ChE 413 Thermo1 PVT

18
7/24/2019 ChE 413 Thermo1 PVT http://slidepdf.com/reader/full/che-413-thermo1-pvt 1/18 CHE 413 CHE THERMO1 Volumetric properties of pure fluids

Transcript of ChE 413 Thermo1 PVT

Page 1: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 1/18

CHE 413 CHE THERMO1

Volumetric properties of pure fluids

Page 2: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 2/18

PVT behavior of pure substances

Page 3: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 3/18

Page 4: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 4/18

In single phase region,f(P,V,T) = 0

If V = V(T,P), then

Volume expansivity

 

P T 

V V dV dT dP

T P

∂ ∂ = +

∂ ∂

1

P

V T  β 

  ∂ ≡

∂ 1   V ∂  

Combining all equations,

For incompressible fluids,

For small changes in T & P, β & κ can be constant

T V P−

dV dT dP

 β κ = −

0 β κ = =

( ) ( )22 1 2 1

1

lnV 

T T P P

 β κ = − − −

Page 5: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 5/18

Virial equations of state For real gases

Virial expansions

2

...PV a bP cP= + + +

( )' ' 2 ' 31 ...PV a B P C P D P= + + + +

Z: compressibility factor B’,B: 2nd virial coefficients; C’,C: 3rd virial coefficients

' ' 2 ' 31 ... Z B P C P D P RT 

≡ = + + + +

2 31 ...

 B C D Z 

V V V = + + + +

'   B B

 RT 

=

( )

2'

2

C BC 

 RT 

−=

( )

3'

3

3 2 D BC B D

 RT 

− +=

Page 6: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 6/18

Ideal gas

B/V, C/V2 arise due to molecular interactions; if no

interactions, virial expansion reduces to Z = 1 or PV = RT

Ideal gas definition

Equation of state

PV = RT

Internal energy

U = U(T)

Page 7: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 7/18

Implied relations for ideal gas

Cv is a function of temperature only

Enthalpy

( ) ( )V V 

dU T U C C T T dT 

∂ ≡ = = ∂

Cp is a function of temperature only

Relation b/w Cp and Cv

P V 

dH dU  C R C R

dT dT  = = + = +

( )( )P P

P

dH T  H C C T 

T dT 

∂ ≡ = =

Page 8: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 8/18

Implied relations for ideal gas For any change of state of an ideal gas

V U C dT  ∆ = ∫V 

dU C dT  =

P H C dT ∆ = ∫P

dH C dT  =

Page 9: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 9/18

Isochoric process Isobaric process

V U C dT  ∆ = ∫P

 H C dT ∆ = ∫V U C dT  ∆ = ∫P

 H C dT ∆ = ∫V Q C dT  = ∫

0W   =

General restrictions

Equations are valid for ideal gas

The process is mechanically reversible.

The system is closed.

PQ C dT  =

( )2 1W P V V  = − −

Page 10: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 10/18

Reversible Reversible

Isothermal process Adiabatic process

V W U C T  = ∆ = ∆

0U H ∆ = ∆ =

2 1V P= − = −

0Q =

1TV constant  γ   − =( )1

TP constant  γ γ  −

=

PV constant γ  

=

P

C γ    ≡2 1

1 2

ln lnV P

Q nRT nRT  V P

= =

1 2V P   P H C T ∆ = ∆

Page 11: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 11/18

Applications of the virial equations

 

' ' 2 ' 31 ...PV 

 Z B P C P D P

 RT 

= = + + + +

2 31 ...

PV B C D Z 

 RT V V V = = + + + +

For engineering purposes, their use is practical onlywhen convergence is very rapid

gas at low pressure pressure <50 bar

1PV B Z  RT V 

= = + 21PV B C   Z 

 RT V V = = + +

1PV BP

 Z 

 RT RT 

= = +

Page 12: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 12/18

Cubic equations of state Van der Waals equation (J.D. van der Waals)

Generic cubic equation of state

2

 RT a

P V b V = −

2 227

64

c

c

 R T 

a P=

8

c

c

 RT 

b P=

a T  RT 

Redlich/Kwong equation (Otto Redlich & JNS Kwong)

( )1 2

 RT a

P V b T V V b= −− +

2 2.50.42748c

c

 R T 

a P=

0.08664c

c

 RT b

P

=

( ) ( )V b V b V bε σ = −

− + +

Page 13: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 13/18

Generalized correlations for gases Multiplying RK equation by V/RT

1.5

1

1 1

a h

 Z  h bRT h

= −

− + b b bP

hV ZRT P ZRT  

≡ = =

Eliminating a & b

Solution is iterative. Initial value of Z = 1. Get h. Get new

Z, get new value of h, and so on until convergence

1.5

1 4.9340

1 1r 

h Z 

h T h

= −

− +

0.08664 r 

Ph ZT 

c

T T 

T ≡

c

PPP

Page 14: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 14/18

Two-parameter theorem of corresponding states

All fluids, when compared at the same Tr & Pr, have

approx. the same Z, and all deviate from ideal-gasbehavior to about the same degree

Acentric factor, ( )0.7

1.0 log   sat 

r T 

Pω =

≡ − −

Three parameter theorem of corresponding states All fluids having the same value of ω, when compared

at the same Tr & Pr, have the same value of Z, and all

deviate from ideal gas behavior to about the samedegree.

Page 15: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 15/18

Pitzer correlations for compressibility factor Lee/Kesler correlation

  0 1 Z Z Z ω = +

Page 16: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 16/18

Page 17: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 17/18

Page 18: ChE 413 Thermo1 PVT

7/24/2019 ChE 413 Thermo1 PVT

http://slidepdf.com/reader/full/che-413-thermo1-pvt 18/18

Pitzer correlations for virial coefficient Generalized virial coefficient equation (valid only for

low P)

Pitzer proposed the correlation:

Combining the two equations:

1 1   c   r 

c r 

 BP   P BP Z 

 RT RT T 

= + = +

0 1c

c

 BP B B

 RT ω = +

Comparing with the Lee/Kesler correlation

0 11   r r 

r r 

 Z B BT T ω = + +

0 01   r 

P Z B

T = +   1 1   r 

P Z B

T =

0

1.6

0.4220.083

 B

= −  1

4.2

0.1720.139

 B

= −