CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

40
T: +27(0)51 401 9111 | [email protected] | www.ufs.ac.za CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre Jeanet Conradie +27(0)51 401 2194 | [email protected] | www.ufs.ac.za Density Functional Theory calculations with High Performance Computing predicts chemical reactivity.

description

CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre. +27(0)51 401 2194 | [email protected] | www.ufs.ac.za. Jeanet Conradie. Density Functional Theory calculations with High Performance Computing predicts chemical reactivity. - PowerPoint PPT Presentation

Transcript of CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Page 1: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

T: +27(0)51 401 9111 | [email protected] | www.ufs.ac.za

CHPC: 2013 National Meeting and Conference

2–6 December

Cape Town International

Convention Centre

Jeanet Conradie+27(0)51 401 2194 | [email protected] | www.ufs.ac.za

Density Functional Theory calculations with High Performance Computing predicts chemical reactivity.

Page 2: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Catalytic Application1.

This StudyRh(I)--diketonato

complexes

Monsanto Process[Rh(CO)2(I)2]

rate determining

1 electrochemical oxidation 2 substitution3 chemical oxidation

RhI

RhIII

Page 3: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

The complexes

O

R'O

RhI

R

CO

PX3

PX3 = P(OCH2)3CCH3PX3 = PPh3

O

R'O

RhI

R

CO

CO

O

R'O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3

2.

Page 4: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

CF3 (3.01) > CCl3 (2.76) > CH3 (2.34) > Ph (2.21) > Fc (1.87)

(high ) (low )

e- withdrawing e- donating

more electron donating

in terms ofsum of group

electronegativities R + R’

donate electron density via conjugation to Rh

FeIIFc =

CF3CF3 (11)

CH3CF3 (10)

PhCF3 (9)

FcCF3 (8)

CH3CH3 (7)

FcCCl3 (6)

PhCH3 (5)Ph Ph (4)

CH3Fc (3)Fc Ph (2)Fc Fc (1)R R'

O

R'O

RhI

R

X

Y

3.The complexes

Page 5: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

O

R'

O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3O

R'O

RhI

R

CO

COO

R'O

RhI

R

CO

PR3

(3): PX3 = P(OCH2)3CCH3(4): PX3 = PPh3

(1)(2)(5)

Experimental: Electrochemical oxidation

electrochemical oxidation 1

electrochemical oxidation 3 and 4

electrochemical oxidation 5

electrochemical oxidation 2

4.

Page 6: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

(7)

(10)

(11)

more electron donating

Rh(I) easier oxidized to Rh(III)

oxidation

-2eRhI RhIII

Experimental: Electrochemical oxidation 1

O

RO

RhIP(OPh)3

P(OPh)3

R'

one electro-active center

more electron donating

CF3CF3 (11)

CH3CF3 (10)

PhCF3 (9)

FcCF3 (8)

CH3CH3 (7)

PhCH3 (5)Ph Ph (4)

CH3Fc (3)Fc Ph (2)Fc Fc (1)R R'

5.

J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287.

Page 7: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

[RhI(RCOCHCOFc)(P(OPh)3)2] -2e-[RhIII(RCOCHCOFc)(P(OPh)3)2]2+ -1e-

[RhIII(RCOCHCOFc+)(P(OPh)3)2]3+

two electro-active centers

(3)

(8)

oxidation

-2eRhI RhIII

Experimental: Electrochemical oxidation 1

O

RO

RhIP(OPh)3

P(OPh)3

FeII

more electron donating

CF3CF3 (11)

CH3CF3 (10)

PhCF3 (9)

FcCF3 (8)

CH3CH3 (7)

PhCH3 (5)Ph Ph (4)

CH3Fc (3)Fc Ph (2)Fc Fc (1)R R'

6.

J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287.

Page 8: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

oxidation

-2eRhI RhIII

[RhI(RCOCHCOFc)(P(OPh)3)2] -2e-[RhIII(RCOCHCOFc)(P(OPh)3)2]2+ -1e-

[RhIII(RCOCHCOFc+)(P(OPh)3)2]3+

two electro-active centers

(3)

(8)

Experimental: Electrochemical oxidation 1

O

RO

RhIP(OPh)3

P(OPh)3

FeII

more electron donating

CF3CF3 (11)

CH3CF3 (10)

PhCF3 (9)

FcCF3 (8)

CH3CH3 (7)

PhCH3 (5)Ph Ph (4)

CH3Fc (3)Fc Ph (2)Fc Fc (1)R R'

(1) has three electro-active centers

7.

J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287.

Page 9: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

(1)

(3)

(8)

oxidation

-2eRhI RhIII

[RhI(RCOCHCOFc)(P(OPh)3)2] -2e-[RhIII(RCOCHCOFc)(P(OPh)3)2]2+ -1e-

[RhIII(RCOCHCOFc+)(P(OPh)3)2]3+

two electro-active centers

more electron donating

Rh(I) easier oxidized to Rh(III)

Experimental: Electrochemical oxidation 1

O

RO

RhIP(OPh)3

P(OPh)3

FeII

more electron donating

CF3CF3 (11)

CH3CF3 (10)

PhCF3 (9)

FcCF3 (8)

CH3CH3 (7)

PhCH3 (5)Ph Ph (4)

CH3Fc (3)Fc Ph (2)Fc Fc (1)R R'

(1) has three electro-active centers

8.

J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287.

Page 10: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

J.J.C. Erasmus, J. Conradie, Electro Chim. Acta 56 (2011) 9287.

oxidation

-2eRhI RhIII

more electron donating

Rh(I) easier oxidized to Rh(III)

[RhI(RCOCHCOR')(P(OPh)3)2] [RhIII(RCOCHCOR')(P(OPh)3)2]2+-2e-

Experimental: Electrochemical oxidation 1

O

R'O

RhI

R

P(OPh)3

P(OPh)3

more electron donating

CF3CF3 (11)

CH3CF3 (10)

PhCF3 (9)

FcCF3 (8)

CH3CH3 (7)

PhCH3 (5)Ph Ph (4)

CH3Fc (3)Fc Ph (2)Fc Fc (1)R R'

9.

Page 11: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

LUMO

HOMO

oxidation

more electron donating

Rh(I) easier oxidized to Rh(III)

higher energy HOMO – electrons easier removed – easier oxidized

-2e-RhI RhIII

Oxidation of Rh(I) to Rh(III) corresponds to the removal of 2 electrons from the highest molecular orbital, the HOMO of the complex.

DFT and Electrochemical oxidation 110.

Gaussian 09 with B3LYP functional and 6-311G(d,p) basis set for C, H, O, F, P, Fe and Lanl2dz for Rh

Page 12: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

LUMO

HOMO

oxidation

-2e-RhI RhIII

Oxidation of Rh(I) to Rh(III) corresponds to the removal of 2 electrons from the highest molecular orbital, the HOMO of the complex.

DFT and Electrochemical oxidation 1

more electron donating

Rh(I) easier oxidized to Rh(III)

higher energy HOMO – electrons easier removed – easier oxidized

11.

J. Conradie, Electro Chim. Acta 110 (2013) 718.

Page 13: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental: Electrochemical oxidation 2

Rh Fc

y = 7.826x + 2.710

R2 = 0.963

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

E pa(Rh) / V

1+ 2

(Go

rdy

scal

e)

y = 8.053x + 2.193

R2 = 0.954

2

3

4

5

6

0.0 0.1 0.2 0.3 0.4 0.5

E 0/(Fc) / V

1+ 2

(G

ord

y sc

ale)

more electron donating

O

FcO

RhIII

R

O

R'O

RhI

R

O

R'O

RhIII

R

- 2e-

- e-+ e-

+

2+

3+

For R' = Fc

12.

CV data from: Conradie J. and Swarts J.C., Dalton Trans., 2011, 40, 5844-5851

Page 14: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 2

LUMO

HOMO

HOMO-1

• First oxidation: 2e- from HOMO (RhI to RhIII)

• Second oxidation: e- from HOMO-1 (Fc to Fc+)

-2e- -e-

O

FcO

RhIII

R

O

R'O

RhI

R

O

R'O

RhIII

R

- 2e-

- e-+ e-

+

2+

3+

For R' = Fc

CV data from: Conradie J. and Swarts J.C., Dalton Trans., 2011, 40, 5844-5851DFT: von Eschwege, K.G. and Conradie, J., S. Afr. J. Chem., 2011, 64, 203-209.

13.

Page 15: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 2

LUMO

HOMO

HOMO-1

• First oxidation: 2e- from HOMO (RhI to RhIII)

• Second oxidation: e- from HOMO-1 (Fc to Fc+)

-2e- -e-

O

FcO

RhIII

R

O

R'O

RhI

R

O

R'O

RhIII

R

- 2e-

- e-+ e-

+

2+

3+

For R' = Fc

higher energy HOMO – electrons easier removed – easier oxidized

14.

Page 16: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 3

O

R'

O

RhI

R

CO

P(OCH2)3CCH3

O

R'O

RhIII

R

CO

P(OCH2)3CCH3

- 2e-

2+

higher energy HOMOelectrons easier removed

easier oxidized

Erasmus, J.J.C. and Conradie, J., Dalton Transactions, 2013, 42, 8655–8666.

15.

Page 17: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 4

O

R'O

RhI

R

CO

PPh3

O

R'

O

RhIII

R

CO

PPh3

- 2e-

2+

Ferreira, H., Conradie, M.M. and Conradie, J., Electrochim. Acta, 2013, 113, 519-526.

higher energy HOMOelectrons easier removed

easier oxidized

16.

Page 18: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 5

CV data from: Conradie, J., et. al., Inorg. Chim. Acta., 358, 2005, 2530-2542.

O

FcO

RhI

R

CO

CO

O

Fc

O

RhI

R

CO

CO

O

FcO

RhIII

R

CO

CO

+

+ e- - e-

- 2e-

+

1+

3+

• HOMO on ferrocene

• First oxidation: e- from HOMO (Fc to Fc+)

17.

Page 19: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 5

CV data from: Conradie, J., et. al., Inorg. Chim. Acta., 358, 2005, 2530-2542.

O

FcO

RhI

R

CO

CO

O

Fc

O

RhI

R

CO

CO

O

FcO

RhIII

R

CO

CO

+

+ e- - e-

- 2e-

+

1+

3+

• HOMO on ferrocene

• First oxidation: e- from HOMO (Fc to Fc+)

18.

Page 20: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation 5

CV data from: Conradie, J., et. al., Inorg. Chim. Acta., 358, 2005, 2530-2542.

higher energy HOMOelectrons easier removed

easier oxidized

O

FcO

RhI

R

CO

CO

O

Fc

O

RhI

R

CO

CO

O

FcO

RhIII

R

CO

CO

+

+ e- - e-

- 2e-

+

1+

3+

19.

Page 21: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

DFT and Electrochemical oxidation: Summary20.

Page 22: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental: Substitution reactions

O

R'

O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3O

R'O

RhI

R

CO

COO

R'O

RhI

R

CO

PR3

PX3 P(OPh)3

2CO

PX3 = P(OCH2)3CCH3PX3 = PPh3

21.

Page 23: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental: Substitution reactions

• Experimental1 V# and large negative S#: – associative mechanism involving the formation of a 5-c species.

• The FMO Theory simplifies reactions to interactions between frontier orbitals. 1 J.G. Leipoldt, E.C. Steynberg, R. van Eldik, Inorg. Chem. 26 (1987) 3068.

O

R'

O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3O

R'O

RhI

R

CO

COO

R'O

RhI

R

CO

PX3

N

N

N

N

Rh

+

PX3 P(OPh)3

2CO

PX3 = P(OCH2)3CCH3PX3 = PPh3 substitution 3 substitution 1

substitution 2

22.

Page 24: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Substitution reaction 1

k2 from J.G. Leipoldt, G.J. Lamprecht and E.C. Steinberg, J. Organomet. Chem. 397 (1990) 239DFT from Conradie, J. Inorg. Chim. Acta, 2013, 406, 211-216.

• DFT calculated TS:– Associative mechanism– 5-coordinate TS – Rh is electron acceptor (electrophile)– electron withdrawing groups stabilize TS, more reactive

O

R'O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3

P(OPh)3

HOMOP(OPh)3

HOMORh()(cod)

TS

23.

Page 25: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Substitution reaction 1

y = -0.125x - 3.728

R2 = 0.979

-5.0-4.9-4.8-4.7-4.6-4.5-4.4-4.3-4.2-4.1-4.0

0 5 10

lnk 2

EH

OM

O(c

alc)

/ eV

k2 from J.G. Leipoldt, G.J. Lamprecht and E.C. Steinberg, J. Organomet. Chem. 397 (1990) 239DFT from Conradie, J. Inorg. Chim. Acta, 2013, 406, 211-216.

• DFT calculated TS:– Associative mechanism– 5-coordinate TS – Rh is electron acceptor (electrophile)– electron withdrawing groups stabilize TS, more reactive

lower energy HOMOelectrons easier accepted

larger substitution k

O

R'O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3

P(OPh)3

24.

Page 26: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Substitution reaction 2

k2 from J.G. Leipoldt and E. C. Grobler, Trans. Met. Chem. 11 (1986) 110 and T.G. Vosloo, W.C. Du Plessis, J.C. Swarts, Inorg. Chim. Acta 331 (2002) 188.DFT from Conradie, J. J. Organomet. Chem. 2012, 719, 8-13

y = -0.074x - 3.963

R2 = 0.978

-5.0

-4.8

-4.6

-4.4

-4.2

-4.0

0 5 10 15

lnk 2E

HO

MO(c

alc)

/ e

V

O

R'O

RhI

R

N

N

N

N

Rh

+

lower energy HOMOelectrons easier accepted

larger substitution k

25.

Page 27: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Substitution reaction 3

k2 from J.G. Leipoldt, S.S. Basson, J.J.J. Schlebush and, E.C. Grobler Inorg. Chim. Acta., 1982, 62, 113–115.DFT from Conradie, S. Afr. J. Chem; 2013, 66, 54-59

O

R'O

RhI

R

O

R'O

RhI

R

CO

CO

lower energy HOMOelectrons easier accepted

larger substitution k

26.

Page 28: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental: Oxidative addition

chemical oxidation 2

and 3

chemical oxidation 1

O

R'

O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3O

R'O

RhI

R

CO

COO

R'O

RhI

R

CO

PR3

P(OPh)3PX3

2CO

PX3 = P(OCH2)3CCH3PX3 = PPh3

CH3I

O

R'O

RhIII

CO

PX3

R

CH3

I

CH3I

O

R'O

RhIII

P(OPh)3

P(OPh)3R

CH3

I

27.

Page 29: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

M.M. Conradie, J. Conradie, J. Organomet. Chem. 695 (2010) 2126.

Experimental and DFT: Oxidative addition 1

O

R'O

RhI

R

P(OPh)3

P(OPh)3

O

RO

RhP(OPh)3

R'

CH3

I

P(OPh)3

+CH3Ik2

• DFT calculated TS:– Associative mechanism

28.

Page 30: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

M.M. Conradie, J. Conradie, J. Organomet. Chem. 695 (2010) 2126.

Experimental and DFT: Oxidative addition 1

O

R'O

RhI

R

P(OPh)3

P(OPh)3

O

RO

RhP(OPh)3

R'

CH3

I

P(OPh)3

+CH3Ik2

• DFT calculated TS:– Associative mechanism

29.

Page 31: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

M.M. Conradie, J. Conradie, J. Organomet. Chem. 695 (2010) 2126.

Experimental and DFT: Oxidative addition 1

O

R'O

RhI

R

P(OPh)3

P(OPh)3

O

RO

RhP(OPh)3

R'

CH3

I

P(OPh)3

+CH3Ik2

• DFT calculated TS:– Associative mechanism– Rh nucleophile– electron donating groups makes Rh more electron rich,

i.e more reactive towards o.a.

higher energy HOMOelectrons easier donated

larger oxidative addition k

29.

Page 32: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

more electron donating

Rh(I) easier oxidized to Rh(III)

k2 from: G.J. Van Zyl, G.J. Lamprecht, J.G. Leipoldt, T.W. Swaddle, Inorg. Chim. Acta 143 (1988) 223-227M.M. Conradie, J.J.C. Erasmus, J. Conradie, Polyhedron 30 (2011) 2345.DFT from Conradie, J., Electrochimica Acta; 2013, 110, 718-725

Experimental and DFT: Oxidative addition 1

O

R'O

RhI

R

P(OPh)3

P(OPh)3

O

RO

RhP(OPh)3

R'

CH3

I

P(OPh)3

+CH3Ik2

higher energy HOMOelectrons easier donated

larger oxidative addition k

30.

Page 33: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Oxidative addition 2

O

RO

RhCO

R'

CH3

I

P(OCH2)3CCH3

O

R'

O

RhI

R

CO

P(OCH2)3CCH3

+CH3Ik2

Erasmus, J.J.C. and Conradie, J., Inorg. Chim. Acta; 2011, 375, 128-134 Erasmus, J.J.C. and Conradie, J., Cent. Eur. J. Chem. 2012, 10(1) 256-566. Erasmus, J.J.C., Conradie, M.M. and Conradie, J., Reac. Kinet. Cat. Lett. 2012, 105(2) 233-249. Erasmus, J.J.C. and Conradie, J., Dalton Transactions, 2013, 42, 8655–8666.

more electron donating

Rh(I) easier oxidized to Rh(III)

higher energy HOMOelectrons easier donated

larger oxidative addition k

31.

2

Page 34: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Oxidative addition 3

O

RO

RhCO

R'

CH3

I

PPh3

O

R'O

RhI

R

CO

PPh3

+CH3Ik2

more electron donating

Rh(I) easier oxidized to Rh(III)

higher energy HOMOelectrons easier donated

larger oxidative addition kk2 from:Basson, S. S.; Leipoldt, J. G.; Roodt, A.; Venter, J. A.; van der Walt, T. J. Inorg. Chim. Acta, 1986, 119, 35.Conradie, J., Lamprecht, G.J., Roodt, A. and Swarts, J.C. Polyhedron, 23, 2007, 5075-5087.Conradie, M.M. and Conradie, J. Inorg. Chim. Acta., 2008, 361, 208-218 and 2008, 361, 2285-2295.Stuurman, N.F. and Conradie, J. J Organomet. Chem., 2009, 694, 259-268.Conradie, J. and Swarts, J.C. Organometallics, 2009, 28 (4), 1018-1026.DFT Conradie, J., unpublished

32.

Page 35: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental and DFT: Summary kinetics33.

Page 36: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

• The stability/reactivity of the HOMO of [Rh(RCOCHCOR')(XY)] complexes is related to the electronic influence of R and R' on Rh – more electron donating, higher HOMO energy

• The energy of the HOMO of [Rh(RCOCHCOR')(XY)] relates to: – experimental electrochemical oxidation potential– experimental substitution kinetic rate constants – experimental oxidative addition kinetic rate constants

• Close correlation between the experimental and the theoretical descriptors enable the design of related rhodium complexes with a particular reactivity.

Conclusion

O

R'O

RhI

R

X

Y

34.

Page 37: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

The Chemistry Department at the UFSfor available facilities

HPC Warehouse Facility of the UFS for computational facilities

The National Research Foundationfor financial support

CTCC and the University of Tromsøfor computational facilities

+27(0)51 401 2194 | [email protected] | www.ufs.ac.za

Page 38: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre
Page 39: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental: Chemical- and Electrochemical oxidation and Substitution reactions

substitution 1 substitution 2

substitution 3chemical

oxidation 1 and 2

chemical oxidation 3

electrochemical oxidation 1

electrochemical oxidation 3 and 4

electrochemical oxidation 2

electrochemical oxidation 2

O

R'

O

RhI

R

O

R'O

RhI

R

P(OPh)3

P(OPh)3O

R'O

RhI

R

CO

COO

R'O

RhI

R

CO

PR3

PX3 P(OPh)3

2CO

PX3 = P(OCH2)3CCH3PX3 = PPh3

O

R'O

RhIII

CO

PX3

R

CH3

I

CH3I

N

N

N

N

Rh

+

O

R'O

RhIII

P(OPh)3

P(OPh)3R

CH3

I

CH3I

Page 40: CHPC: 2013 National Meeting and Conference 2–6 December Cape Town International Convention Centre

Experimental parameters related to oxidation potential of [Rh(RCOCHCOR')(P(OPh)3)2] 1 oxidation potential (Epa) of Rh2 kinetic rate constant (k2) of oxidative addition reaction

Calculated parameter related to oxidation potential of [Rh(RCOCHCOR')(P(OPh)3)2] 3 energy of HOMO (EHOMO)4 calculated NPA charge on Rh(P(OPh)3)2

Parameters used to describe electron donating power (RCOCHCOR’)

5 group electronegativity () of R and R’ groups6 Hammett values (meta) of R and R’ groups7 pKa of the -diketone (RCOCH2COR’)

Empirical relationship describing redox potential 8 Lever ligand parameter Eredox (vs. SHE) = SM X ΣEL + IM

(ΣEL=sum of the values of the ligand EL parameter for all the ligands )

DFT and Electrochemical oxidation 1

O

R'O

RhI

R

P(OPh)3

P(OPh)3