a time interval of 3s, while the second stage remains at temperatures below 20 K.

Example: DN 32010000 L/s (water)

3000 L/s (air)

~ 2 Pam³/s (Ar)

105 Pam³ (Ar)100 Pam³ (H2)10 Pam³ (He)

10-10 Pa2h

40 Pam³

Page 23: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 23

What a refrigerator cryopump system comprises

The cryopump itself.

The He compressor (one compressor may serve several cryopumps).

The cooling system of the He compressor.

The helium lines (to connect compressor and pump, forward and back).

Power supply (for compressor and pump).

Sensors (Temperature, pressure).

Controller (automatic regeneration etc.).

A backing pump system for regeneration.

Page 24: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 24

Regeneration

Regeneration of the cryopumps:- becomes necessary, when the pumping speed has decreased to an inacceptable

level (which indicates the achievement of the saturation limit). - may become necessary even before that point, due to safety reasons when

flammable gas has been pumped (hydrogen for example). An air inbreak maycause explosive gas mixtures (oxy-hydrogen explosion), which has to be avoidedby a strict inventory limitation so that even under the safety event theconcentrations stay below the explosion limit.

Regeneration means: - Automatic heating or purging with warm gas, Gasrelease (Sublimation, Desorption) and pump-down of the gas via the backing system, or:- complete exchange of the cold surface unit.

Page 25: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 25

Regeneration: Sublimation vs. desorption re-adsorption

Panel-T (K)

Rel

ease

d G

as L

oad

(%)

0

10

20

30

40

50

60

70

80

90

100

80 100 120 140 160 180 200 220 240 260 280 300

Baffle-T (K)

Sublimation

Gas release characteristic

Example CO2

Page 26: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 26

10 50 90 130 170 210 250 290Panel Temperature (K)

0

20

40

60

80

100

Rel

ease

d G

as (%

)

Regeneration: Typical desorption curves

Page 27: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 27

Other operational effects in cryosorption pumping

- A poisoning effect of the sorbent may appear, i.e. a reduction of the nominal sorption pumping speed due to accumulation of gas species which are not regenerated within the normal regeneration pattern (all strongly sorbed gases such as heavy hydrocarbons). This effect can be mitigated by a suitable choice of the cryosorbent (Ar frost) or by provision of ´extra´ regeneration methods.

- Mobility of the sorbed particles plays a role. The capacity of the pump can beincreased by defined temperature peaks, which give the sorbed particle at the surface enough energy to migrate deeper into the pores.

- Fractionation of the components when a mixture is being pumped is possible due to the different pumping mechanisms.

Page 28: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 28

Accumulated Poisoning Gas Load (Pa·m³/cm²)

Pum

ping

Spe

ed (l

/(s ·

cm²)

)

0

0.5

1

1.5

2

2.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

D2-Base/He=90/10+water

D2-Base/He=90/10+hexane

D2-Base/He=90/10+octane

H2-Base/He=95/5+water

H2-Base/He=95/5+hexane

H2-Base/He=95/5+octane

Effects 1: Poisoning

Page 29: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 29

Other operational effects in cryosorption pumping

- A poisoning effect of the sorbent may appear, i.e. a reduction of the nominal sorption pumping speed due to accumulation of gas species which are not regenerated within the normal regeneration pattern (all strongly sorbed gases such as heavy hydrocarbons). This effect can be mitigated by a suitable choice of the cryosorbent (Ar frost) or by provision of ´extra´ regeneration methods.

- Mobility of the sorbed particles plays a role. The capacity of the pump can beincreased by defined temperature peaks, which give the sorbed particle at the surface enough energy to migrate deeper into the pores.

- Fractionation of the components when a mixture is being pumped is possible due to the different pumping mechanisms.

Page 30: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 30

Temperature (K)

Pre

ssur

e (P

a)

1E-5

1E-4

1E-3

1E-2

1E-1

0 20 40 60 80 100

Sublimation DesorptionMobility

dT/dt = 0.116 K/s q(0) = 0.0025(Pa·m³)/cm²

Effects 2: Mobility

Example D2

Page 31: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 31

Other operational effects in cryosorption pumping

- A poisoning effect of the sorbent may appear, i.e. a reduction of the nominal sorption pumping speed due to accumulation of gas species which are not regenerated within the normal regeneration pattern (all strongly sorbed gases such as heavy hydrocarbons). This effect can be mitigated by a suitable choice of the cryosorbent (Ar frost) or by provision of ´extra´ regeneration methods.

- Mobility of the sorbed particles plays a role. The capacity of the pump can beincreased by defined temperature peaks, which give the sorbed particle at the surface enough energy to migrate deeper into the pores.

- Fractionation of the components when a mixture is being pumped is possible due to the different pumping mechanisms.

Page 32: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 32

Pumping Time (min)

Con

cent

ratio

n (%

)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110

He Mixture I

H2 Mixture I

D2 Mixture II

He Mixture II

Effects 3: Fractionation (1)

Page 33: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 33

Temperature (K)

Pre

ssur

e (P

a)

1E-4

1E-3

1E-2

1E-1

0 20 40 60 80 100

He+D2

D2

dT/dt = 0.052 K/s q(0) = 0.0025(Pa·m³)/cm²

Effects 3: Fractionation (2)

Page 34: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 34

Panel Temperature

with relevanttemperature mobilityeffects

condensed gas

stronglysorbed gas

weaklysorbed gas

Principle pumping speed curves in molecular flow as a function of temperature

At constant throughput/pressure

Page 35: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 35

Advantages of Cryopumping (1)

Cryopumps produce the biggest pumping speeds of all vacuum pumps:up to 60 m³/s (nitrogen) via DN1200 for commercial pumps (compare with maximum 3 m³/s via DN 300 using turbopumps)custom-made cryopumps can provide very high pumping speed viathe smallest connection area needs (e.g. 100 m³/s (Helium) via DN750).custom-made cryopumps can be installed in situ.

Cryopumps are absolutely oil-free and generate a clean vacuum completely free ofoil or hydrocarbons optimal for clean applications.

Cryopumps do not have any movable parts

No bearing and shaft seal problems (maintenance aspects, lubrication aspects). Stable against electrical blackouts (if cryogen-based).High reliability and no problem with dust and particles. Compatible with strongest safety requirements, cryogen-based cryopumps

are excellent for areas with difficult maintenance access (´build in and forget´).

Cryopumps can be installed in all directions.

Page 36: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 36

No backing pump system is needed during operation of the cryopump.

Cryopumps are the pumps of choice for pumping of water/steam or wet gases(extremely high pumping speeds and no corrosion problems).

The pumping speed of cryopumps increases for light gases.

Cryopumps are operable over a wide pressure range.

Cryogen-based cryopumps do not need any electrical power supply at all (which isgood for operation under high magnetic fields) and are completely vibration-free.

Advantages of Cryopumping (2)

Page 37: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 37

Combination of Refrigerator/LN2

- Three stage cryopump. Inlet shield cooled to 77 K with liquid nitrogen. Inside the pump there is a two-stage GM-refrigerator, which provides 50 K on its first stage for the condensation stage,and 20 K on ist second stage for the sorption stage (charcoal).

- The regeneration can be done with electrical heatersor purging with warm gas.

- Inlet diameter of 1.25 m - nominal pumping speed of 50 m³/s for

nitrogen (capture coefficient c=0.35) and hydrogen (capture coefficient c=0.09).

- Developed for space simulation chmabers ( 10-4 Pa) .

Source: Air Liquide

Page 38: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 38

A modular panel approach allows an optimal design for the given geometry

Page 39: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 39

Panel manufacturing

Initial quilted panel (stainless)

Copper coating for temperature homogeneity(100 µm)

Panel charcoalcoated

Panel equipped withheaters

Quality control:Thermal Cycling

Equipped withtemperature sensors

Page 40: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 40

Dimension: 4.4 m x 1.5 mSupply with 35-40 g/min LHe And 50 l/h LN2.

Nominal pumping speed for hydrogen is 400 m³/s.

A modular square-shape cryopump with liquid cryogens

Page 41: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 41

The three cryopump elements

Starting requirement:Replace a titanium sublimation pump,

stay in the available space and increase the Pumping speed by factor 10.

Page 42: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 42

ITER Vacuum Systems - Outline

Cryostat HV pumping system

Torus exhaust HVpumping system

Neutral Beam HVpumping system

Cryo-mech cross-over pressure is 10 Pa

3 Large Cryopump systems

Page 43: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 43

Nitrogen, outgassing gas

Hydrogen (H2, D2)Hydrogen (all six isotopes), helium, impuritiesDepending strongly on the operation mode (burn& dwell, conditioning, leak detection..)

Gases

Transient pump-down(closed cryostat volume of 8400 m³) to 10-4 Pa and steady-state pumping of magnet coolant leak helium

Dynamic = maintain the pressure (0.01 Pa) inside the NBI volume (150 m³/H-NBI) at a throughput of 36 Pa·m³/s/H-NBI (protium operation)

Dynamic= maintain the pressure (1-10 Pa) inside the vacuumvessel volume (1350 m³) at a total gas throughput of (120 Pa·m³/s (fuelling rate) or 60 Pa·m³/s (He case))+ (33 Pa·m³/s (impurities));Base pressure for hydrogens: 10-5 Pa.

Pumping mode

22 (3) +18# Pumps

CryostatBeam Heating (NBI)Torus

ITER Large High Vacuum Cryopump Systems - Overview

These systems as well as all the

Rest of ITER will be covered in a special

Talk by Mike Wykes on Tuesday.

High gas throughput at relatively high pressures

High pumpings speeds,Pumps operated in transitional range

Page 44: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 44

Design Issues in the Development of the ITER torusCryopumps

1. Pumping port size is limited Maximize pumping speed / Capture probability at constant entrance area.

2. Worst case to design the cryosorbent panels reference design shall include a pure helium/protium shot (which means 100% sorption pumping).

3. The composition of the gas mixture being pumped may vary significantly Minimize the dependency of pumping speed on gas species.

4. The gas throughput is variable and must be controllable include an inlet valve for control.

5. The distance between the pumps´ location and the divertor is given and big Maximize conductance of the pumping port.

6. Compatibility with the operating conditions Magnetic and electric fields, seismic, tritium-compatibility, Safety (Hydrogen explosion), Remote handling….

7. Find and characterise the ´optimum´ cryosorbent.

Page 45: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 45

Step 1: Operational Scheme for the Torus Cryopump

Staggering interval of ??? s

p some 100 Pap = some kPap 10 Pa

p 10-6 Pa

p = 10-2 Pa max.

With this trick, we provide to the torus a quasi continuous pumping speed with batch regenerating cryopumps.

Page 46: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 46

Staggering Interval given by Inventory Limitation

Hydrogen pressure in a cryopump by regenerationt = 300K

0,0

1,0

2,0

3,0

4,0

5,0

0 100 200 300 400 500 600 700 800Duty cycle, s

Pres

sure

, kPa

V=smallV=middleV=large

Deflagration limit2 bar deflagration

Cropump operational patternis determined by safety considerations, not by saturation effects of the sorbent.

Result # 1 - Staggering interval of 150 s- Duty cycle = 4*150 s = 600 s- Volume of 6 m³

Page 47: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 47

Step 2: Complete System Flow Analysis

Entrance from the plasmaDivertor cassettesinner volume

Ring collector

Pumping port,

Exit to the cryopump

A sound design has to consider not only the cryopump itself but also the conductance of the port (10 m long, very complex geometry)

system analysis under transitional flow conditions (ITERVAC code)

Cell model of half ITER

Page 48: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 48

020406080

100120140160180200

0 50 100 150Pumping speed of one pump [m³/s]

Max

imum

thro

ughp

ut [P

a m

³/s] D2 2.5 Pa

Mass 5 2.5 PaT2 2.5 Pa

Typical results under plasma burn: Mass influence

Minimum 50 m³/s as target nominal pumping speed per (pump+inlet bellow) This defines the requested pump size !

Page 49: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 49

Design of the ITER Pump with integrated inlet valveGeometry

Valve Diameter…………700 mm Valve Stroke……..……..400 mmPump Length………… 1350 mmPump Diameter……….1200 mm Coated Cryopanel Surface Area:…….16 panels, 4 m²Panel Length…………...870 mm Pump volume …………..1 m³ (+5)

Page 50: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 50

Experimental Basis: Test of a Torus Model Cryopumpin the TIMO Test Bed at FZK

Page 51: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 51

Pumping speed results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

Pressure in Pump (Pa) Inlet Pressure (Pa)

Pum

ping

Spe

ed (l

/(s·c

m²)

)

increasingthroughput

100% open

35%

25%

10%

Installed pumping surfaceof 4 m²1.2 l/s cm² = 50 m³/s

Molecular flow regime was predicted by Monte-Carlo simulation:

1.0 l/(s·cm²) @ 100% open0.45 l/(s·cm²) @ 35% open

Pumping with transitional flowconditions inside the pump.

Page 52: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 52

Gas Species Dependency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2Inlet Pressure (Pa)

Pum

ping

Spe

ed (l

/(s·c

m²)

)

D2BaseD2Base/HeD2HeD2BaseD2Base/HeD2HeD2D2

Valve Position 100% open

Valve Position 50% open

Predictedperformanceat maximumthroughputconditions

50% of maximumthroughput

Almost insensitive against the typeof gas being pumped,Although big differences in α(He)=0.2 vs. α(D2)=0.9 .Achieved by a sophisticatedinterior design.

Page 53: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 53

Saturation capacities @ 5K

0

10

20

30

40

50

60

1E-03 1E-02 1E-01 1E+00

Gas load (Pa·m³/cm²)

Pum

ping

spe

ed (m

³/s)

HeliumDeuterium

q=0.8·10 (Pa·m³)/(s·cm²)- 4

Page 54: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 54

4000 m³/s cryopump set-up with its three elementary parts

Page 55: Chris Day Forschungszentrum Karlsruhe, Institute for ... · Pump Rotary Piston Pump Rotary Plunger Pump Roots Pump Multiple Vane Rotary Pump Dry Pump Adsorption Pump Cryopump Getter

Forschungszentrum Karlsruhein der Helmholtz-Gemeinschaft

CAS – Vacuum in accelerators, Platja d´Aro, May 2006 ´Cryopumps´ Chris Day slide # 55

..If you want to read about cryopumps

- The Bible:R.A. Haefer, Cryopumping, Clarendon Press, Oxford, 1989.

- M. Hablanian, High vacuum technology, 2n ed. , Dekker, New York, 1997.

- J.M. Lafferty (Ed.), Foundations of vacuum science and technology,John Wiley, 1998.

- K.M. Welch, Capture pumping technology, 2nd ed., North-Holland Elsevier, Amsterdam, 2003.

Thank you for your attention