Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the...

191
Characterization of Real-World Emissions from Nonroad Mining Trucks in the Athabasca Oil Sands Region during September, 2009 DRI Contract Number: 010109-123109 Submitted to: Kevin Percy and Kenneth Foster Wood Buffalo Environmental Association #100 – 300 Thickwood Boulevard Ft. McMurray, AB, Canada T9K 1Y1 Prepared for: Wood Buffalo Environmental Association By: John G. Watson, Ph.D. Judith C. Chow, Sc.D. Xiaoliang Wang, Ph.D. Barbara Zielinska, Ph.D. Steven D. Kohl, M.S. Steven Gronstal, M.S. Desert Research Institute Nevada System of Higher Education 2215 Raggio Parkway Reno, NV 89512 Finalized March 31, 2013

Transcript of Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the...

Page 1: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Characterization of Real-World Emissions from Nonroad Mining Trucks in the Athabasca Oil Sands Region during September, 2009

DRI Contract Number: 010109-123109

Submitted to:

Kevin Percy and Kenneth Foster

Wood Buffalo Environmental Association

#100 – 300 Thickwood Boulevard Ft. McMurray, AB, Canada T9K 1Y1

Prepared for:

Wood Buffalo Environmental Association

By:

John G. Watson, Ph.D. Judith C. Chow, Sc.D. Xiaoliang Wang, Ph.D.

Barbara Zielinska, Ph.D. Steven D. Kohl, M.S. Steven Gronstal, M.S.

Desert Research Institute

Nevada System of Higher Education 2215 Raggio Parkway

Reno, NV 89512

Finalized March 31, 2013

Page 2: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

ii

Table of Contents Page Table of Contents ............................................................................................................................ ii List of Abbreviations ..................................................................................................................... iii List of Tables ................................................................................................................................. iii List of Figures ................................................................................................................................ vi Executive Summary .........................................................................................................................x 1.  Introduction ................................................................................................................... 1-1 

1.1.  Background ................................................................................................................... 1-1 1.2.  Study Objectives ........................................................................................................... 1-2 1.3.  Overview of the Report ................................................................................................. 1-2 

2.  Diesel Exhaust Emission Studies .................................................................................. 2-1 2.1.  Diesel Engine Emission Mechanisms ........................................................................... 2-1 2.2.  Certification and Real-World Test Methods ................................................................. 2-6 2.3.  Nonroad Diesel Engine Emission Standards ............................................................... 2-12 2.4.  Engine Emission Models ............................................................................................. 2-13 2.5.  Nonroad Diesel Engine Emission Factors ................................................................... 2-17 2.6.  Engine Exhaust Source Profiles .................................................................................. 2-18 

3.  Experimental Methods .................................................................................................. 3-1 3.1.  Overview ....................................................................................................................... 3-1 3.2.  Sampling System Description ....................................................................................... 3-1 3.3.  Sampling Conditions ..................................................................................................... 3-9 3.4.  Fuel Specifications ...................................................................................................... 3-10 3.5.  Truck Operating Cycles .............................................................................................. 3-13 3.6.  Test Procedure ............................................................................................................. 3-13 3.7.  Data Reduction ............................................................................................................ 3-20 3.8.  Laboratory Analysis .................................................................................................... 3-22 

4.  Emission Factors ........................................................................................................... 4-1 4.1.  Definition of Emission Factors ..................................................................................... 4-1 4.2.  Data Consistency ........................................................................................................... 4-2 4.3.  Diesel Engine Emission Factors .................................................................................... 4-4 4.4.  Variability within a Test Cycle ................................................................................... 4-28 4.5.  Emission Factors Variability within the Operating Cycle .......................................... 4-33 4.6.  Emission Factor Summary .......................................................................................... 4-33 

5.  Source Profiles .............................................................................................................. 5-1 5.1.  NMHC Source Profiles ................................................................................................. 5-1 5.2.  PM2.5 Source Profiles .................................................................................................... 5-1 

6.  Summary, Conclusion and Recommendations ............................................................. 6-1 6.1.  Summary of Key Findings ............................................................................................ 6-1 

7.  References ..................................................................................................................... 7-3 Appendix A: Daily and Annual Emission Rates......................................................................... A-1 Appendix B: Time Series Plots of Emission and Engine Parameters for Each Run ...................B-1 Appendix C: Fuel Based Emission Factor for Idle, Load-to-dump, and Dump-to-load Sub-

activities ..................................................................................................................C-1 Appendix D: Source Profiles Normalized to Organic Carbon .................................................... D-1

Page 3: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

iii

List of Abbreviations ρi : density for emittant i. ω: engine speed AAS: atomic absorption spectroscopy AAV: amphibious assault vehicles AC: automated colorimetry AgNO3: silver nitrate AOSR: Athabasca Oil Sands Region ARB: California Air Resources Board ARD: Arizona road dust ATN: optical attenuation babs: light absorption coefficient BC: black carbon BSFC: brake-specific fuel consumption Ca++: calcium ion CAC: criteria air contaminants CaCl2: calcium chloride CAT: Caterpillar CBD: Central Business District CFR: Federal Register CH4: methane Cl-: chloride CMB: chemical mass balance CMFfuel: carbon mass fraction of the fuel Ci: concentration of emittant i CI: compression-ignition CO: carbon monoxide CO2: carbon dioxide COV: coefficient of variation CPC: condensation particle counter CVS: constant volume system DF: dilution factor DNPH: 2,4-dinitrophenylhydrazine DPM: diesel particulate matter DRI: Desert Research Institute EAF: DRI’s Environmental Analysis Facility EC: elemental carbon EF: emission factors ER: emission rate EU: European Union FRM: Federal Reference Method FTP: Federal Test Procedure GC-FID/MS: gas chromatography-flame ionization detector/mass spectrometry GHG: greenhouse gases GPS: Global Positioning System H2O: water H2S: hydrogen sulfide H2SO4: sulfuric acid HD:heavy duty He: helium HEPA: high efficiency particulate air HPLC: high performance liquid chromatograph

HULIS: humic-like substances ICP/MS: inductively coupled plasma/mass spectrometry IC: Ion chromatography ID: inner diameter IMPROVE: Interagency Monitoring of Protected Visual Environments IR: infrared K+: potassium ion K2CO3: potassium carbonate LVS: logistics vehicle systems Mg++: magnesium ion MATES: Multiple Air Toxics Exposure Study MDL: Minimum detection limit MSATs: Mobile Source Air Toxics MDSP: Mining Decision Support Program MEL: Mobile Emission Laboratory Mi: atomic or molecular weight of species i MOVES: Development of the MOtor Vehicle Emission Simulator MTBE: methyl tertiary butyl ether MTVR: medium tactical vehicle replacements MW: molecular weight N2: nitrogen Na+: sodium ion NDIR: nondispersive infrared NH3: ammonia NH4

+: ammonium NMHC: non-methane hydrocarbon NO: nitrogen oxide NO2: nitrogen dioxide NO2

-: nitrite NO3

-: nitrate NOx: nitrogen oxides NTE: Not-to-Exceed O2: oxygen O3: ozone OAL: DRI’s Organic Analytical Laboratory OC: organic carbon OC1, OC2, OC3, and OC4: organic carbon evolved at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere OES: optical emission spectrometry OP: pyrolyzed carbon OPC: optical particle counter P: pressure PAH: polycyclic aromatic hydrocarbon PAMS: photochemical assessment monitoring stations PEMS: portable emission measurement systems PID: photo ionization detector PM: particulate matter

Page 4: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

ii

List of Abbreviations, continued

PM2.5: particles with aerodynamic diameter < 2.5 µm PO4

≡: phosphate R: universal gas constant RH: relative humidity SCC: source classification code SEM: scanning electron microscopy SI: spark ignition SiO2: silica gel SO2: sulfur dioxide SO4

=: sulfate SVOCs: semi-volatile organic compounds T: temperature TC: total carbon TD-GC/MS: thermal desorption-gas chromatography/mass spectrometry THC: total hydrocarbon TOC: total organic carbon analyzer TOR: thermal-optical reflectance TOT: thermal/optical transmittance UDC: Unified Driving Cycle UDDS: Urban Dynamometer Driving Schedule UFP: ultrafine particles U.S. EPA: United States Environmental Protection Agency UV: ultraviolet V: engine displacement volume VIMS: Vehicle Information Management System VIS: visible VKT: vehicle kilometers traveled VMT: vehicle miles traveled VOCs: volatile organic compounds WBEA: Wood Buffalo Environmental Association WSOC: water-soluble organic carbon XRF: X-ray fluorescence

Page 5: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

iii

List of Tables Page Table 2-1. Nonroad Compression-Ignition Engines–Exhaust Emission Standards for Canada and the U.S. (DieselNet, 2013b; Environment Canada, 2005; U.S.EPA, 2004b). ........................... 2-14 Table 2-2. Emission standards for nonroad diesel engines in the European Union (DieselNet, 2013b). ....................................................................................................................................... 2-16 Table 2-3. Emission standards of off-road compression-ignition engine emission regulations in Canada (Environment Canada, 2005; 2011). ............................................................................. 2-16 Table 2-4. Steady-state emission factors for nonroad CI engines (U.S.EPA, 2008b). .............. 2-19 Table 2-5. Fuel-based emission factors of several nonroad engines of different tiers (Abolhasani et al., 2008; Frey et al., 2008a; 2008b). B0 and B20 refer to diesel fuels containing 0% and 20% biodiesel, respectively. ............................................................................................................... 2-21 Table 3-1. Real-time instruments and key specifications. ........................................................... 3-3 Table 3-2. Sampling and analysis matrix for gases and particles from integrated samples (canisters and filters). ................................................................................................................... 3-4 Table 3-3. Key specifications of the Caterpillar 797B mining truck (Caterpillar Inc., 2003). .. 3-12 Table 3-4. Time distribution of engine speed (revolutions per minute [rpm]), engine load, and ground speed during the five tests on CAT 797B-1. ................................................................. 3-17 Table 3-5. Procedures for field testing of in-use vehicles with an on-board dilution sampling system. ....................................................................................................................................... 3-18 Table 3-6. Summary of experimental parameters for each run. ................................................ 3-19 Table 3-7. Summary of analytical detection limits for mass, elements, ions (including gaseous NH3 and SO2), and carbon applied to this study. ....................................................................... 3-25 Table 3-8. Summary of analytical detection limits for 125 non-polar organic compounds. .... 3-28 Table 4-1. Summary of the types of measurements for emission factors. ................................... 4-3 Table 4-2. Average fuel-based emission factors for gases and particulate emittants for each test....................................................................................................................................................... 4-8 Table 4-3. Comparison between CAT 797B EFs with the Environment Canada and U.S. EPA nonroad emission standards for NMHC, NOx, CO, and PM2.5. ................................................... 4-8 Table 4-4. Comparison of emission factors with other studies. ................................................. 4-11 Table 4-5. Emission factors for 55 photochemical assessment monitoring station (PAMS) compounds and other identified non-methane hydrocarbons (NMHC). Species with the highest emission factors species are highlighted in green, and the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Benzene and n-Heptane are significantly higher from CAT 797B-2 than CAT 797B-1 and are highlighted in lavender. ......................... 4-12 Table 4-6. Emission factors (in mg/kg fuel) of halocarbons. .................................................... 4-15 Table 4-7. Emission factors of speciated PM2.5 particle compositions. Cells with “<” indicate that the species is below the instrument detection limit. Data from Run S3 were excluded in calculating CAT 797B-1 Average. ............................................................................................ 4-17 Table 4-8. Emission factors of Cs, Ba, rare earth elements, and Pb in PM2.5. Cells with “<” indicates that the species is below the instrument detection limit. ............................................ 4-20 

Page 6: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

iv

List of Tables continued Page Table 4-9. Emission factors of non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from filter samples. Cells with “<” indicate the compound is below instrument detection limit. Data from Run S3 were excluded when calculating CAT 797B-1 averages. .......................................................... 4-22 Table 4-10. Emission factors of carbohydrates, organic acids and water-soluble organic carbon (WSOC) from PM2.5 particles collected on the quartz filters. Cells with “<” indicate the compound is below instrument detection limit. ......................................................................... 4-29 Table 4-11. Correlation (r2) between emittants and truck parameters. For correlation between emittants, data before averaging and dilution correction were used to avoid smearing due to averaging. For correlation between emittant and truck parameters, averaged data after dilution correction were used. (Yellow highlights indicate r2 > 0.5.) ..................................................... 4-35 Table 5-1. Non-methane hydrocarbons (NMHC) source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green, the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Species that belong to both categories are highlighted in purple. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs. ............................................................................................................................... 5-2 Table 5-2. Halocarbon source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. ..................................................................................... 5-6 Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage of the Teflon filter mass concentration. Listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.5-7 Table 5-4. Summary of the ICP/MS measured source profiles of Cs, Ba, rare earth elements, and Pb in PM2.5 for the eight tests conducted on the two CAT 797Bs. Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs. ................................ 5-10 Table 5-5. Carbohydrates, organic acids, and WSOC source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs. .................................................................................... 5-11 Table 5-6. Source profile of non-polar organic compounds from PM2.5 filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs. ................................ 5-17 Table 5-7. Source profile of NH3, SO2, and H2S measured from backup filters. Data are expressed as a percentage of the Teflon filter mass concentration. ........................................... 5-24 Table A-1. Daily and annual emission rate (ER) of major gaseous and particulate pollutants .. A-2 Table A-2. Daily and annual emission rates of identified non-methane hydrocarbon (NMHC). Species with the highest emission factors species are highlighted in green, and the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. .................................. A-3

Page 7: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

v

List of Tables continued Page Table A-3. Daily and annual emission rate (ER) of halocarbons. .............................................. A-6 Table A-4. Daily and annual emission rate (ER) of speciated PM2.5 particle compositions. ..... A-7 Table A-5. Daily and annual emission rate (ER) of rare earth elements in PM2.5 .................... A-10 Table A-6. Daily and annual emission rate (ER) of non-polar speciated organic carbon compounds. ............................................................................................................................... A-11 Table A-7. Daily and annual emission rate (ER) of carbohydrates, organic acids and WSOC from PM2.5 particles collected on the quartz filters. .......................................................................... A-16 Table D-1. Source profile of non-polar organic compounds from PM2.5 filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Data are expressed as a percentage of the organic carbon (OC) mass concentration ................................................ D-2

Page 8: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

vi

List of Figures Page Figure 2-1. Particle formation processes in diesel exhaust (Schneider et al., 2005). “Soot” refers to fractal-like agglomerates of approximately solid spheres with diameters of ~20 nm. ............ 2-2 Figure 2-2. Scanning electron micrographs (from upper left) of carbonaceous particles from: a) diesel engine emissions, b) coal combustion emissions, c) porous coal char, d) solid coal char, e) residual oil char, and f) high temperature combustion residual oil cenosphere (Chen et al., 2005). Note the differences in shape owing to the different combustion conditions for similar fuels. .. 2-2 Figure 2-3. Normalized number distribution in exhaust for a 30 kW diesel generator (Gen Set) cooled and diluted to ambient conditions (left panel) and normalized mass distribution (right panel) for the same engine as a function of load. Note that the number distribution increases in size for increasing load while the mass distribution remains the same (Watson et al., 2008b). .. 2-4 Figure 2-4. Size distributions (dn/dlogDp) from a heavy-duty diesel engine with (open squares) and without (filled diamonds) a particle trap (solid lines are lognormal fits to the measured data). The removal of the large surface area provided by diesel soot implies that sulfuric acid (H2SO4) and organic vapors can reach supersaturation levels that, upon cooling, nucleate into ultrafine particles (Burtscher, 2005). .......................................................................................................... 2-4 Figure 2-5. Volatility of ultrafine particles in diesel emissions with a particle trap (Burtscher, 2005). Most of these particles evaporate at temperatures <250 °C. ........................................... 2-6 Figure 2-6. Distance-based particle number emission factors (with uncertainty bars) downwind of the I-405 (left panels) and I-710 (right panels) freeways in southern California (Zhang et al., 2005) for summer (top four panels) and winter (bottom four panels). I-710 has more diesel trucks. Right axis is in terms of km traveled and left axis is in terms of particle number per liter of fuel consumed. Note the large difference in emission rate between the roadside and grid level distances. ...................................................................................................................................... 2-8 Figure 2-7. Over (positive) or under (negative) estimation (y-axis) of different on-board portable emission measurement systems (PEMS) relative to the mobile emissions laboratory (MEL) emission rate for: a) nitrogen oxides (NOx), b) carbon dioxide (CO2), c) total hydrocarbons (THC), and d) particulate matter (PM). MEL emission rates are listed above each set of data. (PEMS are labeled PEMS1, PEMS2, PEMS3, and PEMS4 owing to non-disclosure agreements with the manufacturers made prior to the test.) ......................................................................... 2-12 Figure 3-1. Schematic diagram of the on-board emission measurement system. The listed flow rates are for operation with a dilution factor of 40. The dilution factor can be adjusted by changing the dilution and makeup flows (Wang et al., 2011; 2012a). ........................................ 3-2 Figure 3-2. Photograph of Box 1 for sample conditioning module (including sample dilution, aging, coarse particle removal, and flow splitting). ..................................................................... 3-5 Figure 3-3. Photograph of the dilutor. The sample is introduced in the center and dilution air is introduced from the diffuser plate with holes. Turbulence generated downstream of the holes helps mixing of the sample and dilution air. ................................................................................ 3-5 Figure 3-4. Photograph of Box 2 that contains real-time emission analyzers (Testo 350, carbon dioxide [CO2] analyzers and photo ionization detector [PID] analyzer). .................................... 3-6 Figure 3-5. Photograph of Box 3 that contains a canister and four filter packs for integrated sample collection. ........................................................................................................................ 3-7 Figure 3-6. Four-channel filter pack sampling configuration used for heavy hauler exhaust sampling.. ..................................................................................................................................... 3-8 

Page 9: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

vii

List of Figures continued Page Figure 3-7. Photograph of Box 4 that contains real-time particulate matter (PM) instruments. . 3-8 Figure 3-8. Photograph of Box 5 that contains two parallel 12 V deep cycle marine batteries (only one shown in the picture), a voltage regulator that stabilizes output voltage at 13.8 V, and a battery monitor. ............................................................................................................................ 3-9 Figure 3-9. Performance verification of the Testo Emission Analyzer for CO, CO2, NO, SO2, TSI condensation particle counter (CPC) 3007, and PP Systems CO2 analyzers before and after the field campaign. Note that the accuracies of all tested instruments are within manufacturer specifications. It is interesting to note that although the carbon dioxide (CO2) analyzers for the background and diluted sample are only specified to measure up to 5,000 ppm, they are reasonably accurate up to 10,000ppm. ....................................................................................... 3-11 Figure 3-10. Photograph of the sampling port location on a Caterpillar 797B mining truck. ... 3-12 Figure 3-11. Location of the dilution sampling system. ............................................................ 3-13 Figure 3-12. Speciation of the ultra low-sulfur diesel fuel used in CAT 797B-2 at Site A. ...... 3-14 Figure 3-13. Photographs of typical mining truck activities, including: a) loading material (idling); b) traveling with a load; c) dumping material (idling); and d) traveling back after dumping without a load. ............................................................................................................ 3-15 Figure 3-14. Example of engine data from CAT 797B-1 when it was hauling oil sands. This particular test included idling at the beginning, three load-dump-load cycles, and a refuel (idling) in the middle. ............................................................................................................................. 3-16 Figure 3-15. An example of reported and corrected black carbon (BC) concentrations acquired from the Magee AE51 micro-aethalometer. Note that as the filter loads, the reported BC concentration drops and becomes noisier. The corrected BC reduces this gradual decreasing trend. .......................................................................................................................................... 3-21 Figure 3-16. (a) Example of peak mismatch between the diluted carbon dioxide (CO2) and PM2.5 concentrations by the TSI DustTrak DRX due to different response times; (b) After delaying DRX time stamp by 25 seconds, the peaks line up. ................................................................... 3-21 Figure 3-17. (a) Example raw data of the tailpipe and diluted carbon dioxide (CO2). The tailpipe CO2 has a much slower response. (b) Data after averaging the diluted CO2 by 60 seconds, and shifting the tailpipe CO2 forward by 96 seconds. The 60 second averaging time was a compromise between time resolution and matching the two CO2 concentration levels reasonably well. ............................................................................................................................................ 3-22 Figure 3-18. Chemical analyses on filter substrates (Chow and Watson, 2012; Zielinska and Fujita, 1994). .............................................................................................................................. 3-24 Figure 4-1. Comparisons of CO, CO2, SO2, and PM2.5 concentrations measured by integrated and real-time methods sampled in parallel from diluted exhaust streams. (Data in this figure are not corrected for the dilution ratio.) Note that: 1) CO by the Testo Emission Analyzer are 5-50% higher than those of canisters, 2) CO2 by the PP System CO2 Analyzer and canisters are within ±20% except for Run S3, 3) SO2 are around the detection limit of the Testo Emission Analyzer, and 4) PM2.5 by DustTrak DRX are 1.4-2 times higher than gravimetric mass of Teflon® filters except for Run S3. Run S3 is an outlier (see text). S1 to S5 denote the five runs at Facility S (CAT 797B-1) while A1 to A3 denotes the three runs at Site A (CAT 797B-2). ....................... 4-5 

Page 10: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

viii

List of Figures continued Page Figure 4-2. Relationships between elemental carbon (EC) by thermal-optical reflectance followed by the IMPROVE_A protocol, light absorption coefficient (babs) by densitometer, and black carbon (BC) by micro-aethalometer. .................................................................................. 4-6 Figure 4-3. Average fuel-based emission factors for major gases and PM2.5 in each run. Detailed data are in Table 4-2. ................................................................................................................... 4-9 Figure 4-4. Non-methane hydrocarbon (NMHC) emission factors (EFs) grouped into four sub-groups. Error bars indicate the standard deviation of multiple runs from the same sampling facility. ....................................................................................................................................... 4-16 Figure 4-5. Elemental carbon (EC) and total carbon (TC) emission factors obtained by thermal/optical reflectance analysis (TOR), following the IMPROVE_A protocol (Chow et al., 2007b) with the slope at 0.80 when the intercept was not zero, and 0.74 when the intercept was zero. ............................................................................................................................................ 4-21 Figure 4-6. Correlations of emission factors between: a) total measured organic species and OC, b) polycyclic aromatic hydrocarbons (PAHs) and OC, and c) total PAHs and EC. OC and EC are analyzed by thermal/optical reflectance following the IMPROVE_A protocol. Organic species are analyzed by the thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). ..................................................................................................................................... 4-27 Figure 4-7. Correlations of emission factors between organic carbon (OC) and water soluble organic carbon (WSOC). ........................................................................................................... 4-30 Figure 4-8. Time series of emission concentration and engine operation parameters for Run S5 for 14:50–15:50 LST on Sep. 29, 2009. All emittant concentrations except the tailpipe CO2 were corrected for dilution and averaged by 60 s. Engine data were interpolated to second-by-second resolution.................................................................................................................................... 4-31 Figure 4-9. Time series of emission concentration and engine operation parameters for part of Run S5 from 14:50–15:50 LST on Sep. 29, 2009. The letters (a-e) in front of individual activity correspond to the bullet points discussed in the text. ................................................................. 4-32 Figure 4-10. Correlations between diluted emittants (without averaging or dilution correction) during Run S5 for a) NO vs. CO2, b) NO vs. black carbon (BC), c) CO vs. CO2, d) CO vs. BC, e) number concentration vs. BC, and f) PM2.5 vs. BC. .............................................................. 4-36 Figure 4-11. Averaged truck operating parameters at different sub-activities during Run S5. . 4-37 Figure 4-12. Fuel-based emission factor for idle, load-to-dump and dump-to-load sub-activities during Run S5. ........................................................................................................................... 4-38 Figure 5-1. Concentration of NMHC groups normalized to sum of PAMS compounds. Error bars indicate the larger of standard deviation and uncertainty of average of multiple runs. ............... 5-5 Figure 5-2. Averaged NMHC source profiles from CAT 797B-1 and CAT 797B-2 for species with abundance ≥1%: the height of each bar indicates the averaged fractional abundance for the indicated NMHC (normalized to the total of 55 PAMS compounds), while the dot shows the larger of standard deviation and uncertainty of average of multiple runs. .................................. 5-5 Figure 5-3. Averaged PM2.5 source profiles from the two CAT 797B mining trucks: the height of each bar indicates the average fractional abundance for the indicated chemical (normalized to PM2.5 mass concentration), while the dot shows the larger of standard deviation and uncertainty of average of multiple runs. ....................................................................................................... 5-13 Figure 5-4. PM2.5 source profiles for CAT 797B-1 and CAT 797B-2. ...................................... 5-14 

Page 11: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

ix

List of Figures continued Page Figure 5-5. Abundance of carbon fractions (percentage of PM2.5). ........................................... 5-14 Figure 5-6. Abundance of stable lead isotopes in the engine exhaust vs. natural abundance. .. 5-16 Figure 5-7. Relative abundance (normalized to total hopanes or steranes at each facility) of hopanes and steranes on CAT 797B-1 and CAT 797B-2. ......................................................... 5-25 Figure B-1. Time series plots of emission and engine parameters for Run S1 ............................B-2 Figure B-2. Time series plots of emission and engine parameters for Run S2 ............................B-3 Figure B-3. Time series plots of emission and engine parameters for Run S3 ............................B-4 Figure B-4. Time series plots of emission and engine parameters for Run S4 ............................B-5 Figure B-5. Time series plots of emission and engine parameters for Run S5 ............................B-6 Figure B-6. Time series plots of emission and engine parameters for Run A1 ...........................B-7 Figure B-7. Time series plots of emission and engine parameters for Run A2 ...........................B-8 Figure B-8. Time series plots of emission and engine parameters for Run A3 ...........................B-9 Figure C-1. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S1 (Testo did not work in this run, and the AE51 was overloaded) ...............................C-2 Figure C-2. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S2 (Testo did not work in this run, and the AE51 was overloaded). ..............................C-2 Figure C-3. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S3 (Testo did not work in this run). ................................................................................C-3 Figure C-4. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S4. ...................................................................................................................................C-4 Figure C-5. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S5. ...................................................................................................................................C-5 Figure C-6. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run A1 ...................................................................................................................................C-6 Figure C-7. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run A2 ...................................................................................................................................C-7 Figure C-8. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run A3 ...................................................................................................................................C-8

Page 12: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

x

Executive Summary Although engine emission certification tests are carried out on engine dynamometers in

laboratories under prescribed steady-state operating conditions, these tests do not represent conditions for real-world fuels, engine wear, and/or operating cycles. Representative emission measurements can only be obtained when the vehicle is under real-world use. An on-board emission measurement system was deployed in the Athabasca Oil Sands Region (AOSR) to quantify emissions from two Caterpillar 797B mining trucks (referred to as trucks CAT 797B-1 and CAT 797B-2, respectively) in two facilities (S and A) during fall 2009.

Canada had no emission standards for non-road compression-ignition diesel engines when the CAT 797Bs started operation in the AOSR. However, these engines are expected to meet the EPA Tier 1 standards, which regulate non-methane hydrocarbon (NMHC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM2.5) emissions. Test results show that both CAT 797Bs met the U.S. EPA Tier 1 limits. CO and PM2.5 were below the stricter Tier 2 limits. NMHC + NOx were within the Tier 1 limit, but exceeded the Tier 2 limit.

The NMHC emission factors (EFs, emissions/kg of fuel consumed) and source profile (fractional mass abundances of measured VOCs and PM2.5 constituents) were dominated by alkanes, cycloalkanes and alkenes, which are most likely from unburned diesel fuel. EFs for ammonia (NH3) and hydrogen sulfide (H2S) were usually lower than detection limits. Particle number EFs were in the range of 5.11014‒5.41015 particle/kg fuel, similar to the levels observed in other reports on diesel engine tests. EFs varied with heavy hauler operation. EFs for particle number and NOx were elevated while idling, while EFs for BC and PM2.5 were elevated during the lower engine load or downhill operation segments. Fuel consumption is lower during these portions of the operating cycle than for uphill and loaded operations, so total emission rates may be lower.

Total carbon accounted for 75‒92% of the total PM2.5. Elemental carbon (EC) contributed 37‒72% of PM2.5 mass, while organic carbon (OC) contributed 15‒55% of PM2.5 mass. Abundances for inorganic species, including water soluble inorganics and elemental components were minor. PM chemical profiles were similar to those reported elsewhere in the literature, and were associated with fuel and lubrication oil properties (Ca, P, S, and Zn). Identified non-polar particulate organic compounds were dominated by alkanes. Particle-associated polycyclic aromatic hydrocarbons (PAHs) are mostly two- to four- ring semi-volatile PAHs. Hopanes and steranes were detected in appreciable amount, mostly from residual lubrication oil. Most carbohydrates and organic acids were below detection limits. Key PM2.5 components as markers for diesel exhaust from mining trucks were OC, EC, particularly EC2 from thermal analysis, the OC/EC ratio, and some metals like Ca, P, S, and Zn, as well as hopanes and steranes.

Page 13: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

1-1

1. Introduction 1.1. Background

Diesel engines power a bus fleet, large pickup and delivery trucks, tractor-trailers, heavy haulers, generators, pumps, graders, and dozers in the Athabasca Oil Sands Region (AOSR). Older technology diesel engines can emit multiple chemical compounds that are harmful to human health, ecosystems, visibility, material damage, and climate change (Chow and Watson, 2011). Diesel exhaust is a complex mixture of gases and particles (Lloyd and Cackette, 2001). Gaseous components include hydrocarbons (HCs), carbon monoxide (CO), carbon dioxide (CO2), nitrogen (N2), nitrogen compounds, sulfur compounds, oxygen (O2), and water vapor (H2O). Diesel particulate matter (DPM) is composed mainly of organic and elemental carbon (OC and EC, respectively), with small amounts of nitrate (NO3

-), sulfate (SO4=), and trace

elements. Particle mass is predominated (80–95%) by particles in the < 2.5 µm (PM2.5) size range; ultrafine particles (UFP, < 0.1 µm) account for 1–20% of total particle mass but dominate (50–90%) particle numbers (Kittelson, 1998; Ris, 2007). CO, volatile organic compounds (VOCs, of which HCs are a subset), ammonia (NH3), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM) are among the criteria air contaminants (CAC) regulated in Canada due to their effects on the environment, human health, and property (Bachmann, 2007; Chow et al., 2007d). NOx and VOCs are precursors that form ozone (O3), another criteria contaminant.

Epidemiology studies show that gaseous and particulate emissions from diesel engines pose risks to human health (Chow et al., 2006a; 2006b; Ghio et al., 2012; Mauderly and Chow, 2008; Pope, III and Dockery, 2006). Short-term exposure to diesel emissions can cause transient irritation and inflammatory symptoms, while long-term exposure may result in lung damage and cause cancers (Gamble, 2010; Gamble et al., 2012; Ghio et al., 2012; Hesterberg et al., 2012; Inoue and Takano, 2011). The Multiple Air Toxics Exposure Study (MATES) in the South Coast Air Basin identified DPM as the largest contributor to carcinogenic risk in southern California (Burke and Glover, 2000; SCAQMD, 2010). Other risk agents in diesel exhaust include formaldehyde, 1,3-butadiene, benzene, toluene, ethylbenzene, and xylenes (Ban-Weiss et al., 2008a; Martins et al., 2006; Payri et al., 2009; Tang et al., 2007). The U.S. EPA has identified 21 important Mobile Source Air Toxics (MSATs), each of which has the potential to cause serious adverse health effects (U.S.EPA, 2000a; 2001).

Measurements of real-world diesel emissions (Watson et al., 2012) are necessary to establish accurate emission inventories and to explore the effects of emission control technologies. Although diesel engine exhaust is one of the largest contributors to environmental pollution problems worldwide, real-world emission measurements from diesel engines are scarce (Chow, 2001; Lloyd and Cackette, 2001). Limited data are available for the speciated emissions of VOCs (which have boiling points below that of water) and semi-volatile organic compounds (SVOCs; which have boiling points higher than water) and the physical and chemical nature of DPM. Engine emission certification tests are carried out on engine dynamometers. A limited number of facilities measure emissions from vehicles operated over standard cycles on stationary or portable chassis dynamometers (Yanowitz et al., 2000). For a given engine, the exhaust emission rate (ER) and composition vary with operational parameters, such as speed, load, fuel consumption, fuel type, ambient air temperature, and relative humidity (RH). Therefore, representative emission measurements can only be obtained when the vehicle is operated in real-world situations.

Page 14: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

1-2

1.2. Study Objectives

The goal of this project is to quantify emissions from nonroad diesel vehicles under real-world operating conditions. This requires the use of on-board emission measurement systems to quantify particle sizes and a larger number of chemical compounds than those included in certification tests.

Specific objectives are to:

Assemble, test, and apply an on-board measurement system to characterize nonroad emissions that more efficiently and realistically represent actual engines, fuels, and operating cycles than engine dynamometer certification tests.

Quantify fuel-specific emission factors (EFs) for heavy haulers in the Athabasca Oil Sands Region (AOSR) under real-world conditions. Quantified emittants include PM, non-methane hydrocarbons (NMHC), CO, NOx, SO2, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gases (GHG; including CO2, methane [CH4], and halocarbons).

Determine chemical source profiles for NMHC and PM2.5 for receptor modeling source apportionment, and speciated emission inventories.

1.3. Overview of the Report

Section 1 summarizes the background and effects of diesel engine exhaust emissions, and it states the study goal and objectives. Section 2 describes exhaust formation mechanisms, reviews literature from past studies, evaluates diesel exhaust test methods, and compares relevant diesel exhaust emission factors. Data availability and limitations are identified. Section 3 documents the on-board measurement system developed as part of this project and its application to emissions from Caterpillar 797B mining trucks in the AOSR during September, 2009. Experimental conditions, fuel specifications, data reduction procedures, and laboratory analysis methods are also described. Section 4 summarizes the measured diesel exhaust EF for different emittants. Section 5 explains the characteristics and chemical abundances of emission source profiles for NMHC and PM2.5. Section 6 summarizes study results, identifies sampling and measurement limitations, and specifies plans for improvement and future testing. Section 7 provides a bibliography and references. Appendix A shows vehicle emission rates. Temporal variations of emissions and engine parameters are shown in Appendix B. Appendix C documents ERs and EFs for the idle, load-to-dump, and dump-to-load portions of the heavy hauler operating cycle. Appendix D lists source profiles normalized by OC.

Page 15: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-1

2. Diesel Exhaust Emission Studies Mine fleets consist mostly of compression ignition (CI) diesel engines used in nonroad

applications. Nonroad refers to vehicles and engines in use beyond normal operation on public, paved roads. Typical nonroad mobile sources include land moving equipment and aggregate haulers. Typical nonroad stationary diesel engine sources include generators, pumps, and material and cargo handling equipment. Most nonroad applications are currently exempt from highway fuel taxes, on-road fuel formulation requirements, and after-engine exhaust treatment.

In the CI diesel cycle, a lean air-fuel mixture (i.e., stoichiometrically more air than fuel) is compressed to a much higher pressure than in gasoline-powered spark ignition (SI) engines to achieve auto-ignition. The lean mixture results in more complete combustion and reduced emissions of VOCs and CO, while NOx emissions increase due to higher combustion temperatures. Diesel engines also emit large amounts of primary PM, mostly during transient operating conditions such as high load (acceleration) and cold start. PM emission rates and particle size are influenced by the fuel sulfur (S) content that also causes diesel SO2 emissions. Some of the SO2 and NOx transform to PM2.5, while VOC and NOx emissions are O3 precursors.

Small engines (<37 kW and 37–75 kW) with direct injection are used in refrigeration units, portable generators, skid loaders, forklifts, water pumps, and turf mowers. Medium engines (75–130 kW) are used in backhoes, loaders, semi-portable generators, and air compressors. Large engines (130–450 kW) are used in large haul trucks, earthmoving equipment, tracked vehicles such as bulldozers, semi-portable and fixed generators, and cranes. Very large engines (>450 kW) are used in mining trucks, generators, marine vessels, locomotives, and certain construction equipment.

There is growing literature about nonroad diesel emissions, especially in recent years (Bar-Ilan et al., 2010; Chow et al., 2011a; Chung et al., 2008; Frey et al., 2008a; Lindgren et al., 2011; Liu et al., 2005; Nussbaum et al., 2009; Poola and Sekar, 2003; Rasdorf et al., 2010; Rogers et al., 2003; Saiyasitpanich et al., 2005; Sawant et al., 2007a; Shah et al., 2006b; Watson et al., 2008b; Yanowitz, 2003; Zhu et al., 2009; 2011), but the number of tests is small compared to on-road emission estimates.

2.1. Diesel Engine Emission Mechanisms

Figure 2-1 shows a conceptual framework of how diesel particulate matter is formed. Primary emissions include precursor gases (e.g., SO2, SO3, sulfuric acid (H2SO4), H2O, low-VOCs, and SVOCs) as well as fractal-like agglomerates of approximately solid spheres with diameters of ~20 nm. Primary diesel morphology differs from that of other fossil fuel combustion emissions, as shown in Figure 2-2. These particles form in oxygen-poor regions within the engine cylinder. As the exhaust is diluted and cooled after leaving the cylinder, a competition occurs between nucleation of the low-volatile species and condensation on the surface of the preexisting particles. The non-spherical soot particles have been observed to undergo compaction when low- and semi-volatile species condense on their surfaces (Saathoff et al., 2003). This process moves the particle size into the 0.05 to 1 µm accumulation mode with soot particles as cores and various species as condensates.

Page 16: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 2-1agglomera

Figure 2-2emissions, temperaturdifferent co

. Particle fortes of approxim

2. Scanning eb) coal comb

re combustion ombustion con

rmation procesmately solid sp

electron microustion emissioresidual oil ce

nditions for sim

sses in diesel pheres with diam

ographs (from ons, c) porous enosphere (Ch

milar fuels.

2-2

exhaust (Schnmeters of ~20

upper left) ofcoal char, d)

hen et al., 200

neider et al., 2nm.

f carbonaceousolid coal cha5). Note the

2005). “Soot”

s particles froar, e) residual odifferences in

refers to fract

om: a) diesel eoil char, and fshape owing

tal-like

engine f) high to the

Page 17: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-3

After dilution and cooling, particles with diameters in the range of 10-50 nm may form, especially when the primary soot particles are low in number. This nucleation is caused by the same H2SO4/water mechanisms observed in the atmosphere. Nucleation of organic vapors with low vapor pressures might derive from the recondensation of lubricating oil that passes through the engine (Cheung et al., 2010; Kittelson et al., 2006b; Kittelson et al., 2008; McDonald et al., 2004a; Phuleria et al., 2006; Phuleria et al., 2007; Tritthart et al., 1992; Zielinska et al., 2004), as shown by the dotted line in Figure 2-1. The H2SO4/SO4

= fraction in total mass emissions depends on the fuel S content (Arnold et al., 2006; Corro, 2002; Du and Yu, 2008; Kelly et al., 2003), while the OC fraction, consisting mainly of unburned fuel and lube oil, is influenced by engine operating conditions and is highest for engines operating at light loads when exhaust temperatures are low and soot formation is at its minimum. Figure 2-3 shows how size distribution can shift toward larger particles with load for a diesel generator. While the number size distribution changes substantially, the mass distribution remains similar owing to the dominance of mass emissions by particles >100 nm.

Shi and Harrison (1999) determined that binary nucleation of H2SO4/H2O with condensation of organic vapors provided a qualitative rationale for their observations, but calculated nucleation rates were too low to explain observations. This indicates an alternative mechanism involving NH3 as has been observed in atmospheric studies (Coffman and Hegg, 1995). Yu (2006) postulated that chemions might enhance nucleation in diesel exhaust.

Many new engines incorporate, and older engines are being fitted with, filters and traps that remove the primary soot from the exhaust stream (Barone et al., 2010; Gill et al., 2012; Hesterberg et al., 2011; Hsieh et al., 2011; Lizarraga et al., 2011; Tente et al., 2011; Tsai et al., 2011), usually at temperatures (>250 °C) that are well above ambient levels. Volatile materials, such as unburned fuel and volatilized lubrication oil, pass through the trap in the gas phase. Figure 2-4 shows that without the trap most particles are in the 30 to 300 nm size range. When the particle trap is added to the same engine, the 100 to 1000 nm particles are nearly two orders of magnitude lower, but the number in the <50 nm region increases. Owing to the lack of available surface on the larger particles, more of the SVOCs remain in the vapor phase, until supersaturation is achieved resulting in nucleation. This phenomenon occurs with low- and high-sulfur fuels, indicating that H2SO4 nuclei may not always be necessary for PM formation. Most of the newly formed nucleation particles do not have a solid core and can be evaporated or dissolved.

Nucleation can be enhanced by oxidation due to catalytic systems that regenerate the particle traps. Oxidation of SO2 to SO3, in combination with water, may lead to the formation of H2SO4 droplets. Although the occurrence of nucleation and the fuel sulfur content are correlated, the sulfur content of these particles is minor (Sakurai et al., 2003a; Sakurai et al., 2003b; Tobias et al., 2001). Their organic composition is similar to that of the lube oil with a small fraction similar to that of the fuel. This is consistent with the first step in H2SO4/H2O nucleation particle formation, followed by particle growth by condensation of organic species.

Page 18: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 2-3ambient coload. Notesame (Wat

Figure 2-4diamonds)provided bupon cooli

. Normalized onditions (left e that the numbtson et al., 2008

. Size distribua particle trap

by diesel soot ing, nucleate in

number distribpanel) and norber distribution8b).

utions (dn/dlogp (solid lines arimplies that sunto ultrafine pa

bution in exhaurmalized massn increases in s

gDp) from a here lognormal fiulfuric acid (H2

articles (Burtsch

2-4

ust for a 30 kWdistribution (r

size for increas

eavy-duty dieseits to the measu2SO4) and orgaher, 2005).

W diesel generaright panel) fosing load while

el engine with ured data). Thanic vapors can

ator (Gen Set) cor the same enge the mass dist

(open squareshe removal of tn reach supers

cooled and dilugine as a functtribution remai

s) and without the large surfacsaturation level

uted to tion of ins the

(filled ce area ls that,

Page 19: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-5

Low temperature volatilization may be an identifying characteristic of lubricating oil, as shown in Figure 2-5. Most of these particles disappear when the temperature rises above 250 °C while most of them remain below 120 °C. This suggests that the OC2 fraction (OC leaving a sample at 280 °C in an inert atmosphere) of the IMPROVE carbon analysis protocol (Chow et al., 2004; 2007a; 2011b) may be a reasonable indicator of the presence or absence of diesel particles in ambient samples (Watson et al., 1994).

PM formation processes are similar in principle, but different in detail, for gasoline-fueled SI engines. Kayes and Hochgreb (1999a; 1999b; 1999c) postulate that liquid fuel, in droplet form, or sometimes coating the cylinder, is ignited followed by locally fuel-rich diffusion burning. PM formation depends on the amount of in-cylinder liquid fuel and the probability that fuel and oxygen ignite in a diffusion flame. Particles are formed by heterogeneous-phase combustion and homogeneous gas-phase combustion, in particular under rich conditions. Once particles nucleate, they can grow or shrink, depending on available surface areas and vapor pressures. VOCs can be adsorbed on soot surfaces or can react with them.

The dynamic nature of diesel exhaust size distribution presents several complications for estimating emission rates and source profiles for these particles. For certification testing, exhaust is diluted with clean air to obtain temperatures ~50 °C. For chemical source profile testing, the exhaust is brought into a dilution and aging chamber (Chang et al., 2004; England et al., 2007a; 2007b) that brings the temperature down to ambient (typically 15 °C to 25 °C) and allows a residence time of 10–90 seconds.

The following mechanisms take place during the cooling and aging period:

Nucleation: When the atmosphere is supersaturated with a gas, spontaneous nucleation of small particles with ~1 nm diameter occurs. This dominates mostly in clean environments, as condensation onto existing particles is favored in more polluted environments.

Condensation and evaporation: When the ambient vapor pressure is higher than the saturation vapor pressure, condensation occurs and particles are formed or grow to larger sizes. Saturation pressures are higher over very small particles (>5 to 10 nm) than they are over larger particles owing to their curvature (Kelvin effect), so condensation is favored on larger particles and evaporation is favored on smaller particles. Evaporation occurs with increasing temperature and with dilution of the gaseous precursors below the saturation vapor pressure. Owing to the Kelvin effect (Thomson, 1871; Zhang and Wexler, 2002), small particles may evaporate with their vapors condensing on larger particles, thereby leading to growth.

Coagulation: Particles collide and combine with each other when concentrations are high, thereby decreasing their number and increasing their size.

Deposition: Particles diffuse and adhere to surfaces that they encounter.

For this reason, Zhang et al. (2004; 2005; 2004) propose the concept of “distance-based emission factors”, which considers several regions:

At the tailpipe, where the particles are most concentrated and are at the temperature of exhaust gases. In the exhaust plume, after the hot exhaust has been moderately diluted with background air and temperatures have been cooled to ambient air.

At the “roadside,” with roadside being somewhere between the curb and ~100 m downwind of the roadway.

Page 20: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 2-5particles ev

Ffrom the Californidiesel polevel parprobablyevolutionvariationdemonstrdescribed

Bcertificatcompositsolid sooOlder enmaterial becomes

2.2. C

Eengine an

“Grid levwould beadjacent t

. Volatility ofvaporate at tem

igure 2-6 shpoint of em

ia, the I-405owered vehicrticle numbe

y due to hign process. n, owing torates that sud above.

Burtscher (20tion methodstion distribu

ot particles wngines emit mand, therefoimportant a

Certification

EFs depend nd chassis dy

vel,” referrine similar to to a heavily t

f ultrafine partimperatures <25

hows an examissions and h5 (dominatedcles), there er and size gher temperaThe wintert

o the lowerubstantial v

005) reviewes. Owing t

utions changewith mean diamore soot p

ore, lower paafter soot-rem

n and Real-W

as much onynamometer

ng to the aveffective emtraveled road

icles in diesel e0 °C.

ample of hohow these md by gasolinis a large didistribution

atures and mtime comparr temperatu

variability is

ed the challeto the high e rapidly witameters of ~

particles thatarticle numbmoval traps t

World Test

n test methors with simu

2-6

verage over missions expdway.

emissions with

w particle nmight vary byne-powered ifference bet

n for the sammore photocrison (bottomures and phs to be exp

enges of devvapor pressth temperatu

~80 nm, and t have large

bers and largthat reduce t

Methods

od as actualulated in-use

a square ofperienced in

h a particle trap

number EFsy season. Fovehicles) a

tween the dme emissionchemical acm four panehotochemicapected amon

eloping morures over Uure and dilutvolatile mat surface are

ger diametersthe larger sur

l emissions.cycles; 2) in

f ~1,000 m n a neighbor

p (Burtscher, 2

might chanor both high

and the I-71downwind rons during sctivity hasteels) does noal activity. ng the four

re realistic PUFP, their ntion. Dieselterial with dieas for adsors. Gas-to-parface area fo

. Available n-plume me

on a side. rhood that i

2005). Most of

nge with dishways in sou0 (dominate

oadside and ummer. Th

ening the aeot show as m

This exar different s

PM diesel exnumber, sizel UFP consiiameters ~30rption of voarticle nucleor adsorption

methods arasurements m

This is not

f these

stance uthern ed by grid-

his is erosol much ample scales

xhaust e, and sts of 0 nm. olatile eation n.

re: 1) made

Page 21: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-7

by mobile or stationary instruments; 3) cross-plume measurements; and 4) on-board in-plume measurements that extract samples directly from the exhaust pipe. Each of these methods has advantages and disadvantages, and a more accurate estimate of diesel emissions will come only when results from all of these methods are systematically studied and integrated.

2.2.1. Engine and Chassis Dynamometer Testing

Engine emission certification tests are performed with an engine dynamometer on which the engine is mounted and its energy output is absorbed by a water brake. Diesel engines are usually tested at various speeds and loads in steady-state modes. Cold start and transient emissions are not included. Steady-state resistances are defined for certification of nonroad, marine and locomotive engines. As noted earlier, only a few large chassis dynamometers, on which the vehicle wheels are rotated on a roller with varying degrees of resistance that can represent a driving cycle (including hard accelerations and decelerations), are available. These are used to evaluate emissions from trucks and buses.

Engine and chassis dynamometer tests direct all of the exhaust to a full-scale dilution chamber and employ a constant volume system (CVS), laboratory-grade emissions measurement instrumentation, an environmental control system, and associated data acquisition and control systems. Different dilution ratios have yielded different particle size distributions because small particles form and combine with each other depending on their concentrations and mixing characteristics (Abdul-Khalek et al., 2003; Fujitani et al., 2012; Grieshop et al., 2009; Lipsky and Robinson, 2006; Liu et al., 2010b; Maricq et al., 2003; Mathis et al., 2005; Ronkko et al., 2006; Uhrner et al., 2007; Vouitsis et al., 2005). Temperatures in the dilution chamber are >50 °C, which also mitigates condensation of SVOCs into the PM phase at ambient temperatures (15–20 °C).

Several types of resistance can be applied to the roller in a chassis dynamometer to follow a number of test cycles (DieselNet, 2013a). The Federal Test Procedure (FTP) heavy-duty transient cycle for heavy-duty on-road engines (Code of Federal Regulations, 2013) includes transient (acceleration and deceleration) as well as steady-state components to better represent on-road conditions. The transient test accounts for the variety of heavy-duty trucks and buses driven in North American cities, including traffic in and around cities on roads and expressways. The FTP includes “motoring” segments and requires an electric dynamometer capable of both absorbing and supplying energy. The test consists of four phases simulating: 1) light urban traffic with few stops; 2) crowded urban traffic with frequent stops and starts; 3) freeway traffic; and 4) a repeat of the first phase. The average FTP load factor is about 25% of the maximum power at a given speed. The Urban Dynamometer Driving Schedule (UDDS) simulates urban driving, having a 1,060 second duration, an equivalent 8.9 km driving distance, an average speed of 30.4 km/hr, and a maximum speed of 93.3 km/hr, with accelerations and decelerations.

The U.S. EPA 13-mode steady-state cycle (U.S.EPA, 2004a) is included in supplemental tests when certifying engines for on-road vehicles. The Central Business District (CBD) cycle (Society of Automotive Engineers Recommended Practice SAE J 1376, 1993) is used for transit buses. Europe and Japan use only steady-state modes for certifying their on-road vehicles. The AVL 8-Mode test is a steady-state engine test procedure meant to correlate with the exhaust emission results over the U.S. FTP heavy-duty engine transient cycle. The test involves eight steady-state modes. The composite value is calculated by applying weighing factors on the modal results.

Page 22: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 2-6panels) andand winterin terms oroadside an

6. Distance-bad I-710 (right r (bottom four pof particle numnd grid level di

ased particle nupanels) freewapanels). I-710

mber per liter oistances.

umber emissioays in southern0 has more diesof fuel consum

2-8

on factors (witn California (Zsel trucks. Rigmed. Note the

th uncertainty Zhang et al., 20ght axis is in tee large differe

bars) downwin005) for summerms of km travence in emissi

nd of the I-40mer (top four pveled and left on rate betwe

05 (left panels) axis is en the

Page 23: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-9

The Not-to-Exceed (NTE) Cycle certifies that emissions are controlled over the full range of speed and load combinations commonly experienced in use. NTE testing does not involve a specific driving cycle of any specific length (mileage or time), but it includes driving of any type that could occur within the bounds of a defined control area, such as steady-state and transient operating under varying ambient conditions. Emissions are averaged over a minimum time of 30 s and then compared to applicable NTE emission limits.

Certification cycles for nonroad sources are multi-mode, steady-state and depend on the application. Backup generators are certified using the five-mode ISO-8178 D2 cycle. In this cycle, the engine is run at a rated speed of 1,800 RPM and five power levels: 100%, 75%, 50%, 25%, and 10%. EFs are measured at each level and a single EF is determined for the engine by applying the weighting factors provided in the CFR.

Manufacturers usually select the engine and the testing laboratory when applying for certification of a new engine design. Certification tests using laboratory and chassis dynamometers are intended only to determine compliance with standards, and are not intended to represent real-world emissions encountered in practice (Sawyer et al., 2000). None of the cycles cited above represent the driving patterns of a heavy oil sands hauler. However, certification measurements are often the only ones available for constructing emission estimates.

2.2.2. Roadside and Mobile Laboratory In-Plume Measurements

Mobile Emission Laboratories (MELs) can sample exhaust emissions under real-world operating conditions by extracting a portion or all of the exhaust into an analysis system while the vehicle is operating (Canagaratna et al., 2004; Cocker et al., 2004a; 2004b; Durbin et al., 2007a; 2008; Gordon et al., 2012; Herndon et al., 2005; Jiang et al., 2005; Johnson et al., 2005; Kittelson et al., 2004; 2006a; Kozawa et al., 2009; Maik et al., 2009; Morawska et al., 2007; Ning et al., 2012; Nussbaum et al., 2009; Pirjola et al., 2004; Sawant et al., 2007b; Schneider et al., 2005; Shah et al., 2004; 2005; 2006a; 2006b; Shorter et al., 2005; Tang and Wang, 2006; Vogt et al., 2003; Wang et al., 2009b; Yli-Tuomi et al., 2005; Zavala et al., 2006; 2009a; 2009b)

Using a mobile laboratory, Brown et al. (2000) showed the importance of load and grade on increasing NOx emissions. Johnson et al. (2005) applied their mobile laboratory as a chase vehicle on interstate highways in the Minneapolis metropolitan area. Using the difference between relative volumes of heavy-duty diesel and light-duty gasoline vehicles on weekdays and weekends, they estimated contributions from each type of emitter. Ultrafine particle emissions were 1.34 ± 0.2 × 1016 particles/kg of fuel for diesel-fueled engine exhaust and 7.1 ± 1.6 × 1015 particles/kg for gasoline-fueled engine exhaust. Heavy-duty diesel engines produced much higher absolute emissions owing to their higher fuel consumption per distance traveled. This work represented on-road summer conditions, and it is believed that gasoline ultrafine particle emissions might be higher for cold start (the period just after ignition and before engine and control device temperatures stabilize) and colder ambient conditions.

Shah et al. (2005) applied the University of California, Riverside (UCR) mobile laboratory to quantify emission rates of polycyclic aromatic hydrocarbons (PAHs) and n-alkane compounds from on-road emissions of nine heavy-duty diesels following the California Air Resources Board’s (ARB) Four Phase Cycle. Large differences in emission rates occurred over the different phases of the cycle. Creep phase (slow acceleration) fleet average emission rates of PAHs and n-alkanes were an order of magnitude higher than those for the Cruise phase (constant speed). PAH and n-alkane source profiles remained relatively constant for the different modes of operation..

Page 24: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-10

2.2.3. Cross-Plume Measurements

Cross-plume measurements consist of remote sensing instruments that measure transmission and scattering in the infrared (IR), visible (VIS), and ultraviolet (UV) portions of the spectrum across an exhaust plume. These can be related to chemical and physical properties in the exhaust that differ from those in the atmosphere (Barber et al., 2004; Bishop et al., 2012; Bishop and Stedman, 2008; Burgard et al., 2006a; 2006b; Burgard and Provinsal, 2009; Chan et al., 2007; Chan and Ning, 2005; Guo et al., 2007; Kuhns et al., 2004; Mazzoleni et al., 2004a; 2004b; 2010; Schifter et al., 2008; Supnithadnaporn et al., 2011; Thoma et al., 2008; Watson et al., 2007)

Cross-plume systems measure the mass column content of several emittants and consequently obtain fuel-based EFs (g emittant/kg fuel consumed) by normalizing the measurements of individual emittant to the total carbon content of the column measurement. With this method EFs can be obtained without a priori knowledge of the changing plume dilution as the exhaust plume enters the atmosphere.

Gaseous cross-plume sensors use IR absorption for CO, CO2, and some VOCs. UV absorption is used for NO. Cross-plume sensors can measure gaseous EFs for large numbers of individual vehicles (>1,000 per hour), albeit under a limited variety of operating conditions largely determined by monitoring location. These measurements have a high temporal resolution (~10 ms) resulting in 20 to 50 measurements before, during, and after vehicle passage through the measurement path. Since the carbon mass fraction of automotive fuel can be measured or assumed ~86%, the ratio of the two mass column contents can be used to calculate the mass emission of the emittant of interest per mass of fuel consumed, yielding a fuel-based EF. Remote sensing studies have shown that comparatively few vehicles cause a majority of the emissions, that is, gaseous EFs do not follow a symmetric frequency distribution (Zhang et al., 1994). This emphasizes the importance of measuring emissions from many engines to obtain meaningful emission distributions.

For exhaust VOCs, the situation is more complex because VOC consists of hundreds of individual compounds. In fresh exhaust, these are typically non-oxygenated hydrocarbons, which are usually quantified as NMHC because CH4 is not considered to be a major cause of O3 formation in rural and urban areas and it is usually a small component of engine VOC emissions. Concern about engine CH4 emissions is changing, however, as CH4 is a potent GHG.. A cross-plume monitor measures absorption spectra for individual species that have distinctive IR absorption patterns and that are abundant in engine exhaust. Cross-plume PM measurements have quantified the opacity of exhaust plumes, which assumes they contain a large quantity of black carbon (BC) that efficiently absorbs IR (Moosmüller et al., 2001; Schnaiter et al., 2003; Weingartner et al., 2003). However, as engines and fuels have improved, the BC content of diesel engine exhaust has decreased, even though non light-absorbing PM emissions are still important. A Lidar-based system that measures backscattered light (Barber et al., 2004; Kuhns et al., 2004; Mazzoleni et al., 2004b; Mazzoleni et al., 2010; Moosmüller et al., 2003) is also available.

2.2.4. On-Board In-Plume Measurements

Because space and power are limited on a typical vehicle, on-board instrumentation must be portable, small, and low in power consumption. When this study was being planned during 2008, several portable emission measurement systems (PEMS) were being developed, and were evaluated, for on-board monitoring of criteria contaminants for potential certification testing

Page 25: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-11

(Boughedaoui et al., 2008; Brunet et al., 2008; Chen et al., 2007a; Collins et al., 2007; Durbin et al., 2007b; Frey et al., 2003; Gautam et al., 2001; Gouriou et al., 2004; Hung et al., 2007; Jazcilevich et al., 2007; Joumard et al., 2003; Krishnamurthy et al., 2007; Krishnamurthy and Gautam, 2006; Lenaers, 1996; Lenaers et al., 2003; Lenaers and DeVlieger, 1997; Nakamura et al., 2003; Unal et al., 2004; Vlieger, 1997; Weaver and Balam-Almanza, 2001; Yao et al., 2007; Zhang and Frey, 2008; Zhang and Frey, 2006).

Durbin et al. (2007b) compared four commercial PEMS with a MEL for exhaust from a backup generator over steady-state loads and a diesel truck on transient and steady-state chassis dynamometer cycles. The best performing PEMS was within 12% of the MEL for NOx. For the generator testing, several PEMS agreed with MEL measurements to within 5% for CO2. For the chassis dynamometer testing, the best PEMS agreement was within 5% for CO2, but the others showed larger discrepancies. PM measurements for the generator testing were 20% lower than those of the MEL for the best performing PEMS.

Watson et al. (2008b) evaluated the following PEMS in a MEL comparison:

Clean Air Technologies, Inc.'s (CATI, test.cleanairt.com) Montana system that measures NOx, HC, CO, and CO2 gases and infers PM mass emissions from laser light scattering.

Engine, Fuels and Emissions Engineering's (www.efee.com) Ride-Along Vehicle Emission Measurement (RAVEM) system, which measures NOx, HC, CO, and CO2 and quantifies PM by integrated filter sampling.

Horiba's (www.ats.horiba.com/obs2000.html) OBS-2000 series system that measures NOx, CO, total HC (THC), and CO2.

Sensors, Inc.'s (www.sensors-inc.com) Semtech D system that measures NO, nitrogen dioxide (NO2), THC, CO, and CO2.

The PEMS and the MEL simultaneously sampled the diluted exhaust generated by a CAT 3406C diesel backup generator operating at 5%, 25%, 65%, and 100% of full power. Figure 2-7 compares the differences between each PEMS with respect to the MEL operated in Federal Reference Method (FRM) mode. The agreement for CO2 was good for PEMS1, 2, and 4, with PEMS4 having the highest overall difference, about 10%. The agreement for PEMS3 was good at the highest engine load and flow rates, but the difference was about 50% at the lowest engine load. The PEMS3 manufacturer found a failed component that caused the errors at the low flow rates. NOx values agreed within ~10% for PEMS2 and 4. PEMS3 showed good agreement at high loads, with larger differences at the lowest load. For PEMS3, the NOx/CO2 ratios, which minimize the effects of flow rate inaccuracies, were within 10% of those measured by the MEL FRM for all engine loads. PEMS1 values were 12–30% higher. Some of the differences in NOx emissions for the PEMS1 are related to the omitted humidity correction (~10%) and a bias of about the same magnitude observed with the calibration gases, since the flow rates agree with those of the MEL FRM. PEMS THC values were much higher than those quantified by the MEL FRM. Since PEMS1, 2, and 4 had accurate flow measurements, the source of the difference must be in the measured concentration. As these instruments (including the MEL) are designed for certification rather than real-world emission purposes, deviations are expected at these low emission rates. PEMS1 and 3 PM emissions were 20% to 80% lower than those determined by the MEL, but the differences were smaller at higher engine loads. Actual PM emissions were much lower than the certification limits.

Page 26: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-12

a) b)

c) d)

Figure 2-7. Over (positive) or under (negative) estimation (y-axis) of different on-board portable emission measurement systems (PEMS) relative to the mobile emissions laboratory (MEL) emission rate for: a) nitrogen oxides (NOx), b) carbon dioxide (CO2), c) total hydrocarbons (THC), and d) particulate matter (PM). MEL emission rates are listed above each set of data. (PEMS are labeled PEMS1, PEMS2, PEMS3, and PEMS4 owing to non-disclosure agreements with the manufacturers made prior to the test.)

Progress has been made in PEMS design, testing, commercialization, and applications since 2008 (Bishop et al., 2009; Casanova and Fonseca, 2012; Farzaneh et al., 2009; Fontaras et al., 2012; Frey et al., 2010; Hallmark and Qiu, 2012; Hu et al., 2012; Johnson et al., 2009; Johnson et al., 2011; Khan et al., 2012; Kousoulidou et al., 2013; Liu et al., 2009; Liu et al., 2010a; Ma et al., 2012; Rasdorf et al., 2010; Wang and Fu, 2010; Wang et al., 2012a; Weiss et al., 2011; Weiss et al., 2012; Wu et al., 2012; Zhai et al., 2009), including the PEMS assembled for this and other real-world emission characterization studies in the AOSR (Wang et al., 2012b; Watson et al., 2010; 2012; 2013a; 2013b). The main drawbacks of commercially-available PEMS for AOSR emission studies are the limited emittants measured, usually only criteria contaminants, and the need for line power or fuel-powered generators. Microsensors for atmospheric pollutants are undergoing rapid development, (Capitan-Vallvey and Palma, 2011; Marc et al., 2012; Ohira and Toda, 2008), and PEMS need the ability to add and replace older technology with more sensitive, accurate, and precise sensors as they become available.

2.3. Nonroad Diesel Engine Emission Standards

Prior to the Canadian Environmental Protection Act (CEPA) (Environment Canada, 1999), there was no federal authority for regulating Canadian engine emissions. Under the December 2000 Ozone Annex to the 1991 Canada-United States Air Quality Agreement

NOx Emission Rates:PEMS Relative to FRM

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

5% 25% 65% 100%Load

PEM S1 PEM S2 PEM S3 PEM S4

12.5 g/hp-hr7.1 g/hp-hr 6.7 g/hp-hr 5.7 g/hp-h r

CO2 Emission Rates: PEMS Relative to FRM

-60%

-50%

-40%

-30%

-20%

-10%

0%

5% 25% 65% 100%Load

PEM S1 PEM S2 PEM S3 PEM S4

THC Emission Rates:PEMS Relative to FRM

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

5% 25% 65% 100%Load

PEMS1 PEM S2 PEMS4

0.98 g/hp-hr

0.08 g/hp-hr

0.04 g/hp-hr

0.04 g/hp-hr

PM Emission Rates:PEMS Relative to FRM

-100%

-90%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

5% 25% 65% 100%Load

PEMS1 PEMS31.2 g/hp-hr

0.18 g/hp-hr

0.12 g/hp-hr 0.1 g/hp-hr

Page 27: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-13

(U.S.EPA, 2000b), Canada committed to establishing emission regulations under CEPA 1999 for new nonroad engines that aligned with those in the U.S., as summarized in Table 2-1. These are to be consistent with emission limits applied to on-road vehicles and engines, but with a longer implementation schedule and a greater variety of rated power levels. Tiers 1, 2, and 3 have been met through advanced engine design with no use of exhaust gas aftertreatment (Hesterberg et al., 2011). Compliance with Tier 4 standards is expected to require the use of aftertreatment control technologies (Johnson, 2009; Liu and Gao, 2011). The European standards (EUROI-IV) are listed in Table 2-2 for comparison; they are similar, but not identical, to the North American limits.

For Tier 1, 2, and 3 standards, exhaust emissions for NOx, CO, HC, and NMHC are measured using the procedures in 40 Code of Federal Regulations (CFR) Part 89 Subpart E; Particulate matter (PM) exhaust emissions are measured using the California Regulations for New 1996 and Later Heavy-Duty Off-Road Diesel Cycle Engines. For Tier 4 standards, engines are tested for transient and steady-state exhaust emissions using the procedures in 40 CFR Part 1039 Subpart F. Transient standards do not apply to engines below 37 kilowatts (kW) before the 2013 model year, constant-speed engines, engines certified to Option 1, and engines above 560 kW. Tier 2 and later model naturally aspirated nonroad engines shall not discharge crankcase emissions into the atmosphere unless these emissions are permanently routed into the exhaust. This prohibition does not apply to engines using turbochargers, pumps, blowers, or superchargers. In lieu of the Tier 1, 2, and 3 standards for NOx, NMHC + NOx, and PM, manufacturers may elect to participate in the averaging, banking, and trading (ABT) program described in 40 CFR Part 89 Subpart C.

2.4. Engine Emission Models

The emphasis for mobile source emission models has been on NOx and NMHC EFs, mostly related to excessive O3 concentrations, for on-road engines. Emission models weight emission rates from engine and vehicle certification tests by model year, portions of the driving cycle, control technology, and deterioration to estimate emissions per distance travelled. Modeled emissions often disagree with real-world emission measurements (Ajtay et al., 2008; Bai et al., 2007; Corsmeier et al., 2005; Fujita et al., 2012; Ketzel et al., 2007; Park et al., 2011; Smit et al., 2008; Wallace et al., 2012), but agreement has been improving as models are revised. PM10, PM2.5, and UFP emissions have been treated in a rudimentary fashion. PART5 (U.S.EPA, 1995) used a single PM EF for each model year, regardless of the vehicle type, and weighted the overall EF by the estimated vehicle miles traveled (VMT) by each model year. MOBILE6.2 (U.S.EPA, 2008a) added emission estimates of air toxic pollutants such as: benzene, methyl tertiary butyl ether (MTBE), 1,3-butadiene, formaldehyde, acetaldehyde, and acrolein. MOBILE 6.2 estimates PM2.5 from 28 vehicle types as well as OC and EC from diesel-fueled vehicles. One of the disadvantages of MOBILE 6.2-calculated PM2.5 EFs is that they reflect only vehicle type and age and ignore the influences of fuel type, driving mode, and maintenance (McCarthy et al., 2006). MOBILE 6 EFs have little relevance to nonroad emissions, but they are often used as default values when more specific information is lacking.

California uses EMFAC2007 (EMission FACtor) model (CARB, 2007) for on-road emission estimates. EMFAC2007 uses the same methodology as MOBILE6, but it is tailored to California’s on-road emissions standards, vehicle mixes, and planning needs. EMFAC2007 estimates SO2, NOx, VOC, CO, PM, and lead (Pb) emission factors in g/mile for 1965 and newer on-road vehicles powered by gasoline, diesel, and electricity for calendar years 1970 through 2040. Emissions are reported for ten broad on-road vehicle classes defined by usage and weight.

Page 28: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-14

Table 2-1. Nonroad Compression-Ignition Engines–Exhaust Emission Standards for Canada and the U.S. (DieselNet, 2013b; Environment Canada, 2005; U.S.EPA, 2004b). Rated Power

(P) (kW)

Tier Model Year NMHC (g/kW-

hr)

NMHC + NOx

(g/kW-hr) NOx

(g/kW-hr)

PM (g/kW-

hr)

CO (g/kW-

hr) P < 8 1 2000-2004 - 10.5 - 1.0 8.0

2 2005-2007 - 7.5 - 0.80 8.0 4 2008+ - 7.5 - 0.40a 8.0

8 ≤ P < 19 1 2000-2004 - 9.5 - 0.80 6.6 2 2005-2007 - 7.5 - 0.80 6.6 4 2008+ - 7.5 - 0.40 6.6

19 ≤ P < 37 1 1999-2003 - 9.5 - 0.80 5.5 2 2004-2007 - 7.5 - 0.60 5.5 4 2008-2012 - 7.5 - 0.30 5.5

2013+ - 4.7 - 0.03 5.5 37 ≤ P < 56 1 1998-2003 - - 9.2 - -

2 2004-2007 - 7.5 - 0.40 5.0 3b 2008-2011 - 4.7 - 0.40 5.0

4 (Option 1)c 2008-2012 - 4.7 - 0.30 5.0 4 (Option 2)c 2012 - 4.7 - 0.03 5.0

4 2013+ - 4.7 - 0.03 5.0 56 ≤ P < 75 1 1998-2003 - - 9.2 - -

2 2004-2007 - 7.5 - 0.40 5.0 3 2008-2011 - 4.7 - 0.40 5.0 4 2012-2013d - 4.7 - 0.02 5.0

2014+e 0.19 - 0.40 0.02 5.0 75 ≤ P < 130 1 1997-2002 - - 9.2 - -

2 2003-2006 - 6.6 - 0.30 5.0 3 2007-2011 - 4.0 - 0.30 5.0 4 2012-2013d - 4.0 - 0.02 5.0

2014+ 0.19 - 0.40 0.02 5.0

Page 29: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-15

Table 2-1. Continued.

Rated Power (P)

(kW)

Tier Model Year NMHC (g/kW-

hr)

NMHC + NOx

(g/kW-hr) NOx

(g/kW-hr)

PM (g/kW-

hr)

CO (g/kW-

hr) 130 ≤ P < 225 1 1996-2002 1.3f - 9.2 0.54 11.4

2 2003-2005 - 6.6 - 0.20 3.5 3 2006-2010 - 4.0 - 0.20 3.5 4 2011-2013d - 4.0 - 0.02 3.5

2014+e 0.19 - 0.40 0.02 3.5 225 ≤ P < 450 1 1996-2000 1.3f - 9.2 0.54 11.4

2 2001-2005 - 6.4 - 0.20 3.5 3 2006-2010 - 4.0 - 0.20 3.5 4 2011-2013d - 4.0 - 0.02 3.5

2014+e 0.19 - 0.40 0.02 3.5 450 ≤ P < 560 1 1996-2001 1.3f - 9.2 0.54 11.4

2 2002-2005 - 6.4 - 0.20 3.5 3 2006-2010 - 4.0 - 0.20 3.5 4 2011-2013d - 4.0 - 0.02 3.5

2014+e 0.19 - 0.40 0.02 3.5 560 ≤ P < 900 1 2000-2005 1.3f - 9.2 0.54 11.4

2 2006-2010 - 6.4 - 0.20 3.5 4 2011-2014 0.40 - 3.5 0.10 3.5

2015+e 0.19 - 3.5g 0.04l 3.5 P > 900 1 2000-2005 1.3f - 9.2 0.54 11.4

2 2006-2010 - 6.4 - 0.20 3.5 4 2011-2014 0.40 - 3.5g 0.10 3.5

2015+e 0.19 - 3.5g 0.04h 3.5 aHand-startable air-cooled direct injection engines may optionally meet a PM standard of 0.60 g/kW-hr. These engines may optionally meet Tier 2 standards through the 2009 model years. In 2010 these engines are required to meet a PM standard of 0.60 g/kW-hr. bThese Tier 3 standards apply only to manufacturers selecting Tier 4 Option 2. Manufacturers selecting Tier 4 Option 1 will be meeting those standards in lieu of Tier 3 standards. cA manufacturer may certify all their engines to either Option 1 or Option 2 sets of standards starting in the indicated model year. Manufacturers selecting Option 2 must meet Tier 3 standards in the 2008-2011 model years. dThese standards are phase-out standards. Not more than 50% of a manufacturer's engine production is allowed to meet these standards in each model year of the phase out period. Engines not meeting these standards must meet the final Tier 4 standards. eThese standards are phased in during the indicated years. At least 50% of a manufacturer's engine production must meet these standards during each year of the phase in. Engines not meeting these standards must meet the applicable phase-out standards. fFor Tier 1 engines the standard is for total hydrocarbons. gThe NOx standard for generator sets is 0.67 g/kW-hr. hThe PM standard for generator sets is 0.03 g/kW-hr.

Page 30: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-16

Table 2-2. Emission standards for nonroad diesel engines in the European Union (DieselNet, 2013b). Rated Power (P)

(kW) Stage Date NMHC

(g/kW-hr) NMHC + NOx

(g/kW-hr) NOx

(g/kW-hr) PM

(g/kW-hr) CO

(g/kW-hr) 18 ≤ P < 37 II 2001.01 1.5 - 8.0 0.8 5.5

III A 2007.01 - 7.5 - 0.6 5.5 37 ≤ P < 75 I 1999.04 1.3 - 9.2 0.85 6.5

II 2004.01 1.3 - 7.0 0.4 5.0 III A 2008.01 - 4.7 - 0.40 5.0 III B 2012.01 0.19 - 3.3 0.025 5.0

75 ≤ P < 130 I 1999.01 1.3 - 9.2 0.70 5.0 II 2003.01 1.0 - 6.0 0.30 5.0

III A 2007.01 - 4.0 - 0.30 5.0 III B 2012.01 0.19 - 3.3 0.025 5.0 IV 2014.01 0.19 - 0.4 0.025 5.0

130 ≤ P < 560 I 1999.01 1.3 - 9.2 0.54 5.0 II 2002.01 1.0 - 6.0 0.20 3.5

III A 2006.01 - 4.0 - 0.2 3.5 III B 2011.01 0.19 - 2.0 0.025 3.5 IV 2014.01 0.19 - 0.4 0.025 3.5

Table 2-3. Emission standards of off-road compression-ignition engine emission regulations in Canada (Environment Canada, 2005; 2011).

Power (P) kW

Tier Year NMHC (g/kW-hr)

NOx (g/kW-hr)

NMHC + NOx (g/kW-hr)

CO (g/kW-hr)

PM (g/kW-hr)

P < 8 Tier 2 2006-2012 7.5 8.0 0.80 Tier 4 2012+ 7.5 8.0 0.40

8 ≤ P < 19 Tier 2 2006-2012 7.5 6.6 0.80 Tier 4 2012+ 7.5 6.6 0.40

19 ≤ P < 37 Tier 2 2006-2012 7.5 5.5 0.60 Tier 4 2012-2014 7.5 5.5 0.30

2015+ 4.7 5.5 0.03 37 ≤ P < 75 Tier 2 2006-2007 7.5 5.0 0.40

Tier 3 2008-2012 4.7 5.0 Tier 4 2012-2014 4.7 5.0 0.02

2015+ 0.19 0.40 5.0 0.02 75 ≤ P < 130 Tier 2 2006 6.6 5.0 0.30

Tier 3 2007-2012 4.0 5.0 Tier 4 2012-2014 4.0 5.0 0.02

2015+ 0.19 0.40 5.0 0.02 130 ≤ P <

225 Tier 3 2006-2012 4.0 3.5 0.20 Tier 4 2012-2014 4.0 3.5 0.02

2015+ 0.19 0.40 3.5 0.02 225 ≤ P <

450 Tier 3 2006-2012 4.0 3.5 0.20 Tier 4 2012-2014 4.0 3.5 0.02

2015+ 0.19 0.40 3.5 0.02 450 ≤ P <

560 Tier 3 2006-2012 4.0 3.5 0.20 Tier 4 2012-2014 4.0 3.5 0.02

2015+ 0.19 0.40 3.5 0.02 P > 560 Tier 2 2006-2012 6.4 3.5 0.20

Tier 4 2012-2014 0.40 3.5 3.5 0.04 2015+ 0.19 3.5 3.5 0.04

Page 31: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-17

The NONROAD emission model (U.S.EPA, 2008b) covers emissions from over 260 specific equipment types within ten broad categories: 1) airport ground support; 2) agricultural; 3) commercial; 4) construction and mining; 5) industrial; 6) lawn and garden; 7) lodging; 8) railway maintenance; 9) recreational vehicles; and 10) recreational marine equipment. Emission factors embedded in the NONROAD model result from Tier 1 and Tier 2 engine test certification data (in g/hp-hr) adjusted for engine deterioration, fuel sulfur content, Reid vapor pressure (RVP), ambient temperature, etc. PM fractions in the emissions were retrieved from other tests. However, evaluations of the uncertainty of emissions determined from the NONROAD model are scarcer than those for the MOBILE and EMFAC models. The NONROAD emission model does not estimate emissions for commercial marine, locomotive, aircraft, or military nonroad equipment. Emittants include SOx, NOx, VOC, CO, CO2, and PM. NONROAD can be used for geographical areas encompassing the entire country, or down to the state, county, and sub-county level. It can be used to estimate current year emissions as well as to project future year emissions and backcast past year emissions for calendar years 1970 through 2050.

The MOtor Vehicle Emission Simulator (MOVES) (U.S.EPA, 2013) is intended to combine on-road and nonroad emission estimates. MOVES development is constant, with the current version being MOVES2010. MOVES estimates energy consumption, includes an array of advanced technology vehicles, and models periods of extended idling by heavy-duty vehicles. Both mileage-based and fuel/energy-based EFs can be used. Environment Canada switched to MOVES in the summer of 2012 with new and additional spatial data to improve the transportation emission estimates (Environment Canada, 2012a).

Engine exhaust emissions depend on driving conditions. The Federal Test Procedure (FTP) serves as a standard for certification emission testing of on-road engines (U.S.EPA, 1978; U.S.EPA, 1996). The FTP is adequate for certification, but it has been found to underrepresent the transitory nature of urban driving and emissions from cold starts (Pollack et al., 1998; St.Denis et al., 1994; Watson et al., 1990).

2.5. Nonroad Diesel Engine Emission Factors

Heavy-duty diesel engine certification testing provides emissions in mass per unit work done (grams per brake horsepower-hour [g/bhp-hr] or grams per brake kilowatt hour [g/bkW-hr]). It is specific to the engine and not for its ultimate use. For emission inventories, EFs are required in units of mass per distance traveled (e.g., grams per kilometer [g/km] or grams per mile [g/mi]) for relation to vehicle activity, in terms of vehicle kilometers traveled (VKT) or VMT. VKT and VMT are not usually relevant to nonroad applications, as stationary units don’t move and mobile sources spend much time idling or in abrupt starts and stops. Fuel-based emission factors (g/kg fuel) are often used in these cases as the amount of fuel used for an activity is easier to estimate than VMT or VKT.

Nonroad diesel engine EFs are typically obtained from steady-state tests on new engines and provided by manufacturers (Kean et al., 2000). Corrections factors are applied by U.S. EPA to adjust for non-steady-state in-use operating conditions, and were used to develop the NONROAD model (U.S.EPA, 2008b) also adjusts these emission factors to account for the effects of fuel S, as well as the age of the engine by a so called ‘deterioration’ factor. Steady state EFs of new engines used in the NONROAD model are listed in Table 2-4.

Real-world emission measurements from nonroad engine exhaust are limited. Frey et al. (2008a) conducted a variety of nonroad engines under in-use conditions running on B20 biodiesel versus petroleum diesel (B0) using a commercial PEMS. Measured fuel-based EFs are

Page 32: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-18

summarized in Table 2-5 by converting gallons of fuel in the original table to kg of fuel, assuming a diesel density of 0.85 kg/L. Table 2-5 shows that engines using B20 produced similar NO, but less NMHC, CO, and PM compared to tests with petroleum diesel. Table 2-5 also lists average EFs from three Tier 1 excavators (Abolhasani et al., 2008). This study also shows that the EFs differed during idling compared with other modes, while the differences among non-idling modes were minor.

Zhu et al. (2009) tested 14 military diesel generators with rated capacities of 10, 30, 60, and 100 kW under different load conditions. The fleet average EFs are 318.4 g/kg, 177.3 g/kg, and 1.20.6 g/kg for NOx, CO, and PM respectively.

2.6. Engine Exhaust Source Profiles

Source profiles describe the relative abundance of each chemical species related to a normalizing factor. Most PM profiles are normalized to PM2.5 mass emissions for compatibility with ambient samples. PM2.5 source profiles from engine certification tests are not useful because the temperature in these tests (~50°C) does not allow for the condensation of organic vapors that occurs when exhaust cools to ambient levels (~20 °C), and the filter media are not amenable to the necessary analysis methods. Engine certification tests often miss high emitting vehicles and cold starts that have higher emission rates than other parts of the operating cycle and exhibit different source profiles (Watson et al., 2002).

VOC source profiles are expressed in ratios of µg/m3 (which assumes all of the compounds can be identified) or parts per billion carbon (ppbC). They are normalized to a total VOC measurement (which is not always available) or to the sum of the most commonly measured compounds. Watson et al. (2001) recommend VOC normalization to the sum of the 55 commonly measured compounds (in ppbC) obtained by the Photochemical Air Monitoring Stations (PAMS) (U.S.EPA, 2008c).

Diesel engine exhaust contains high OC and EC abundances, but on-road EC abundances have been decreasing over time as more modern engine designs and fuels penetrate the fleet (Chen et al., 2012; Chow et al., 2011a; Murphy et al., 2011; Watson et al., 1994). Nonroad engines are often of older design and may use high sulfur fuels, so the EC abundances are still substantial.

OC and EC are insufficient to distinguish diesel exhaust contributions from other carbon-containing sources such as biomass burning (e.g., wildfires, prescribed burns, and residential combustion), cooking, biogenics (e.g., pollens, spores, fungi), humic-like substances (HULIS), and secondary organic aerosol (SOA; formed from the oxidation of VOCs). More specific organic compounds are being measured along with elements, ions, and carbon fractions to better distinguish diesel exhaust contributions from those of other carbon-containing sources (Chow et al., 2007b; 2007c; Labban et al., 2006; Wang et al., 2009a; Watson et al., 2008a).

Page 33: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-19

Table 2-4. Steady-state emission factors for nonroad CI engines (U.S.EPA, 2008b).

Engine Power (P) (kW or hp)

Tech Type

NMHC (g/kg)

CO (g/kg)

NOx (g/kg)

PM (g/kg)

0 < P ≤ 8 kW 0 < P ≤ 11 hp

Base 8.09 26.96 53.92 5.39 Tier 0 8.09 26.96 53.92 5.39 Tier 1 4.11 22.18 28.20 2.41 Tier 2 2.97 22.18 23.19 2.70 Tier 4A 2.97 22.18 23.19 1.51 Tier 4B 2.97 22.18 23.19 1.51

8 < P ≤ 12 kW 11 < P ≤ 16 hp

Base 9.17 26.96 45.83 4.85 Tier 0 9.17 26.96 45.83 4.85 Tier 1 2.36 11.65 23.94 1.44 Tier 2 2.36 11.65 23.94 1.44 Tier 4A 2.36 11.65 23.94 1.51 Tier 4B 2.36 11.65 23.94 1.51

12 < P ≤ 19 kW 16 < P ≤ 25 hp

Base 9.17 26.96 45.83 4.85 Tier 0 9.17 26.96 45.83 4.85 Tier 1 2.36 11.65 23.94 1.44 Tier 2 2.36 11.65 23.94 1.44 Tier 4A 2.36 11.65 23.94 1.51 Tier 4B 2.36 11.65 23.94 1.51

19 < P ≤ 37 kW 25 < P ≤ 50 hp

Base 9.71 26.96 37.21 4.31 Tier 0 9.71 26.96 37.21 4.31 Tier 1 1.50 8.26 25.49 1.83 Tier 2 1.50 8.26 25.49 1.83 Tier 4A 1.50 8.26 25.49 1.08 Tier 4 0.71 0.83 16.18 0.10

37 < P ≤ 56 kW 50 < P ≤ 75 hp

Base Varies by application Tier 0 5.34 18.82 37.21 3.89 Tier 1 2.81 12.76 30.19 2.55 Tier 2 1.98 12.76 25.34 1.29 Tier 4A 0.99 12.76 16.18 1.08 Tier 4 0.71 1.28 16.18 0.10

37 < P ≤ 75 kW 75 < P ≤ 100 hp

Base Varies by application Tier 0 5.34 18.82 37.21 3.89 Tier 1 2.81 12.76 30.19 2.55 Tier 2 1.98 12.76 25.34 1.29 Tier 3B 0.99 12.76 16.18 1.62 Tier 4 0.71 1.28 16.18 0.05 Tier 4N 0.71 1.28 1.49 0.05

75 < P ≤ 130 kW 100 < P ≤ 175 hp

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 2.03 5.20 33.88 1.68 Tier 2 2.03 5.20 24.58 1.08 Tier 3 1.10 5.20 14.99 1.32 Tier 4 0.79 0.52 14.99 0.06 Tier 4N 0.79 0.52 1.65 0.06

Page 34: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-20

Table 2-4. Continued.

Engine Power (P) (kW or hp)

Tech Type

HC (g/kg)

CO (g/kg)

NOx (g/kg)

PM (g/kg)

130 < P ≤ 225 kW 175 < P ≤ 300 hp

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 1.85 4.48 33.43 1.51 Tier 2 1.85 4.48 23.98 0.79 Tier 3 1.10 4.48 14.99 0.90 Tier 4 0.79 0.45 14.99 0.06 Tier 4N 0.79 0.45 1.65 0.06

225 < P ≤ 450 kW 300 < P ≤ 600 hp

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 1.21 7.83 36.06 1.20 Tier 2 1.00 5.05 25.99 0.79 Tier 3 1.00 5.05 14.99 0.90 Tier 4 0.79 0.50 14.99 0.06 Tier 4N 0.79 0.50 1.65 0.06

450 < P ≤ 560 kW 600 < P ≤ 750 hp

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 0.88 7.96 34.90 1.32 Tier 2 1.00 7.96 24.58 0.79 Tier 3 1.00 7.96 14.99 0.90 Tier 4 0.79 0.80 14.99 0.06 Tier 4N 0.79 0.80 1.65 0.06

P > 560 kW P > 750 hp except generator sets

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 1.72 4.58 36.88 1.16 Tier 2 1.00 4.58 24.58 0.79 Tier 4 1.69 0.46 14.34 0.41 Tier 4N 0.79 0.46 14.34 0.17

Generator sets 560 < P ≤ 900 kW 750 < P ≤ 1200 hp

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 1.72 4.58 36.88 1.16 Tier 2 1.00 4.58 24.58 0.79 Tier 4 1.69 0.46 14.34 0.41 Tier 4N 0.79 0.46 2.76 0.11

Generator sets P > 900 kW P > 1200 hp

Base Varies by application Tier 0 4.08 16.19 50.23 2.41 Tier 1 1.72 4.58 36.88 1.16 Tier 2 1.00 4.58 24.58 0.79 Tier 4 1.69 0.46 2.76 0.41 Tier 4N 0.79 0.46 2.76 0.11

Page 35: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-21

Table 2-5. Fuel-based emission factors of several nonroad engines of different tiers (Abolhasani et al., 2008; Frey et al., 2008a; 2008b). B0 and B20 refer to diesel fuels containing 0% and 20% biodiesel, respectively. Fuel NO (g/kg) NMHC (g/kg) CO (g/kg)

Backhoes (67-75 kW 90-100 hp)

Tier 0 B20 33.6 4.4 22.4 B0 32.6 4.7 27.4

Tier 1 B20 29.2 2.6 11.8 B0 32.3 3.1 13.7

Tier 2 B20 30.2 1.8 3.1 B0 30.8 3.1 4.0

Front-End Loader (97 kW, 130 hp)

Tier 1 B20 37.6 2.7 3.4 B0 37.9 5.0 4.7

Tier 2 B20 28.9 1.6 2.8 B0 29.5 1.7 3.4

Motor Graders (119-149 kW 160-200 hp)

Tier 0 B20 40.7 4.7 8.1 B0 41.7 5.3 10.3

Tier 1 B20 33.6 4.0 4.4 B0 33.9 5.0 4.7

Tier 2 B20 31.7 2.7 3.4 B0 30.5 3.7 3.7

Tier 3 B20 21.4 1.6 1.7 B0 21.1 1.9 2.8

Excavator (69-189 kW 93-254 hp)

Tier 1 B0 30.6 2.4 6.0

Diesel exhaust is rich in PAHs (Ballesteros et al., 2009; Borras et al., 2009; Gangwar et al., 2012; Kameda et al., 2007; Krahl et al., 1998; Lara and Feng, 2006; Lin et al., 2006; Lowenthal et al., 1994; McDonald et al., 2004b; McDonald et al., 2004c; Riddle et al., 2007; Schuetzle et al., 1981; Schuetzle and Perez, 1983; Yadav et al., 2010; Yuan et al., 2007). Hopanes are often present in condensed lubrication oil (Brandenberger et al., 2005; Caravaggio et al., 2007; Cheung et al., 2010; Phuleria et al., 2007; Zielinska et al., 2008). This contrasts with hardwood burning which is rich in guaiacols and syringols, but low in sterols such as steroid-m and cholesterol (Dhammapala et al., 2007; Fine et al., 2004; Goncalves et al., 2011; Hays et al., 2011; McDonald et al., 2000; Otto et al., 2006; Simoneit et al., 2004). Just the opposite is true for meat cooking (Chen et al., 2007b; Cheng et al., 2004; McDonald et al., 2003; Weitkamp et al., 2008), where cholesterol is among the most abundant species. Syringols are more abundant in hardwoods, such as oak or walnut, and they are depleted in softwoods, such as pine, thereby allowing even greater differentiation to be achieved in source apportionment. Odd and even numbered carbon molecules in the n-alkane series indicate the presence or absence of OC from manmade sources in the presence of ubiquitous contributions from natural sources.

Watson et al. (2008b) report the most extensive source profiles for nonroad diesel engines, taken from military engine emissions in southern California. Although the engines, fuels, and operating cycles differ from those in the AOSR, several of the source markers are likely to be similar. PM filters were taken from stationary diesel generator exhaust using in-plume monitoring and from on-board tests of mobile sources. Sample durations ranged from 22–82 minutes for warm starts and 21–53 minutes for cold starts for stationary diesel sources. Diesel vehicle tests included amphibious assault vehicles (AAV), logistics vehicle systems (LVS), and two medium tactical vehicle replacements (MTVRs). The MTVRs are powered by

Page 36: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

2-22

Caterpillar 729 cubic inch six-cylinder turbocharged diesel engines. The LVS and AAVs are powered by Detroit Diesel 8V92TA and Cummins VT400 eight-cylinder turbocharged diesel engines, respectively.

It was found that carbon is the most abundant species emitted by far for all test runs. For the diesel generators, TC accounted for 57 ± 25% and 85 ± 63% of PM2.5 under various warm and cold start conditions, respectively. Large variations were found among the 13 generators. On average, the OC/EC ratios for warm starts (2.2) were approximately 1/3 of those for cold starts (6.1). Approximately 82% of EC reported in this study was present in the high-temperature EC2 fraction (740 °C in a 98% helium [He]/2% O2 atmosphere) with 0.1 – 0.3% of EC in the EC3 fraction (840 °C in a 98% He/2% O2 atmosphere) following the IMPROVE_A protocol (Chow et al., 2007a). On average, PM2.5 OC accounts for 20 – 70% of PM2.5 mass, with ~28% of OC found in low-temperature OC1 (140 °C at 100% He atmosphere) and 44% of OC found in the OC2 fraction (280 °C at 100% He atmosphere) in warm starts; over twice that found in cold starts (22%). The greatest abundance in organic compounds are the n-alkanes, averaging 0.7 ± 0.7% for warm starts and 1.1 ± 1.4% for cold starts, followed by hopanes (~0.12%) with low PAHs (0.02 – 0.08%). Levels of trace elements were low (typically < 0.05%) with elevated Fe (0.1 – 0.2%), Ca (0.07 – 0.10%), and phosphorous (P; 0.07 – 0.13%). PM2.5 SO4

= was low and variable, averaging 1.3 ± 1.1% for warm starts and 0.5 ± 0.5% for cold starts. Higher SO2 (41 ± 37%) was reported for cold starts than warm starts (24 ± 19%). PM2.5 SO4

= and SO2 levels are also lower than the 2.4 ± 1% and 67 ± 24% reported by Watson et al. (Watson et al., 1994). This reflects the reduction of S content in diesel fuel over the past two decades. Low levels of NH3 were detected, with 0.05 ± 0.05% for warm starts and 0.3 ± 0.6% for cold starts.

Page 37: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-1

3. Experimental Methods 3.1. Overview

An on-board PEMS was assembled from commercially-available microsensors to draw emissions from the engine exhaust, dilute it with filtered air, and quantify CO, CO2, NO, nitrogen dioxide NO2, SO2, O2, particle size distribution, particle number, particle mass, and BC on a continuous basis (1‒6 second averages). Integrated samples by filters and canisters were acquired for laboratory analyses for speciated VOCs, NH3, SO2, and H2S; and PM2.5 was characterized for light absorption, mass, elements, lead isotopes, water-soluble ions, OC, EC, and organic compounds including PAHs. In the fall of 2009, this on-board system was used in the AOSR to measure emissions from Caterpillar 797B mining trucks, the largest heavy haulers in the world. Measurements were taken during working cycles, including idling, loading, dumping, and transit with and without load. The measurements were carried out using two Caterpillar 797B trucks (CAT797B-1 and CAT797B-2) in two facilities (Facilities S and A).

3.2. Sampling System Description

The on-board PEMS is illustrated in Figure 3-1. Instruments were packaged into five boxes: Box 1– sample conditioning module; Box 2 – real-time gas module; Box 3 – integrated sample module; Box 4 – real-time PM module; and Box 5 – battery module. Specifications for the real-time instruments are listed in Table 3-1. The sampling and analysis methods for integrated gas and particle samples are listed in Table 3-2.

A sample of engine exhaust is drawn from the tailpipe into Box 1 (Figure 3-2), where the sample is diluted by clean air generated by an air compressor (Model 107CDC20, Thomas Pump & Machinery, Sheboygan, WI, USA). Ambient dilution air passes through an activated carbon capsule filter and a high efficiency particulate air (HEPA) filter to remove volatile gas species and particles. The sample and dilution air are mixed in the dilutor illustrated in Figure 3-3). The diluted sample is sent through a residence chamber for approximately three seconds aging, sufficient for condensable vapors and particles to equilibrate and the aerosol size distribution to stabilize. The sample stream then passes through a cyclone (Model URG-2000-30ENG, URG Corporation, Chapel Hill, NC, USA) to remove particles larger than ~7 µm, which may be from debris shaken loose from walls of the exhaust or sampling system. Three measured streams are drawn into Boxes 2–4 for quantification. Conductive silicone tubing connects to the particle measuring devices (Boxes 3 and 4) and Teflon tubing connects to the gas measuring devices (Box 2).

In Box 2 (Figure 3-4), three CO2 Analyzers (Model SBA-4, PP Systems, Amesbury, MA, USA) measure CO2 concentrations in the undiluted engine exhaust, diluted sample and ambient background at a rate of ~5 seconds. The instantaneous dilution factor can be calculated from these three measurements. A PID analyzer (Model 102+, PID Analyzers, LLC, Pembroke, MA, USA) measures the total VOCs (isobutylene referred). A portable Emission Analyzer (Model 350 S, Testo Inc., Sparta, NJ, USA) simultaneously measures CO, CO2, NO, NO2, SO2 and O2. Both the PID and Testo sample with 1 second averages.

Box 3 (Figure 3-5) contains a canister and four filter packs for integrated sampling. A one-liter canister collects the diluted gas sample during the entire sampling period of 75 – 200 minutes. The sampling flow rate for the canister is controlled at 10.2 cm3/min by a critical orifice (OKC K4LP-1-SS, O’Keefe Controls Co., Trumbull, CT, USA).

Page 38: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Emittants and

Abbr PCO: cCO2: c

NO: nNO2: n

O2: oSO2: sT: t

Figure 3-1operation w(Wang et a

d other measured pParameter carbon monoxide carbon dioxide

nitrogen oxide nitrogen dioxide

oxygen sulfur dioxide temperature

1. Schematic dwith a dilution al., 2011; 2012

parameters: Abbr P: CH4:

C2 – C12

babs:

WSOC:OC: OPC/CP

diagram of thfactor of 40. Ta).

Parameter/pressure methane

2: volatile orlight trans(BC)

water-soluorganic ca

PC optical pacounter

he on-board emThe dilution fac

3-2

/Instrument

rganic compoundssmission, surrogat

uble organic carbonarbon article counter/con

mission measuctor can be adju

te for black carbo

n

ndensation particl

urement systeusted by chang

Abbr EC: HULIS:

K2CO3: on AgNO3:

NH3: H2S:

le BC:

em. The listedging the dilutio

Parameter elemental carbonhumic-like substances potassium carbonsilver nitrate

ammonia hydrogen sulfideblack carbon

d flow rates aon and makeup

n

nate

e

are for p flows

Page 39: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-3

Table 3-1. Real-time instruments and key specifications. Sampling Instrument Observables Measurement Range Response Timea Nominal Precision/Accuracy TSI DustTrak DRX Model 8534 (Shoreview, MN, USA)

PM mass concentration (PM1, PM2.5, PM4, PM10, and PM15)

Size: ~ 0.1-15 µm Mass: 0.001-150 mg/m3

0 s ±20% (for calibration aerosol)

Grimm Optical Particle Counter (OPC) Model 1.108 (Grimm Aerosol Technik GmbH & Co., KG, Ainring, Germany)

Particle size distribution Size: 0.3-25 µm in 16 channels Number: 0.001 to 2,000 particle/cm3 Mass: 0.0001 to 100 mg/m3

N/A ±2.5%

TSI Condensation Particle Counter (CPC), Model 3007 (Shoreview, MN, USA)

Particle number concentration Size: >10 nm Number: 0 to 100,000 particles/cm3

51 s ±20%

Magee micro-Aethalometer Model AE51 at 880 nm (Magee Scientific, Berkeley, CA, USA)

Black carbon (BC) concentration 0 – 1 mg BC/m3 for 15-min avg. at 50 cm3/min flow rate

2 s ±0.100 μg BC/m3 for 1 min avg., at 150 cm3/min flow rate

PP System CO2 analyzers Model SBA-4 (PP Systems, Amesbury, MA, USA)

CO2: Tailpipe Diluted Background

0-100,000 ppm 0-5,000 ppm 0-5,000 ppm

121 s 25 s N/A

<1% of span concentration

HNU PID analyzer Model 102+ sampling rate of 1 Hz (PID Analyzers, Pembroke, MA, USA)

Total VOC (isobutylene referred) 0.1-3000 ppm N/A +/- 1% of reading

Testo Emission Analyzer Model 350 S sampling rate of 1 Hz (Testo, Inc., Sparta, NJ, USA)

CO

CO2

NO

NO2

SO2

O2

0-500 ppm

0-50% volume (vol.)

0–3,00 ppm

0-500 ppm

0-5,000 ppm

0-25% volume

20 s

CO: < 2 ppm (0–39.9 ppm) < 5% of measured value (m.v.; 40–500

ppm) CO2: ± 0.3% vol. +1% of m.v. (0–25% vol.) ± 0.5% vol. +1.5% of m.v (> 25 vol.) NO: < 2 ppm (0–39.9 ppm) < 5% of m.v. (40–300 ppm) NO2: < 5 ppm (0–99 ppm) < 5% of m.v. (>99 ppm) SO2: < 5 ppm (0–99 ppm) < 5% of m.v. (100–2,000 ppm) < 10% of m.v. (2,001–5,000 ppm) O2: <0.2% of m.v.

aResponse time is the time of an instrument responds to a concentration change at the tailpipe. It accounts for both the flow resident time in each line, and the instrument response itself. Since the DRX is the fastest response instrument in the on-board system, the response time in this table is listed as the difference between the corresponding instrument and the DRX.

Page 40: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-4

Table 3-2. Sampling and analysis matrix for gases and particles from integrated samples (canisters and filters). Sampling Method Parameter of Interest Analysis Method Canister CO2, CO, CH4, VOC (C2-C12), halocarbons GC-FID/MS Citric acid- impregnated cellulose-fiber filter (31 ET, 0.5 mm thickness, Whatman, Inc., Fairfield, CT, USA) behind Teflon-membrane filter (Pall Sciences, Port Washington, NY, USA)

NH3 AC

K2CO3–impregnated cellulose-fiber filter (31 ET, 0.5 mm thickness, Whatman, Inc., Fairfield, CT, USA) behind quartz-fiber filter (Pall Sciences, Port Washington, NY, USA)

SO2 IC

AgNO3 impregnated cellulose-fiber (31 ET, 0.5 mm thickness, Whatman, Inc., Fairfield, CT, USA) filter behind quartz-fiber filter (Pall Sciences, Port Washington, NY, USA)

H2S XRF

Teflon-membrane filter (2 µm pore size; Teflo PTFE-membrane with polymethylpropylene support ring; Pall Sciences, Port Washington, NY, USA)

PM2.5 mass concentration Gravimetry Light transmission Tobias TBX-10 Densitometer Elements XRF Cs, Ba, rare-earth elements, Pb isotopes ICP/MS

Quartz-fiber filter 1 (Tissuquartz 2500 QAT-UP; (Pall Sciences, Port Washington, NY, USA)

Ions (Cl-, NO2-, NO3

-, PO4≡, SO4

=, NH4+, Na+,

Mg++, K+, Ca++) IC, AC, AAS

Total WSOC, WSOC classes HPLC and TOC OC/EC, carbon fractions, carbonate TOR/TOT Carbon Analyzer Carbohydrate, organic acids IC

Quartz-fiber filter 2 (Tissuquartz 2500 QAT-UP; (Pall Sciences, Port Washington, NY, USA)

Alkanes, alkenes, PAH, hopanes, steranes TD-GC/MS

Nuclepore Track-etch polycarbonate filter (0.4 µm pore size; Whatman, Inc., Fairfield, CT, USA)

Elements affecting lichen ICP

AAS: atomic absorption spectrophotometry by Varian Model Spectro880 (Varian, Walnut Creek, CA, USA) AC: automated colorimetry by Astoria Model 302A (Astoria, Astoria OR, USA) EC: elemental carbon by DRI Model 2001 thermal/optical carbon analyzer (DRI, Reno, NV, USA) GC-FID/MS: gas chromatography-flame ionization detector/mass spectrometry by Varian Model 3800 GC-FID and Varian Saturn 3000 (Varian, Walnut Creek, CA, USA) GC/MS: gas chromatography/mass spectrometry by Agilent Model 6890N/5973 (Agilent Technology, Foster City, CA, USA) HPLC: high performance liquid chromatography by Agilent 1200 Series (Agilent Technology, Foster City, CA, USA) IC: ion chromatography by Dionex Model ICS-3000 (Dionex, Sunnyvale, CA, USA) ICP: inductively coupled plasma by Thermo X Series (Thermo Scientific, Madison, WI, USA) OC: organic carbon by DRI Model 2001 thermal/optical carbon analyzer (DRI, Reno, NV, USA) OES: optical emission spectrometry SEM: scanning electron microscopy TOC: total organic carbon by Shimadzu TOC Analyzer Model VCSH (Shimadzu, Columbia, MD, USA) TOR: thermal/optical reflectance by DRI Model 2001 thermal/optical carbon analyzer (DRI, Reno, NV, USA) TOT: thermal/optical transmittance by DRI Model 2001 thermal/optical carbon analyzer (DRI, Reno, NV, USA) WSOC: water soluble organic carbon by TOC Analyzer XRF: X-ray fluorescence by PANalytical Model Epsilon 5 (PANalytical, Almelo, the Netherlands)

Page 41: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 3-2removal, a

Figure 3-3diffuser pla

. Photograph ond flow splittin

. Photograph oate with holes.

of Box 1 for sang).

of the dilutor. TTurbulence ge

ample conditio

The sample is enerated down

3-5

oning module (

introduced in tstream of the h

(including sam

the center and holes helps mix

mple dilution, a

dilution air is

xing of the sam

aging, coarse p

introduced fromple and dilutio

particle

om the on air.

Page 42: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 3-4analyzers a

S(GC/MS)C12), halparameteimpactorthe filterTSI Inc.,

BUSA), a simultanecondensatotal numthe CPC to the lemeasuremAerosol Tdiameter Scientificdeposited

BOdyssey voltage rvoltage a

4. Photograph and photo ioniz

amples from) and gas clocarbons, Cers of the for (Model 202r packs are c Shoreview,

Box 4 (Figurcombinationeously meaation particlember concent

can measureaky filter mment of highTechnik Gmrange of 0

c, Berkeley, d on the filte

Box 5 (FiguPC2150S, E

regulator (Mat 13.8 V, an

of Box 2 thazation detector

m the canishromatograpCO and COour parallel 2-100, Airmcontrolled by MN, USA)

re 3-7) contan of nepheloasures PM1

e counter (Ctration of pae without comethod (Whh concentrat

mbH & Co. K.3–20 µm inCA, USA) m

er (Hansen an

ure 3-8) conEnerSys Eneodel N8XJKnd a battery

at contains rear [PID] analyze

ter were anphy/flame io

O2. Figure 3sampling c

metrics, Eugey the pump .

ains a DustTmeter and op, PM2.5, P

CPC, Model articles largeoincidence lohitby et al.,tions from thKG, Ainringn 16 channemeasures BCnd Mocnik,

ntains two ergy Produc

K, TG Electromonitor (M

3-6

al-time emissioer).

nalyzed by onization de3-6 depicts channels. Eaene, OR, USspeed and r

Trak DRX (ptical particlM4, PM10

3007, TSI Inr than 10 nmoss is 100,00, 1972) washe engine ex, Germany) els. The miC concentrat2010).

12 Volt (Vcts Inc., Readonics, Houg

Model TM-20

on analyzers (

gas chromaetector (GC/

the filter pach filter paSA). The florecorded by

(Model 8534le counter (Oand PM15

nc., Shoreviem. Since the 00 particle/cs added befxhaust. The measures paicro-aethalomtion by light

V) deep cycding, PA, U

ghton, MI, U020, Bogart

(Testo 350, ca

atography/m/FID) for Cpack assemback is preceow rates (~5

y flow meter

4, TSI Inc., OPC) (Wang

mass conew, MN, USmaximum c

cm3, a dilutifore the CP

OPC (Modarticle size dmeter (Modattenuation

cle marine USA) connecUSA) that sta

Engineering

arbon dioxide

ass spectromCH4, NMHCbly and anaeded by a P5 L/min) thrrs (Model 4

Shoreview, g et al., 2009centrations. SA) measureconcentrationon bridge si

PC to enabldel 1.108, Grdistribution idel AE51, M

through par

batteries (Mcted in paralabilizes the og, Boulder C

[CO2]

metry C (C2-alysis PM2.5 rough 1221,

MN, 9c). It

The es the n that imilar e the rimm in the

Magee rticles

Model llel, a output Creek,

Page 43: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

CA, USA

Eis neededrunning. approximdigital foInstrume

PAnalyzerCO, NO,NO: 50.2instrumendiluted weither a SGD-710aerosol cInstrume<6 month

Figure 3-5

A) that monit

Each box hosd by each inWhen the tw

mately nine hormat via RSnts, Austin,

erformance rs were chec, and SO2 c2 ± 0.3 ppm,nt grade 100

with zero airThermo Sci

0C gas diviconcentrationnts were ophs prior to th

. Photograph o

tors the batte

sts a series onstrument. Two batteries hours. Data fS232 or USBTX, USA) p

of the Testcked before alibration us, NO2: <0.3 0% CO2 tanr generated ientific Modder. The TSns at differen

perated withihe field tests

of Box 3 that co

ery output v

of voltage diThe total curr

are fully chfrom all inst

B communicprogram con

to Emissionand after thsed a Scott-ppm, SO2: 5

nk and a 493by an Envi

del 146i MuSI CPC 300nt dilution lein the manu.

ontains a canist

3-7

oltage, curre

viders that rrent is about

harged, the rutruments areation in real

ntrols instrum

n Analyzer, he field mea-Martin gas 51.3 ± 0.5 pp36 ± 99 ppmironics Modulti-Gas Cal07 was comevels. The v

ufacturer spe

ter and four fil

ent and batte

reduce the but 16 Amps (un time of the sent to the l time. A Labments and rec

TSI CPC 3asurement in

mixture stanpm), and CO

m CO2 standdel 7000 zerlibrator or a

mpared to a verification decifications a

lter packs for in

ery level.

attery outpu(A) when alhe source sadata acquisibView (verscords data.

3007, and Pn DRI’s stanndard (CO: O2 calibratiodard. The calro air gas ga Horiba InTSI CPC 3

data are showand factory

ntegrated samp

ut voltage to ll instrumentampling systition compusion 8.5, Nat

PP Systems ndards labora

5090 ± 31 on used an Alibration gas

generator thrstruments M

3010 for amwn in Figurecalibrated w

ple collection.

what ts are em is

uter in tional

CO2 atory. ppm,

Airgas s was rough

Model mbient e 3-9. within

Page 44: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 3-6

Figure 3-7

. Four-channel

. Photograph o

l filter pack sam

of Box 4 that co

mpling configu

ontains real-tim

3-8

uration used for

me particulate m

r heavy hauler

matter (PM) in

r exhaust sampl

nstruments.

ling..

Page 45: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 3-8picture), a

3.3. S

T(CAT 79mechanicCaterpillconstructwith payturbocharhorsepow117.1 litespecificaMore thadays per

Invented thextremelywith singthe exhauexhaust pthrough tengine esample dvents to a

. Photograph ovoltage regula

ampling Co

Two CAT 7997B-2) at Sitcal power tar Inc. (Peotion applicatload capacitrged version

wer (hp; 2,64er. The 3524

ations of thean 200 hundweek in the

n-plume samhrough the y cold weat

gle or dual exust flow pathpipe when tthe body. T

exhaust sampdirectly fromambient air.

of Box 5 that cator that stabiliz

onditions

97B mining tte A. The Ctrain haul toria, IL, UStions. The CAty of up to 38n of the 24 c47 kW) and4B engine ise CAT 797Bdred of these

AOSR durin

mpling fromdumper bod

ther during wxhaust outleth through ththe load is dThe truck creple as it ex

m the junctio

ontains two pazes output volt

trucks were AT 797B hetruck develSA) specifiAT 797B is 80 short toncylinder CAd net power os in compliaB mining true and similang 2009.

m the CAT 7dy to warmwintertime its. The flow

he truck bodydumped, andeates fugitiv

xits the bodyon elbow ins

3-9

arallel 12 V detage at 13.8 V,

tested: SN 5eavy hauler oped and mcally for hiCaterpillar’s (345 tonne

AT 3524B diof 3,370 hp

ance with U.uck are listear mining tru

797B trucksm the load, in northern

w rate througy varies amod exhaust is ve dust duriny. These issstead of sam

eep cycle marinand a battery m

526 (CAT 79is an off-hi

manufactureigh products largest and

es). The CATesel engine (2,513 kW)S. EPA Tier

ed in Table ucks were u

s is challengwhich miniAlberta. Dif

gh each exhaong the truckvented thro

ng operationsues are av

mpling from

ne batteries (onmonitor.

97B-1) at Sighway, ultra

ed in the Ution mining d highest capT 797B is powith a gros

). The enginer 1 emission3-3 (Caterp

used 24-hour

ging becausimizes load fferent truckaust outlet is ks. The body

ough the junn, which canoided by ex

m the plume

nly one shown

ite S, and SNa class, two-

United Stateand heavy

pacity haul towered by as power of 3e displacemens standards.pillar Inc., 2rs per day, s

se the exhaufreezing du

ks are confignot uniform

y disconnectnction rathern contaminatxtracting exafter the ex

n in the

N 111 -axle, es by y-duty truck, a twin 3,550 ent is . Key

2003). seven

ust is ue to gured

m, and ts the

r than te the

xhaust xhaust

Page 46: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-10

As noted, exhaust cooling and aging is important for acquiring a representative measurement of engine exhaust. An ideal dilution system should: 1) reduce the concentrations in the original exhaust to levels that are within the instrument specification ranges; 2) reduce the exhaust temperature to close to ambient temperature; and 3) control gas-particle partitioning, particle nucleation, condensation and coagulation to simulate ambient dilution conditions.

Exhaust was extracted from the elbow downstream of the muffler as shown in Figure 3-10. A Swagelok tee immediately followed the sampling port, with one of its arms connected to a thermocouple to measure exhaust temperature. The other arm of the tee was connected to a 21.6 cm long stainless steel tube (inner diameter [ID] of 1 cm), which was followed by a 2.8 m long copper tube (with an ID of 1 cm). The other end of the copper tube was connected to the sample introduction port in Box 1 (Figure 3-2). The average dilution ratio varied from 6 to 34 during this study. The real-time dilution ratio varied more than an order of a magnitude during a run depending on truck operating conditions. The sampling boxes were placed on the platform on the opposite end of the driver’s cabin near the fire extinguishers as shown in Figure 3-11.

3.4. Fuel Specifications

Diesel fuel is a complex mixture of normal, branched, and cyclic alkanes (C9–C30, 60–>90% volume), aromatic compounds, especially alkylbenzenes (5-40% volume), and small amounts of alkenes (0-10% volume). Diesel fuel is produced from the fractional distillation of crude oil between 200 °C (392 °F) and 350 °C (662 °F) at atmospheric pressure. The average chemical formula for common diesel fuel is C12H23, ranging from C10H20 to C15H28 (Risher and Rhodes, 1995). Benzene, toluene, ethylbenzene, and xylenes, and PAHs, especially naphthalene and its methyl-substituted derivatives, may be present at ppmw levels in diesel fuel. The S content of diesel fuels depends on the source of crude oil and the refining process. At room temperature, diesel fuels are moderately volatile, slightly viscous, flammable, brown liquids with a kerosene-like odor. The boiling point ranges 140–385°C and density is 0.85–1.0 g/cm3 at 20 °C (International Programme on Chemical Safety, 1996).

The quality and composition of diesel fuel influences diesel engine emissions. Important variables are ignition behavior (expressed in terms of cetane number), density, viscosity, and S content. The S content is directly related to gaseous SO2 and DPM emissions. At the Tier 1-3 stage (all equipment with phase-in schedules from 2000 to 2008), the S content in nonroad diesel fuels was not limited by environmental regulations in Canada or the U.S. The oil industry specification was a maximum of 5,000 ppmw, with an average in-use S level of about 3,000 ppmw.

To enable S-sensitive control technologies in Tier 4 engines, such as catalytic particulate filters and NOx scrubbers, Environment Canada amended Diesel Fuel Regulations (Environment Canada, 2012b) in 2005 (SOR/2005-305) with the following deadlines:

Concentration of S in diesel fuel produced or imported for use in off-road engines shall not exceed 500 ppm from 1 June 2007 until 31 May 2010, and 15 ppm after that date.

Concentration of S in diesel fuel sold for use in off-road engines shall not exceed 500 ppm from 1 October 2007 until 30 September 2010, and 15 ppm after that date.

Concentration of S in diesel fuel sold in the northern supply area for use in off-road engines shall not exceed 500 ppm from 1 December 2008 until 30 November 2011, and 15 ppm after that date.

Page 47: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-11

Figure 3-9. Performance verification of the Testo Emission Analyzer for CO, CO2, NO, SO2, TSI condensation particle counter (CPC) 3007, and PP Systems CO2 analyzers before and after the field campaign. Note that the accuracies of all tested instruments are within manufacturer specifications. It is interesting to note that although the carbon dioxide (CO2) analyzers for the background and diluted sample are only specified to measure up to 5,000 ppm, they are reasonably accurate up to 10,000ppm.

Testo Calibration - CO

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000

Nominal concentration (ppm)

Te

sto

co

nc

en

tra

tio

n (

pp

m)

Before Test

After Test

y = 1.0205x

R2 = 0.9999

CO2 Sensors Clibration

Tailpipe:y = 1.0065x

R2 = 0.997

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000

Nominal concentration (ppm)

CO

2 S

en

so

rs C

on

ce

ntr

ati

on

(p

pm

) Tailpipe

Background

Diluted

Testo Calibration - NO

0

50

100

150

200

250

0 50 100 150 200 250

Nominal concentration (ppm)

Te

sto

co

nc

en

tra

tio

n (

pp

m)

Before Test

After Test

y = 0.8928x

R2 = 0.9999

Testo Calibration - SO2

y = 0.9584x

R2 = 0.9997

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

Nominal concentration (ppm)

Te

sto

co

nc

en

tra

tio

n (

pp

m)

After Test

CPC 3007 Clibration

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1000 2000 3000 4000 5000

CPC 3010 concentration (cm-3)

CP

C 3

00

7 c

on

ce

ntr

ati

on

(c

m-3

)

Before Test

After Test

y = 0.909x

R2 = 0.9969

Page 48: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Table 3-3.

Figure 3-1

Key specificatParametIntroductNominalGross MEngine MEngine PDisplaceTop SpeeOverall HOverall HOverall LOverall TFuel Cap

0. Photograph

tions of the Cater tion to Service Payload Capaachine Operati

Model Power ment ed (Loaded) Height to Top oHeight (Body RLength Tier Width pacity

of the samplin

aterpillar 797B

acity ing Weight

of ROPS (EmpRaised)

ng port location

3-12

mining truck (Specific2002 380 sho1,375,0Cat 3523,370 hp117.1 L42 mph

pty) 24 ft 1150 ft 2 i47 ft 5 i32 ft 0in1,800 U

n on a Caterpill

(Caterpillar Inccation

ort tons (345 to00 lb (623,700

24B High Disphp (2,513 kW) nL h (68 km/h) 1 in (7.59 m) in (15.29 m) in (14.45 m) n (9.75 m)

US gal (6,814 L

lar 797B minin

c., 2003).

onnes) 0 kg) lacement EUI net (SAE J134

L)

ng truck.

49)

Page 49: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

Figure 3-1

Sfollows (

Tsupplied supplied Figure 3-

3.5. T

Toverburdmaterial returningdumping

Vvehicle dfuel leveground sthe tank)min. Figuengine spin Table

3.6. T

TheTable 3-conducteduring th

1. Location of

imilarly, the(U.S.EPA, 20

500 ppm fuels

15 ppm (ufor locom

The diesel fuby Imperialby Suncor

-12, but simi

Truck Opera

Two CAT 7den or oil s(idling), trav

g to the loadg ground is uVehicle operadata were nol, boost prespeed. The e

) has large uure 3-14 shopeed, engine3-4.

Test Procedu

e general op6 lists the k

ed during 9/he measurem

the dilution sa

e U.S. EPA004b):

effective in

ultra-low S dmotive and m

uel used at Sl Oil Ltd. TEnergy (Calilar specifica

ating Cycles

797B miningsands. A typveling from lding station

unpaved, andating parameot available ssure, exhaungine fuel c

uncertaintiesows an exame load, and tr

ure

perating prokey experim/28/2009 –

ment period.

ampling system

A mandated

June 2007 f

diesel) effecmarine fuels

Site S is a mThe fuel uselgary, Alberations were n

s

g trucks wepical drivinloading to duafter dumpi

d can be flat, eters were lofrom CAT

ust temperatuconsumption. The time r

mple of vehicruck ground

ocedure for mental param

10/1/2009. TThe average

3-13

m.

reductions i

for nonroad,

tive in June

mixture of theed at Site A rta, Canada)not available

ere operatedg cycle, shumping site ing (withoutuphill, or do

ogged into a 797B-2. Th

ure, throttle n rate was noresolution ofcle parametespeed during

the on-boarmeters and dThe ambiene dilution fac

in S conten

, locomotive

2010 for no

e facility’s sis a type o

). Site A fuee from Site S

d under reahown in Fig

(with a loadt a load). Townhill.

a real-time dahe on-board position en

ot available,f the engineers during ong the five te

rd system isdata availabint temperaturctor was ~10

nt in nonroa

e, and marin

onroad fuel,

synfuel and f ultra low-el specificatiS for this rep

al-world congure 3-13, id), dumping

The road from

atabase for Cvehicle par

gine speed, , and fuel lee data variedne test. Timsts on CAT

s summarizelity for eachre ranged fr0 for most ru

ad diesel fue

e (NRLM) d

and in June

off-highwaysulfur dieselions are list

port.

nditions: moincludes: loamaterial (idm the loadin

CAT 797B-1rameters incengine load

evel (% of fud from 5 sec

me distributio797B-1 are

ed in Tableh of 10 testrom 1.3–11.uns. To stud

els as

diesel

2012

y fuel l fuel ted in

oving ading

dling), ng to

1, but clude: d, and uel in c to 1 ons of listed

e 3-5. t runs .1 °C

dy the

Page 50: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

effects oparticle cthe Grimflow ratecould noor the PISB) on 9

Figure 3-12

f dilution, sconcentration

mm OPC ovee. The internat charge the

ID analyzer. /28/2009. D

2. Speciation o

some runs hn was too hierloaded veral battery fobattery. TheThe dilutio

ata from the

of the ultra low

had average igh for the Gry quickly, pr the HNU Perefore no d

on factor wasese two runs

w-sulfur diesel f

3-14

dilution facGrimm OPCpreventing thPID analyzerdata were cols not set corare not furth

fuel used in CA

ctors as lowC even at a d

he pump fror lost powerllected durinrrectly durinher analyzed

AT 797B-2 at S

w as 6 or as dilution factoom maintain

and the powng the 10 tesng two runs d in this repo

Site A.

high as 34or of 34, andning the specwer cord in Bsts from the (Run ID SA

ort.

. The d thus cified Box 2 OPC

A and

Page 51: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

a)

c)

Figure 3-1a load; c) d

3. Photographsdumping mater

s of typical minrial (idling); an

ning truck actind d) traveling b

3-15

b)

d)

ivities, includinback after dum

ng: a) loading mmping without a

material (idlina load.

ng); b) travelinng with

Page 52: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-16

Figure 3-14. Example of engine data from CAT 797B-1 when it was hauling oil sands. This particular test included idling at the beginning, three load-dump-load cycles, and a refuel (idling) in the middle.

Fuel Level

(%)

020406080

100

Boost Pressure(kPa)

050100150200

Exhaust Temperature

(oC)

0200400600800

Throttle Position(%)

020406080100

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time

14:38 14:58 15:18 15:38 15:58 16:18 16:38 16:58 17:18

Ground Speed(km/h)

020406080

Idle

Dump Dump Dump Dump

Load Load Load LoadRefuel

Page 53: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-17

Table 3-4. Time distribution of engine speed (revolutions per minute [rpm]), engine load, and ground speed during the five tests on CAT 797B-1.

Engine Speed (rpm)

Run ID S1 S2 S3 S4 S5

800 67% 36% 45% 56% 30% 1000 2% 1% 3% 2% 1% 1200 2% 2% 2% 1% 2% 1400 4% 6% 7% 5% 7% 1600 10% 19% 17% 14% 23% 1800 12% 24% 18% 14% 27% 2000 3% 11% 8% 7% 10%

Engine load (%)

Run ID S1 S2 S3 S4 S5

0 1% 3% 3% 1% 2% 10 2% 6% 5% 4% 12% 20 59% 29% 40% 54% 28% 30 13% 10% 9% 9% 8% 40 4% 4% 6% 4% 5% 50 3% 5% 6% 3% 5% 60 1% 3% 4% 2% 5% 70 3% 4% 4% 3% 4% 80 2% 4% 4% 4% 5% 90 2% 4% 5% 4% 6% 100 11% 29% 15% 12% 22%

Ground Speed (km/h)

Run ID S1 S2 S3 S4 S5

0 68% 38% 47% 57% 31% 10 12% 23% 15% 10% 13% 20 12% 24% 22% 19% 13% 30 4% 9% 12% 10% 8% 40 2% 4% 4% 3% 17% 50 1% 2% 1% 1% 13% 60 0% 1% 0% 0% 5%

Page 54: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-18

Table 3-5. Procedures for field testing of in-use vehicles with an on-board dilution sampling system. Procedures Before Run Connect tubing; install test filters on filter samplers.

Install the isoproponyl alcohol (IPA) cartridge on the CPC. Make electric connections and turn on instruments. Install the critical orifice on the canister inlet, check the starting pressure, and install

the canister with inlet valve closed. Check and reset time stamps for the DRX and AE 51. Set DRX logging to manual mode. Start the LabView program, type in date, CAT 797B-2nd Run ID (Init). Set the flow rate of filter packs to 5 L/min. Set the makeup flow to ~ 6 L/min and dilution flow ~32 L/min After CPC is warmed up, expose CPC to ambient air and adjust the dilution bridge to

achieve a dilution ratio of ~50. Measure flow rates of DRX (3 L/min), OPC (1.2 L/min), AE51 (0.05 L/min), CPC

(1 L/min), Testo (1 L/min), HNU (0.16 L/min), and CO2 analyzers (1 L/min). Start to sample engine exhaust. Adjust the dilution flow and makeup flow so that the DRX measures ~1 mg/m3. This

ensures that the filters collect ~0.6 mg PM for a 2-hour run at a flow rate of 5 L/min, avoiding overloading and underloading.

Ensure instruments respond to the LabView program with no error messages. Stop all instruments.

Unplug power to the integrated sample box (Box 3). Change from test filters to sample filters. Re-plug in power to Box 3. Record the filter start time.

Change Run ID to the real Run ID in the LabView program. Start program. Ensure that every instrument is responding, no errors occur and spans are in the most sensitive ranges.

Open the valve at the canister inlet, and record the canister start time. During Run Look into the file directory and make sure that data from every instrument is being

logged. Examine the measured values to ensure that they are within the operating range

limits. Ensure that the filter flows do not drop by >10% during the run due to loading.

Click “Stop All” button to stop the program at the end of the run. Close the inlet valve of the canister, and unplug power to Box 3. Record the sample

stop time. After Run Unload the four sampled filter packs and replace with test filters.

Remove the sampled canister from Box 3 and put a new canister in line. Leave inlet valve closed.

Check dilution ratio of the CPC. Check if the AE51 filter need be replaced. Check if the cyclone need be cleaned. Check filter/Silicon gel/soda lime on gas and undiluted CO2 lines (Box 1).

End of the Day Download data from DRX, AE51, Testo, OPC and HNU. Clear internal memory for DRX, AE51, Testo, OPC and HNU. Check if inlet and sampling line need be cleaned. Replace the IPA cartridge of the CPC with the shipping cartridge. Charge the batteries overnight or until the battery monitor shows battery fully

charged.

Page 55: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-19

Table 3-6. Summary of experimental parameters for each run.

Run ID

Truck Date Time Truck

Operation Dilution Factor

PP CO2 analyzers

Testo Emission Analyzer

TSI DRX

TSI CPC

Magee Aethalometer

Filter ID

Canister ID

Note

SA 797B-1 9/28/2009 4:45– 6:00 Idle NA NA NA X X NA 31 Can1 a

S1 797B-1 9/28/2009 6:00– 8:00 1 load 10.82 X NA X X NA 32 Can2 b

S2 797B-1 9/28/2009 8:10–10:33 3 loads 11.35 X NA X X NA 33 Can3

SB 797B-1 9/28/2009 11:15–13:00 2 loads 72.98 X NA NA X NA 34 Can4 c

S3 797B-1 9/29/2009 9:20–12:10 3 loads 33.86 X NA X X X 36 Can5 d

S4 797B-1 9/29/2009 12:40–14:20 2 loads 11.43 X X X X X 35 Can6 e

S5 797B-1 9/29/2009 14:33–17:25 4 loads 14.22 X X X X X 37 NA

A1 797B-2 10/1/2009 8:45–11:55 1 load 11.61 X X X X X 38 Can7 f

A2 797B-2 10/1/2009 12:05–14:45 2 loads 6.33 X X X X X 39 Can8

A3 797B-2 10/1/2009 15:10–16:35 3 loads 19.71 X X X X X 40 Can9 aSA was the first run, where different dilution factors were tried to find the optimum value. The CO2 Analyzers stopped reporting data in the middle of the first run, so the dilution factors are not known and the data are not analyzed further. bThe filter in the Magee micro-aethalometer for BC was overloaded, and the internal battery of the Testo Emission Analyzer was drained for the first four runs. No data were available from these two instruments in Runs SA, S1, S2, and SB. cThe TSI DustTrak DRX for PM was turned off during this run. Dilution ratios were high and concentrations were low. Data from this run are not analyzed further. dThe Testo Emission Analyzer got power directly from the cigarette lighter in the truck, but one of the filter covers was missing and it sampled ambient air. Therefore, CO, CO2, NO, NO2 and SO2 data are voided. eThe PP System CO2 analyzers were not reporting data due to communication error. The Magee aethalometer was overloaded near the end of the test. fTruck operating parameters were not available for Runs A1-A3.

Page 56: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-20

3.7. Data Reduction

The following steps were taken to analyze the real-time data acquired from the on-board dilution sampling system:

Raw data files for each real-time instrument for each run were combined into a single Excel worksheet.

Although the Magee micro-Aethalometer AE51 was operated at its lowest specified flow rate (50 cm3/min), the filter with a deposition area of 7 mm2 overloaded with strongly light-absorbing particles during each test. Therefore, the reported BC concentrations decreased due to a reduction in the proportionality between attenuation and BC concentration (Virkkula et al., 2007). Raw data from the AE51 was adjusted using the following equation:

1000

ATNkexp (reported) BC )(corrected BC (3-1)

where k is set to 7.5 since the particles are fresh, low-albedo direct combustion emissions, ATN is the reported optical attenuation. BC data were smoothed by a 20 seconds running average. This step was performed by a “Micro Aethalometer Data Display and Performance Analysis Sheet” supplied by Dr. Tony Hansen at Magee Scientific. Figure 3-15 shows an example of reported and corrected BC concentrations.

Time stamps were rescaled to second-by-second resolution. Although the LabView program acquired data every second from each of the real-time instruments, the actual resolution exceeds 1 second owing to different instrument response times, sample volumes, diffusion of gases through the sampling lines, and residence in the dilution chamber. The CO2 Analyzers have 1–3 second data streaming schedules, while the Testo Emission Analyzer missed a second from time to time due to the busy serial communication traffic. The raw data were rescaled to have one second time resolution. The data for the missing second(s) were interpolated from the data before and after the gap.

To synchronize instrument responses, the time stamp of the diluted CO2 was used as a reference, and other instrument time stamps were shifted to match peaks in the time series. Figure 3-16 shows an example of the original miss-matched data for diluted CO2 and PM2.5 concentrations and the data after shifting the PM2.5 by 25 seconds. The tailpipe CO2 time stamp is treated separately due to its slower response.

As shown Figure 3-2, flow for the tailpipe CO2 measurements passes through a diffusion dryer and a filter to remove water vapor and particles, and the residence time in the transport line is longer due to its lower flow rate (1 L/min) than in the diluted CO2 line (2 L/min). It was also found that the silica gel desiccant absorbs CO2 and slows the tailpipe CO2 measurement response. Therefore the tailpipe CO2 had a slower and smoother response than the diluted CO2. To calculate the real-time dilution factor with reasonable accuracy, the diluted CO2 was averaged to 60 sec to match the tailpipe CO2 response time, and the tailpipe CO2 was moved forward by 96 sec to account for transport time to the sensor. An example of raw and processed CO2 data is shown in Figure 3-17.

The dilution factor (DF) was calculated using the diluted, background, and exhaust pipe CO2 concentrations:

Page 57: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-21

22

22

CO Background-CO Diluted

CO Background-CO TailpipeDF (3-2)

Real-time emittant concentrations were adjusted by the dilution factor to obtain the exhaust pipe concentrations.

EFs and ERs were calculated from the exhaust pipe concentrations as explained in Section 4.1.

Chemical concentrations from laboratory analysis of filter and canister samples were provided in units of µg/m3, ppm, and ppbC. These data can be used directly for fuel-based EF and source profile calculations, as described in Sections 4 and 5.

Figure 3-15. An example of reported and corrected black carbon (BC) concentrations acquired from the Magee AE51 micro-aethalometer. Note that as the filter loads, the reported BC concentration drops and becomes noisier. The corrected BC reduces this gradual decreasing trend.

Figure 3-16. (a) Example of peak mismatch between the diluted carbon dioxide (CO2) and PM2.5 concentrations by the TSI DustTrak DRX due to different response times; (b) After delaying DRX time stamp by 25 seconds, the peaks line up.

-5.00E+05

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

15:07:12 15:36:00 16:04:48 16:33:36 17:02:24 17:31:12 18:00:00

Time

BC

Co

nc

entr

ati

on

(n

g/m

3 ) Reported BC

Corrected BC

0

1000

2000

3000

4000

5000

16:14:53 16:15:23 16:15:53 16:16:23 16:16:53 16:17:23

Time

Dilu

ted

CO

2

Co

nc

en

tra

tio

n (

pp

m)

0

1

2

3

4

5

PM

2.5

Co

nc

en

tra

tio

n

(mg

/m3 )

Diluted CO2

PM2.5

(a) Before Timestamp Shift

0

1000

2000

3000

4000

5000

16:14:53 16:15:23 16:15:53 16:16:23 16:16:53 16:17:23

Time

Dilu

ted

CO

2

Co

nc

en

tra

tio

n (

pp

m)

0

1

2

3

4

5

PM

2.5

Co

nc

en

tra

tio

n

(mg

/m3 )

Diluted CO2

PM2.5

(b) Delay DRX Time by 25 s

Page 58: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-22

Figure 3-17. (a) Example raw data of the tailpipe and diluted carbon dioxide (CO2). The tailpipe CO2 has a much slower response. (b) Data after averaging the diluted CO2 by 60 seconds, and shifting the tailpipe CO2 forward by 96 seconds. The 60 second averaging time was a compromise between time resolution and matching the two CO2 concentration levels reasonably well.

3.8. Laboratory Analysis

Detailed chemical analyses for each one of the seven substrates are illustrated in Figure 3-18. Analysis species were selected based on past studies in the AOSR. Table 3-7 summarizes the minimum detection limits (MDLs) for mass, babs, elemental, ionic, and carbon analysis methods that were applied for this study. Similar information is given in Table 3-8 for 125 non-polar organic compounds.

Teflon-membrane filters were analyzed for mass by gravimetry, light absorption by densitometer, 51 elements by X-ray fluorescence (XRF; i.e., sodium, magnesium, aluminum, silicon, phosphorous, sodium, chlorine, potassium, calcium, scanadium, titanium, vanadium, chromium, manganese, iron, cobalt, nickle, copper, zinc, gallium, arsenic, selenium, bromine, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, palladium, silver, cadmium, indium, tin, antimony, caesium, barium, lanthanum, cerium, samarium, europium, terbium, hafnium, tantalum, tungsten, iridium, gold, mercury, thallium, lead, and uranium; Watson et al., 1999), and 14 rare-earth elements (i.e., lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium), as well as cesium, barium, and four lead isotopes (i.e., Pb-204, Pb-206, Pb-207, and Pb-208) by inductively coupled plasma/mass spectrometry (ICP/MS).

Half of the quartz-fiber filters were extracted in water and analyzed for chloride (Cl-), nitrite (NO2

-), nitrate (NO3-), phosphate (PO4

≡) and sulfate (SO4=) by ion chromatography (IC).

Water-soluble sodium (Na+), potassium (K+), magnesium (Mg++) and calcium (Ca++) were determined by atomic absorption spectroscopy (AAS), and ammonium (NH4

+) was measured by automated colorimetry (AC).

0

2000

4000

6000

8000

10000

16:19:12 16:26:24 16:33:36 16:40:48 16:48:00 16:55:12 17:02:24 17:09:36 17:16:48

Time

Dilu

ted

CO

2

Co

nc

en

tra

tio

n (

pp

m)

0

20000

40000

60000

80000

Ta

ilpip

e C

O2

Co

nc

en

tra

tio

n (

pp

m)Diluted CO2

Tailpipe CO2

(a) Raw CO2 Concentrations

0

2000

4000

6000

8000

10000

16:19:12 16:26:24 16:33:36 16:40:48 16:48:00 16:55:12 17:02:24 17:09:36 17:16:48

Time

Dilu

ted

CO

2

Co

nc

en

tra

tio

n (

pp

m)

0

20000

40000

60000

80000

Ta

ilpip

e C

O2

Co

nc

en

tra

tio

n (

pp

m)Diluted CO2

Tailpipe CO2

(b) Diluted CO2 Averaged by 60 s Tailpipe CO2 Shifted Forward by 96 s

Page 59: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-23

Total water soluble organic carbon (WSOC) and three WSOC classes (i.e., neutral, mono-/di-carboxylic acids, and polycarboxylic acids) were measured from the water extract by high performance liquid chromatography (HPLC) and total organic carbon analyzer (TOC). Seventeen carbohydrates (i.e., glycerol, inositol, erythritol, xylitol, levoglucosan, arabitol, sorbitol, mannosan, malitol, arabinose, glucose, xylose, galactose, fructose, sucrose, trehalose, and mannitol) and nine organic acids (i.e., oxalic acid, malonic acid, succinic acid, glutaric acid, lactic acid, acetic acid, formic acid, maleic acid, and methanesulfonic acid) were measured by IC. OC, EC, and eight thermal fractions (OC1-OC4, pyrolyzed carbon [OP], EC1-EC3) were quantified by the IMPROVE_A thermal/optical protocol. The second half of the quartz-fiber filters were analyzed for 113 non-polar speciated OC compounds including n-alkanes, iso/anteiso-alkanes, hopanes, steranes, other alkanes, one alkene, cyclohexanes, and PAHs by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). The backup citric acid-impregnated cellulose-fiber filters behind the Teflon-membrane front filters (Figure 3-6) were analyzed for NH3 by AC. The backup potassium carbonate (K2CO3)-impregnated cellulose-fiber filters behind the quartz-fiber front filters were analyzed for SO2 by IC and the backup silver nitrate-impregnated cellulose-fiber filters behind the quartz-fiber front filters were analyzed for H2S by XRF.

Canister samples were analyzed for VOCs using GC/MS according to U.S. EPA Method TO-15. The GC-FID/MS system includes a Lotus Consulting Ultra-Trace Toxics sample preconcentration system built into a Varian 3800 GC with FID coupled to a Varian Saturn 2000 ion trap MS. The Lotus preconcentration system consists of three traps. Mid range and heavier hydrocarbons are collected on the front trap consisting of 1/8” nickel tubing packed with multiple adsorbents: 0.128 g of 60/80 mesh glass beads, followed by 0.113g of 60/80 mesh Carbopack-C, 0.090g of 60/80 mesh Carbopack-B, 0.136g of 20/45 mesh Carboxen 569, and 0.119g of 40/60 mesh Carboxen 1003. Trapping is performed at 55 C and eluting is performed at 200 C. The rear concentrators consist of two traps: empty 0.040” ID nickel tubing of approximately 90 µl volume for trapping light hydrocarbons and a cryo-focusing trap for middle and heavier weight hydrocarbons isolated in the front trap. The cryo-focusing trap is built from 6’ x 1/8” nickel tubing filled with glass beads. Concentrating of both rear traps occurs at -180 C and eluting at 200 C. Light hydrocarbons are deposited to a Varian CP-Sil5 column (15 m x 0.32 µm × 1 µm) plumbed to a column-switching valve in the GC oven, then to a Chrompack Al2O3/KCl column (25 m × 0.53 mm × 10 µm) leading to the flame ionization detector for quantitation of light hydrocarbons. The mid-range and heavier hydrocarbons cryo-focused in the rear trap are deposited to a J&W DB-1 column (60 m × 0.32 mm × 1 µm) connected to the ion trap mass spectrometer. The GC initial temperature is 5 C held for approximately 9.5 minutes, then ramps by 3 C/min to 200 C for a total run time of 80 minutes. A 74 component reference standard prepared by Apel-Reimer was used to confirm retention times and calibrate detector response.

Page 60: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-24

Figure 3-18. Chemical analyses on filter substrates (Chow and Watson, 2012; Zielinska and Fujita, 1994).

C

hem

ical

A

nal

ysis

a

Nuc

lepo

re

poly

carb

onat

e-m

embr

ane

filte

r

Silv

er n

itrat

e-im

preg

nate

d ce

llulo

se-f

iber

fil

ter

K2C

O3-

impr

egna

ted

cellu

lose

-fib

er

filte

r

Citr

ic a

cid-

impr

egna

ted

cellu

lose

-fib

er

filte

r

Qua

rtz-

fiber

fil

ter

Qua

rtz-

fiber

fil

ter

Teflo

n-m

embr

ane

filte

r

~1-

2 cm

2 pu

nch

0.5

cm2

punc

h ½

filt

er

extr

acte

d in

20

ml

dist

illed

-de

ioni

zed

wat

er (

DD

W)

XRF

for

51

elem

ents

b

Aci

d D

iges

tion

ICP-

MS

for

rare

-ear

th

elem

ents

and

is

otop

esd

OC,

EC,

carb

on

frac

tions

, ca

rbon

ate

by

ther

mal

/opt

ical

ca

rbon

Org

anic

M

arke

rs b

y TD

-GC/M

Sc

Am

mon

ia b

y AC

½ f

ilter

ex

trac

ted

in

10 m

l 1:1

1 hy

drog

en

pero

xide

: D

DW

dilu

tion

Who

le filt

er

with

out

extr

actio

n

Elem

enta

l an

alys

is o

r m

orph

olog

ical

an

alys

is for

lic

hen

stud

ies

Sul

fur

diox

ide

by

IC

Hyd

roge

n su

lfide

by

XRF

as s

ulfu

r

½ f

ilter

ex

trac

ted

in

10 m

l DD

W

10 m

l for

ani

ons

and

catio

nse

by I

C, AC,

and

AAS, ac

idifi

ed t

o pH

2 w

ith

HCl

1 m

l for

tot

al

WSO

C b

y th

erm

al/o

ptic

al

carb

on

Filtr

atio

n of

5 m

l thr

ough

0.2

µm

PT

FE s

yrin

ge filt

er

1 m

l spe

ciat

ed W

SOC

sepa

rate

d in

to t

hree

cl

asse

s: N

C,

MD

A,

and

PA b

y H

PLC-I

EC a

nd

UV/V

is d

etec

tion

at

254

nm

1 m

l for

NC

spec

iatio

n (e

.g.,

carb

ohyd

rate

s) b

y IC

-PAD

1 m

l for

MD

A

spec

iatio

n (e

.g.,

orga

nic

acid

s) b

y IC

w

ith c

ondu

ctiv

ity

dete

ctor

1 m

l for

PA

spec

iatio

n (e

.g.,

HU

LIS)

by H

PLC–

SEC

–ELS

D–U

V/V

IS

a Ana

lytic

al I

nstr

umen

ts:

AAS:

Ato

mic

abs

orpt

ion

spec

tros

copy

AC:

Aut

omat

ed c

olor

imet

ry

EL

SD

: Ev

apor

ativ

e lig

ht s

catt

erin

g de

tect

or

H

PLC-I

EC:

Hig

h pe

rfor

man

ce li

quid

ch

rom

atog

raph

y w

ith a

n io

n ex

chan

ge

colu

mn

IC

: Io

n ch

rom

atog

raph

y

IC-P

AD:

IC w

ith p

ulse

d am

pero

met

ric

dete

ctor

ICP-

MS:

Indu

ctiv

ely

coup

led

plas

ma

– m

ass

spec

trom

etry

PTFE

: Pol

ytet

raflu

oroe

thyl

ene

SEC

: Siz

e-ex

clus

ion

chro

mat

ogra

phy

TD

-GC/M

S:

Ther

mal

des

orpt

ion-

gas

chro

mat

ogra

phy/

mas

s sp

ectr

omet

ry

U

V/V

IS:

Ultr

avio

let

dete

ctor

XRF:

X-r

ay f

luor

esce

nce

Obs

erva

bles

OC:

Org

anic

car

bon

EC

: El

emen

tal c

arbo

n

HU

LIS:

Hum

ic-l

ike

subs

tanc

es

M

DA:

Mon

o/di

carb

oxyl

ic a

cids

NC:

Neu

tral

/bas

ic c

ompo

unds

PA:

Poly

carb

oxyl

ic a

cids

b Al –

U (

see

Tabl

e 7-

1)

c 12

4 org

anic

mar

ker

spec

ies

(see

Ta

ble

7-1)

d

Cs,

Ba,

La,

Ce,

Pr,

Nd,

Sm

, Eu

, G

d, T

b, D

y, H

o, E

r, T

m,

Yb, Lu

, Pb

204,

205

, 20

6, 2

07,

208

e Cl- ,

NO

2, N

O3- ,

PO4=

, SO

4= (

by

IC);

NH

4+ (

by A

C);

Na+

, M

g++, K

+,

and

Ca+

+ (

by A

AS)

Page 61: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-25

Table 3-7. Summary of analytical detection limits for mass, elements, ions (including gaseous NH3 and SO2), and carbon applied to this study. Analysis MDLb LQLd Species Methoda (µg/filterc) (µg/filter) Mass GRAV 1.0000 5.1962 Ammonia (NH3) AC 1.5005 1.5005 Sulfur Dioxide (SO2) IC 1.5005 1.5005 Chloride (Cl-) IC 1.5005 1.5005 Nitrite (NO2

-) IC 1.5005 1.5005 Nitrate (NO3

-) IC 1.5005 1.5005 Phosphate (PO4

3-) IC 1.5005 1.5005 Sulfate (SO4

=) IC 1.5005 1.5005 Ammonium (NH4+) AC 1.5005 1.5005 Soluble Sodium (Na+) AAS 0.2362 0.2362 Soluble Potassium (K+) AAS 0.1498 0.8350 Organic Carbon (OC) Fraction 1 (OC1)e TOR 0.0516 1.0241 Organic Carbon (OC) Fraction 2 (OC2) e TOR 1.2900 1.3369 Organic Carbon (OC) Fraction 3 (OC3) e TOR 3.8700 3.8700 Organic Carbon (OC) Fraction 4 (OC4) e TOR 0.1290 0.1290 Pyrolyzed organic carbon via transmittance (OPR) e TOR 0.1290 0.1290 Pyrolyzed organic carbon via reflectance (OPT)e TOR 0.1290 0.7071 Organic Carbon (OC)e TOR 5.0310 5.0310 Elemental Carbon (EC) Fraction 1 (EC1)e TOR 0.0387 0.0387 Elemental Carbon (EC) Fraction 2 (EC2)e TOR 0.0387 0.0387 Elemental Carbon (EC) Fraction 3 (EC3)e TOR 0.0387 0.0387 Elemental Carbon (EC)e TOR 0.1290 0.7071 Total Carbon (TC)e TOR 5.4180 5.4180 Sodium (Na) XRF 3.7541 3.7541 Magnesium (Mg) XRF 1.1341 1.1341 Aluminum (Al) XRF 0.4483 0.4483 Silicon (Si) XRF 0.3613 0.3613 Phosphorus (P) XRF 0.1177 0.4295 Sulfur (S) XRF 0.0506 0.0506 Chlorine (Cl) XRF 0.0487 0.0487 Potassium (K) XRF 0.0459 0.0646 Calcium (Ca) XRF 0.0727 0.0754 Scandium (Sc) XRF 0.1938 0.1938 Titanium (Ti) XRF 0.0346 0.0346 Vanadium (V) XRF 0.0082 0.0135

Page 62: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-26

Table 3-7. Continued Analysis MDL LQL Species Methoda (µg/filter) (µg/filter) Chromium (Cr) XRF 0.0382 0.1603 Manganese (Mn) XRF 0.0834 0.3217 Iron (Fe) XRF 0.0760 0.0760 Cobalt (Co) XRF 0.0041 0.0143 Nickel (Ni) XRF 0.0131 0.0251 Copper (Cu) XRF 0.0442 0.0442 Zinc (Zn) XRF 0.0391 0.0391 Gallium (Ga) XRF 0.1281 0.1281 Arsenic (As) XRF 0.0147 0.0147 Selenium (Se) XRF 0.0290 0.0574 Bromine (Br) XRF 0.0412 0.0412 Rubidium (Rb) XRF 0.0271 0.0395 Strontium (Sr) XRF 0.0633 0.0633 Yttrium (Y) XRF 0.0376 0.1263 Zirconium (Zr) XRF 0.1012 0.1012 Niobium (Nb) XRF 0.0667 0.0744 Molybdenum (Mo) XRF 0.0640 0.1827 Palladium (Pd) XRF 0.1549 0.2542 Silver (Ag) XRF 0.1473 0.1473 Cadmium (Cd) XRF 0.1152 0.1152 Indium (In) XRF 0.1271 0.2225 Tin (Sn) XRF 0.1372 0.1372 Antimony (Sb) XRF 0.2063 0.2063 Cesium (Cs) XRF 0.0585 0.0869 Barium (Ba) XRF 0.0632 0.0632 Lanthanum (La) XRF 0.0433 0.0433 Cerium (Ce) XRF 0.0417 0.0417 Samarium (Sm) XRF 0.0862 0.1906 Europium (Eu) XRF 0.1325 0.1325 Terbium (Tb) XRF 0.0976 0.5363 Hafnium (Hf) XRF 0.3950 0.3950 Tantalum (Ta) XRF 0.2579 0.5442 Wolfram (W) XRF 0.3610 0.3610 Iridium (Ir) XRF 0.1192 0.2678 Gold (Au) XRF 0.1960 0.1960 Mercury (Hg) XRF 0.0971 0.1118 Thallium (Tl) XRF 0.0654 0.0654 Lead (Pb) XRF 0.0945 0.1088 Uranium (U) XRF 0.1648 0.1648 aGRAV = gravimetry. OP = optical density. IC = ion chromatography. AC = automated colorimetry. AAS = atomic absorption spectrophotometry.

Page 63: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-27

Table 3-7. Continued TOR = thermal/optical reflectance. XRF = x-ray fluorescence. bMDL (minimum detectable limit) is the concentration at which instrument response equals three times the standard deviation of the response to a known concentration of zero. cFilter assumed to be a 47 mm filter with 11.9 square centimeter deposit area

dLQL (lower quantifiable limit) is the large of three times the standard deviation of the concentrations measured on field blanks or MDL. eOC1, OC2, OC3, and OC4 are organic carbon evolved at 140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere. EC1, EC2, and EC3 are elemental carbon evolved at 580, 740, and 840 °C, respectively, in a 98% He / 2% O2 atmosphere. OP is pyrolyzed organic carbon by reflectance (OPR) or transmittance (OPT). OC = (OC1 + OC2 + OC3 + OC4) + OPR. EC = (EC1 + EC2 + EC3) – OPR. TC = OC + EC

Page 64: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-28

Table 3-8. Summary of analytical detection limits for 125 non-polar organic compounds.

Analysis MDLb LQLd Compounds Methoda ng/filterc ng/filter PAHs acenaphthylene TD-GC/MS 2.455 2.455 acenaphthene TD-GC/MS 10.617 10.617 fluorene TD-GC/MS 4.788 4.788 phenanthrene TD-GC/MS 6.295 6.295 anthracene TD-GC/MS 7.997 7.997 fluoranthene TD-GC/MS 6.133 6.133 pyrene TD-GC/MS 5.795 5.795 benzo[a]anthracene TD-GC/MS 4.600 4.600 chrysene TD-GC/MS 10.291 10.291 benzo[b]fluoranthene TD-GC/MS 7.302 7.302 benzo[j+k]fluoranthene TD-GC/MS 9.053 9.053 benzo[a]fluoranthene TD-GC/MS 7.302 7.302 benzo[e]pyrene TD-GC/MS 4.377 4.377 benzo[a]pyrene TD-GC/MS 5.457 5.457 perylene TD-GC/MS 2.936 2.936 indeno[1,2,3-cd]pyrene TD-GC/MS 5.222 5.222 dibenzo[a,h]anthracene TD-GC/MS 6.769 6.769 benzo[ghi]perylene TD-GC/MS 8.321 8.321 coronene TD-GC/MS 12.661 12.661 dibenzo[a,e]pyrene TD-GC/MS 33.733 33.733 9-fluorenone TD-GC/MS 11.710 11.710 dibenzothiophene TD-GC/MS 18.736 18.736 1 methyl phenanthrene TD-GC/MS 5.743 5.743 2 methyl phenanthrene TD-GC/MS 3.759 3.759 3,6 dimethyl phenanthrene TD-GC/MS 4.142 4.142 methylfluoranthene TD-GC/MS 5.368 5.368 retene TD-GC/MS 6.055 6.055 benzo(ghi)fluoranthene TD-GC/MS 8.659 8.659 benzo(c)phenanthrene TD-GC/MS 5.717 5.717 benzo(b)naphtho[1,2-d]thiophene TD-GC/MS 12.337 12.337 cyclopenta[cd]pyrene TD-GC/MS 4.399 4.399 benz[a]anthracene-7,12-dione TD-GC/MS 12.050 12.050 methylchrysene TD-GC/MS 4.238 4.238 benzo(b)chrysene TD-GC/MS 8.195 8.195 picene TD-GC/MS 10.933 10.933 anthanthrene TD-GC/MS 8.068 8.068 Alkane/Alkene n-alkane n-pentadecane (n-C15) TD-GC/MS 10.231 10.231 n-hexadecane (n-C16) TD-GC/MS 8.319 8.319 n-heptadecane (n-C17) TD-GC/MS 13.357 13.357

Page 65: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-29

Table 3-8. Continued

Analysis MDLb LQLd Compounds Methoda ng/filterc ng/filter Alkane/Alkene/Phthalate (continued) n-alkane (continued) n-octadecane (n-C18) TD-GC/MS 10.231 10.231 n-nonadecane (n-C19) TD-GC/MS 8.319 8.319 n-icosane (n-C20) TD-GC/MS 13.357 13.357 n-heneicosane (n-C21) TD-GC/MS 6.703 6.703 n-docosane (n-C22) TD-GC/MS 11.364 11.364 n-tricosane (n-C23) TD-GC/MS 5.959 5.959 n-tetracosane (n-C24) TD-GC/MS 5.694 5.694 n-pentacosane (n-C25) TD-GC/MS 8.402 8.402 n-hexacosane (n-C26) TD-GC/MS 7.291 7.291 n-heptacosane (n-C27) TD-GC/MS 6.991 6.991 n-octacosane (n-C28) TD-GC/MS 9.019 9.019 n-nonacosane (n-C29) TD-GC/MS 7.737 7.737 n-triacontane (n-C30) TD-GC/MS 10.615 10.615 n-hentriacotane (n-C31) TD-GC/MS 7.896 7.896 n-dotriacontane (n-C32) TD-GC/MS 7.673 7.673 n-tritriactotane (n-C33) TD-GC/MS 5.176 5.176 n-tetratriactoane (n-C34) TD-GC/MS 9.622 9.622 n-pentatriacontane (n-C35) TD-GC/MS 9.038 9.038 n-hexatriacontane (n-C36) TD-GC/MS 7.177 7.177 n-heptatriacontane (n-C37) TD-GC/MS 12.607 12.607 n-octatriacontane (n-C38) TD-GC/MS 23.349 23.349 n-nonatriacontane (n-C39) TD-GC/MS 16.716 16.716 n-tetracontane (n-C40) TD-GC/MS 25.579 25.579 iso/anteiso-alkane iso-nonacosane (iso-C29) TD-GC/MS 7.673 7.673 anteiso-nonacosane (anteiso-C29) TD-GC/MS 7.673 7.673 iso-triacontane (iso-C30) TD-GC/MS 5.176 5.176 anteiso-triacontane (anteiso-C30) TD-GC/MS 5.176 5.176 iso-hentriacotane (iso-C31) TD-GC/MS 9.622 9.622 anteiso-hentriacotane (anteiso-C31) TD-GC/MS 9.622 9.622 iso-dotriacontane (iso-C32) TD-GC/MS 9.038 9.038 anteiso-dotriacontane (anteiso-C32) TD-GC/MS 9.038 9.038 iso-tritriactotane (iso-C33) TD-GC/MS 7.177 7.177 anteiso-tritriactotane (anteiso-C33) TD-GC/MS 7.177 7.177 hopanes 22,29,30-trisnorneophopane (Ts) TD-GC/MS 3.982 3.982 22,29,30-trisnorphopane (Tm) TD-GC/MS 3.982 3.982 αβ-norhopane (C29αβ-hopane) TD-GC/MS 4.128 4.128 22,29,30-norhopane (29Ts) TD-GC/MS 4.128 4.128 αα- + βα-norhopane (C29αα- + βα -hopane) TD-GC/MS 5.941 5.941

Page 66: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-30

Table 3-8. Continued

Analysis MDLb LQLd Compounds Methoda ng/filterc ng/filter Alkane/Alkene/Phthalate (continued) αβ-hopane (C30αβ -hopane) TD-GC/MS 3.923 3.923 hopanes (continued) αα-hopane (30αα-hopane) TD-GC/MS 4.628 4.628 βα-hopane (C30βα -hopane) TD-GC/MS 4.628 4.628 αβS-homohopane (C31αβS-hopane) TD-GC/MS 4.270 4.270 αβR-homohopane (C31αβR-hopane) TD-GC/MS 4.969 4.969 αβS-bishomohopane (C32αβS-hopane) TD-GC/MS 1.138 1.138 αβR-bishomohopane (C32αβR-hopane) TD-GC/MS 1.329 1.329 22S-trishomohopane (C33) TD-GC/MS 1.138 1.138 22R-trishomohopane (C33) TD-GC/MS 1.329 1.329 22S-tretrahomohopane (C34) TD-GC/MS 1.138 1.138 22R-tetrashomohopane (C34) TD-GC/MS 1.329 1.329 22S-pentashomohopane(C35) TD-GC/MS 1.138 1.138 22R-pentashomohopane(C35) TD-GC/MS 1.329 1.329 sterane ααα 20S-Cholestane TD-GC/MS 2.720 2.720 αββ 20R-Cholestane TD-GC/MS 1.155 1.155 αββ 20s-Cholestane TD-GC/MS 1.337 1.337 ααα 20R-Cholestane TD-GC/MS 1.337 1.337 ααα 20S 24S-Methylcholestane TD-GC/MS 1.547 1.547 αββ 20R 24S-Methylcholestane TD-GC/MS 1.547 1.547 αββ 20S 24S-Methylcholestane TD-GC/MS 1.547 1.547 ααα 20R 24R-Methylcholestane TD-GC/MS 1.811 1.811 ααα 20S 24R/S-Ethylcholestane TD-GC/MS 1.502 1.502 αββ 20R 24R-Ethylcholestane TD-GC/MS 1.213 1.213 αββ 20S 24R-Ethylcholestane TD-GC/MS 1.213 1.213 ααα 20R 24R-Ethylcholestane TD-GC/MS 3.207 3.207 methyl-alkane 2-methylnonadecane TD-GC/MS 6.449 6.449 3-methylnonadecane TD-GC/MS 4.254 4.254 branched-alkane pristane TD-GC/MS 4.092 4.092 phytane TD-GC/MS 4.716 4.716 squalane TD-GC/MS 6.984 6.984 cycloalkane octylcyclohexane TD-GC/MS 11.721 11.721 decylcyclohexane TD-GC/MS 9.980 9.980 tridecylcyclohexane TD-GC/MS 7.550 7.550 n-heptadecylcyclohexane TD-GC/MS 5.941 5.941 nonadecylcyclohexane TD-GC/MS 5.478 5.478

Page 67: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

3-31

Table 3-8. Continued

Analysis MDLb LQLd Compounds Methoda ng/filterc ng/filter Alkane/Alkene/Phthalate (continued) alkene 1-octadecene TD-GC/MS 18.124 18.124 aTD-GC/MS = thermal desorption-gas chromatography/mass spectrometry bMDL (minimum detectable limit) is the concentration at which instrument response equals three times the standard deviation of the response to a known concentration of zero. cFilter assumed to be a 47 mm filter with 11.9 square centimeter deposit area

dLQL (lower quantifiable limit) is the large of three times the standard deviation of the concentrations measured on field blanks or MDL.

Page 68: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-1

4. Emission Factors 4.1. Definition of Emission Factors

The distance-based emission factor (EF in grams [g]/mile [mi]) is related to certification testing emission rate (ER in g/bhp-hr) using brake-specific fuel consumption (BSFC in lb fuel/bhp-hr), fuel density (ρ in lb/gal), and fuel economy (FE in miles/gal) by (Machiele, 1989):

EF(g/mile)=ER (g/bhp-hr) (ρ/[BSFC FE]). (4-1)

Using the carbon mass balance technique, fuel-based EFs of emittant i (EFi) can be calculated (Dreher and Harley, 1998; Kean et al., 2000; Moosmüller et al., 2003; Singer and Harley, 1996) as:

CO

CCO

CO

CCO

ifueli

M

MC

M

MC

CCMFEF

2

2

(4-2)

where EFi is the emission rate of species I in grams emitted per gram of fuel consumed for gas and particle mass, and in number of particles per gram of fuel used for particle number. CMFfuel is the carbon mass fraction of the fuel, which is 86.2% for diesel assuming it has an average formula of C12H23. Ci is the concentration of emittant i in g/m3 or particle number/m3, and CCO2 and CCO are the concentrations of CO2 and CO in g/m3, respectively. MC, MCO2, and MCO are the atomic or molecular weights of C, CO2, and CO in g per mole. Eq. 4-2 assumes that CH4, NMHC, and PM carbon is negligible compared to carbon in CO and CO2. Table 4-1 lists the types of measurements (real-time continuous, filter, or canister) from which fuel-based EFs were derived. The gas concentration of species i (Ci) measured in ppm can be converted to values in g/m3 by:

63ii

3i 10g/mρppmCg/mC (4-3)

where ρi is the density for emittant i. Since gas measurements were carried out at ambient pressures and temperatures, the pressure (P) measured by the Testo Emission Analyzer and the temperature (T) measured by the mass filter flowmeters are used in the density calculation:

RT

PMρ i

i , (4-4)

where Mi is the molecular weight of gaseous emittant i, and R is the universal gas constant (8.314 J/K×mol). Eq. 4-2 can then be simplified by substituting Eq. 4-4 for gaseous species:

COCOC

iifueli CCM

CMCMFEF

2

(4-5)

where Ci, CCO2, and CCO are in ppm.

As noted in Table 2-3, Environment Canada emission standards for nonroad CI engines with rated power > 900 kW regulate NMHC, NOx (or NMHC+NOx), PM, and CO with EFs in g/kW-hr derived from the certification tests. EFs in g/kW-hr are converted to EFs by :

EF[g/kg fuel] = hr]-fuel/kW BSFC[kg

hr]-EF[g/kW (4-6)

where the brake-specific fuel consumption (BSFC) is assumed to be 0.223 kg/kW-hr (0.367 lb/hp-hr).

Page 69: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-2

Fuel-based emission factors are most useful for nonroad emission estimates because they can be directly related to the fuel consumed, which is more accessible than VMT or VKT for nonroad operations. Because emitted carbon (dominated by CO2 for most engines) is the normalizing factor that can be related to the carbon in the fuel combusted, it is not necessary to capture all of the exhaust or even determine dilution factors.

Nevertheless, the dilution factor is measured by the on-board sampling system. The emittant concentration in the exhaust can be calculated, which can be used to estimate emission rates in gram per second (g/s) or number of particle emission per second if the total exhaust flow rate is known. The engine exhaust flow rate is not directly measured, but it is estimated by multiplying the engine speed ω (revolution per second) by the engine displacement V (m3). The real-time ERp can be calculated as:

EngineInst

InstEngineii TP

TPVωDFCER

(4-7)

where DF is the dilution factor, PEngine and TEngine are the pressure and temperature in the engine when the combustion is completed and the combustion products fill the whole cylinder volume, and PInst and TInst are the pressure and temperature of the measuring instruments. The pressure in the combustion chamber is not known.

The fuel-based emission factor (g emittant per g fuel) can be converted to emission rate (g emittant per second) if the fuel consumption rate (g fuel per second) is known. Since the real-time fuel consumption rate data is not available, the average fuel consumption rate (approximately 230 L/hr [0.064 L/s]) can be used to estimate an averaged ER for each test.

4.2. Data Consistency

Redundancy was built into the on-board PEMS. As shown in Table 4-1, CO and CO2 were measured by real-time instruments (i.e., Testo Emission Analyzer and PP System CO2 Analyzer) and by canisters, SO2 was measured by the real-time Emission Analyzer and by K2CO3-impregnated cellulose-fiber filters, and PM2.5 mass was measured by the real-time DustTrak DRX and by integrated Teflon filters followed by gravimetric analysis. Comparisons between different measurement techniques for the same observable ensure internal consistency.

Figure 4-1 compares integrated and real-time measurements for CO, CO2, SO2, and PM2.5. Since the filters, canisters, and real-time instruments sampled the diluted exhaust stream in parallel, data reported here were not adjusted for dilution.

The CO concentrations measured by the Testo Emission Analyzer were consistently 5–50% higher than the canisters. The source of this discrepancy is unknown. Since canister data is available for most runs while the Testo Emission Analyzer did not work for Runs S1-S3, the CO concentrations from canister measurement were used to calculate the average EF for each test except for Run S5 during which a canister sample was not taken. The average CO EF was calculated from the Emission Analyzer for Run S5. The real-time CO concentration was used to examine concentration variations during each test cycle.

Page 70: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-3

Table 4-1. Summary of the types of measurements for emission factors.

Emittant Real-time Continuous Measurements

Filter-based Measurements

Canister Measurements

CH4 (ppm) X NMHC (ppbC) X Halocarbons (ppbC) X CO (ppm) X X CO2 (ppm) X X NO (ppm) X NO2 (ppm) X NOx (ppm) X SO2 (ppm) X X H2S (µg/m3) X NH3 (µg/m3) X PM Number (particle/m3)

X

PM2.5 (mg/m3) X X BC (mg/m3) X Ions, carbon fraction and elements (µg/m3)

X

PM organic species (ng/m3)

X

The CO2 concentrations measured by the PP System CO2 Analyzer were within ±20% of the canisters except for Run S3. Therefore, real-time data was used to calculate CO2 EFs. Note that there is also a discrepancy in PM2.5 mass between the TSI DustTrak DRX and gravimetric PM2.5 mass by filter in Run S3. Runs S3 and S4 were two consecutive runs on the same day. Both CO2 by the PP System and PM2.5 mass by the TSI DustTrak DRX showed that the Run S3 had approximately three times more dilution than Run S4. However, the CO2 concentration from the canister indicated that Runs S3 and S4 had similar dilution ratios, while the filter indicated that Run S3 had 2.4 times less dilution than Run S4. Because of the consistency in dilution factors between the CO2 analyzer and DRX, the CO2 concentration from the canister for Run S3 was voided, and the PM2.5 concentration from the filter was flagged as suspect.

SO2 concentrations measured by the Testo Emission Analyzer were 1‒3 orders of magnitude higher than those from the filter samples. The SO2 concentration in the exhaust stream was low, in the range of 0‒1 ppm with occasional spikes up to 8 ppm. This is below Testo’s specification of ~5 ppm detection limit in the measurement range of 0‒99 ppm (See Table 3-1). The SO2 measured by filters were used for the test-averaged EF calculation, while the real-time SO2 data were used to evaluate in-cycle variations.

The DRX reported 1.4–2 times higher PM2.5 mass concentrations than filter measurements with the factory default calibration factors derived from Arizona road dust (ARD) to convert light scattering signals to mass concentrations. The ratio between DRX and filter mass concentrations is 1.75±0.27 when the data outlier from Run S3 is excluded. The ±16% variation of the ratio between runs is likely due to different particle properties (size and composition). The PM2.5 concentration from filter measurements was used for EF calculation except for Run S3, while the real-time PM2.5 concentration from the DRX was normalized to filter concentrations

Page 71: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-4

for evaluating in-cycle variations. The PM2.5 EF for Run S3 is calculated from DRX EF divided by 1.75, the average ratio of DRX to filter concentrations.

Light absorbing particles were measured in three different ways: BC by the micro-aethalometer, filter light attenuation (babs) by the Tobias densitometer, and EC from thermal-optical reflectance (TOR). Figure 4-2 shows good correlation (r2 = 0.96) between real-time BC and filter-based EC measurements. The slope (1.39) and intercept (-62 μg/m3) are typical of relationships found in ambient air measurements (Chow et al., 2010) and are close to those reported by Moosmüller et al. (2001) of BC = 1.41 EC + 87 (μg/m3) for fresh diesel exhaust. babs and EC are also reasonably correlated (r2 = 0.83).

4.3. Diesel Engine Emission Factors

Table 4-2 lists the fuel-based emission factors for GHG, other gases, particle number, PM2.5 and BC averaged from each test. The same data are plotted in Figure 4-3. A few observations can be made:

CO2 is the largest combustion product. Due to the dominance of carbon content in CO2 among all exhaust components, and the assumption that carbon content in species other than CO and CO2 are negligible (see Eq. 4-2), the CO2 EFs are relatively constant among the eight test runs with some disparity due to variations of CO EFs.

CH4 EFs are relatively constant from run to run, with averages of 1.760.52 and 1.440.65 g/kg fuel for CAT 797B-1 and CAT 787B-2, respectively.

The averaged CO EF for CAT 797B-1 is ~50% higher than that for CAT 797B-2.

The EFs for NOx are similar for the two trucks, with ~17% variability among test runs.

The EFs for H2S and NH3 are very low, with five of the eight runs below the measurement MDLs. The NH3 EFs are orders of magnitude smaller than those from light-duty gasoline vehicles (0.4 g/kg fuel) and support earlier findings that heavy-duty diesel trucks are a minor source of NH3 emissions compared to light-duty gasoline vehicles (Kean et al., 2009).

The average particle number EF measured from CAT 797B-2 [(5.43.1)1015 particle/kg fuel] is ~10 times higher than that from CAT 797B-1 [(5.11.4)1014 particle/kg fuel]. On the other hand, the PM2.5 EF from CAT 797B-2 (0.800.35 g/kg fuel) is only 67% higher than that from CAT 797B-1 (0.510.14 g/kg fuel). This suggests that the particles on CAT 797B-2 are small in size (probably < 100 nm), which were counted by the CPC, but did not contribute proportionally to the mass (filters) or light scattering (DRX). It is likely that these particles were formed by gas-to-particle conversion (nucleation) in the dilution process. The DRX data showed that over 99% PM is in the PM1 fraction.

The BC EFs are similar from both trucks (0.500.12 g/kg fuel and 0.490.13 g/kg fuel, respectively). It should be noted that the micro-aethalometer used the factory default factor to convert babs to BC concentration, and used an empirical constant k = 7.5 to correct for the nonlinearity between BC concentration and babs due to filter loading (Eq. 3-1).

Page 72: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-5

Figure 4-1. Comparisons of CO, CO2, SO2, and PM2.5 concentrations measured by integrated and real-time methods sampled in parallel from diluted exhaust streams. (Data in this figure are not corrected for the dilution ratio.) Note that: 1) CO by the Testo Emission Analyzer are 5-50% higher than those of canisters, 2) CO2 by the PP System CO2 Analyzer and canisters are within ±20% except for Run S3, 3) SO2 are around the detection limit of the Testo Emission Analyzer, and 4) PM2.5 by DustTrak DRX are 1.4-2 times higher than gravimetric mass of Teflon® filters except for Run S3. Run S3 is an outlier (see text). S1 to S5 denote the five runs at Facility S (CAT 797B-1) while A1 to A3 denotes the three runs at Site A (CAT 797B-2).

0

2

4

6

8

10

12

14

16

18

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

CO

Co

nc

en

tra

tio

n (

pp

m)

Canister (integrated)

Emission analyzer (real time)

CO

0

500

1000

1500

2000

2500

3000

3500

4000

4500

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

CO

2 C

on

ce

ntr

ati

on

(p

pm

)

Canister (integrated)

CO2 analyzer (real time)

CO2

0.00001

0.0001

0.001

0.01

0.1

1

10

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

SO

2 C

on

ce

ntr

ati

on

(p

pm

) Filter (integrated)

Emission analyzer (real time)

SO2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

S1 S2 S3 S4 S5 A1 A2 A3

Run IDP

M2.

5 C

on

ce

ntr

ati

on

(m

g/m

3 )

Filter (integrated)

DRX (real time)

PM2.5

Page 73: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-6

Figure 4-2. Relationships between elemental carbon (EC) by thermal-optical reflectance followed by the IMPROVE_A protocol, light absorption coefficient (babs) by densitometer, and black carbon (BC) by micro-aethalometer.

Table 4-3 compares the CAT 797B mining truck EFs for NMHC, NOx, CO, and PM2.5 with the Environment Canada and U.S. EPA nonroad emission standards. The EF values in the standards were converted from g/kW-hr to g/kg fuel using Eq. 4-6. Note that all four pollutants are below the Tier 1 limits. CO and PM2.5 are also below Tier 2 limits, but the NMHC+NOx is higher than the Tier 2 limit.

Table 4-4 compares the facility-averaged EFs with previous studies. Note that the CO EFs of the CAT 797B truck are lower than those of gasoline-powered light-duty vehicles (Kean et al., 2003). NOx EFs are in the same range as other studies. Particle number EFs from CAT 797B-2 are in the same range as EFs for on-road heavy duty (HD) diesel vehicles, while particle number EFs from CAT 797B-1 are an order of magnitude lower. PM2.5 EFs are 2–5 times lower than those for on-road HD diesel vehicles. BC EFs are a factor of 2–3 lower than those reported for on-road HD vehicles.

Table 4-5 summarizes EFs (in mg/kg fuel) for the 55 photochemical assessment monitoring station (PAMS) compounds and other identified NMHC. The top ten species with the highest EFs averaged from both facilities are (in descending order): ethene, n-heptane, propylene, 1-butene, ethane, acetylene, toluene, n-decane, 1-pentene, n-butane. Most of the Mobile Source Air Toxics (MSATs; U.S.EPA, 2001) species except for styrene have EFs > 1 mg/kg fuel. Total identified NMHC EFs of 0.68 ± 0.33 g/kg fuel and 0.95 ± 0.29 g/kg fuel are 19–33% higher than the PM2.5 EFs of 0.51 ± 0.14 g/kg fuel and 0.80 ± 0.35 g/kg fuel for trucks CAT797B-1 and CAT 797B-2, respectively. NMHC EFs are 40% higher from CAT 797B-2 than from CAT 797B-1. The benzene EF from CAT 797B-2 is about three times higher, while the n-

BC = 1.39 x EC - 62

r2 = 0.96

babs = 15.9 x EC - 1400

r2 = 0.83

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600 700 800 900 1000

EC Concentration (µg/m3)

ba

bs (

mM

-1)

0

100

200

300

400

500

600

700

800

900

1000

BC

Co

nce

ntr

atio

n (

µg

/m3)

babs

BC

Page 74: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-7

heptane EF is ~14 times higher than those from CAT 797B-1 (highlighted in lavender). Figure 4-4 plots the NMHC EFs grouped into alkanes and cycloalkanes, alkenes, acetylene, and aromatics. It is apparent that alkanes, cycloalkanes, and alkenes have the highest EFs among the NMHC species, with EFs in the range of 103‒ 669 mg/kg fuel.

Table 4-6 lists EFs (in mg/kg fuel) of 14 halocarbons. The three largest halocarbon emissions are 1,3-dichlorobenzene, 1,1,2,2-tetrachloroethane, and dichloromethane. While the 1,3-dichlorobenzene EF from CAT 797B-2 is about three times higher than CAT 797B-1, the dichloromethane EF is about three times higher from CAT 797B-1.

Table 4-7 lists EFs for PM2.5 constituents (ions, carbon fractions, and elements). The EFs from Run S3 were excluded from the CAT 797B-1 average calculation due to its suspicious filter mass. Carbon has the largest EF, with TC EFs of 399 ±67 mg/kg fuel and 683 ± 368 mg/kg fuel for CAT 797B-1 and CAT 797B-2, respectively. The EC:TC ratio ranged from 0.40 to 0.83, with an average of ~0.68. Figure 4-5 shows that the EC is reasonably correlated with TC (r2 =0.89). Approximately 40-95% of EC is in the high-temperature EC2 fraction evolved in a 98% He/2% O2 atmosphere at 740 C, indicative of emissions from diesel exhaust (Watson et al., 1994). Calcium (Ca) and zinc (Zn), which are lube oil additives, are the major metal species with EFs ranging from 1.1 to 5.8 mg/kg fuel for Ca and 0.7 to 5.2 mg/kg fuel for Zn. Phosphorus (P; 0.7–3.9 mg/g) and S (0.2–2.1 mg/g) are detected; these elements also originate from lube oil and S is present in the fuel as well. This finding is in agreement with several previous studies (Fujita et al., 2007b; Lombaert et al., 2004; Toner et al., 2006). Table 4-8 lists EFs (in mg/kg fuel) for of Cs, Ba, rare earth elements, and Pb measured by ICP/MS. Most species are below detection limits.

Table 4-9 lists EFs for 113 non-polar organic carbon compounds. These organic compounds are grouped into nine categories (i.e., PAHs, n-alkanes, iso- and anteiso-alkanes, hopanes, steranes, methyl-alkanes, branched alkanes, cyclo-alkanes, and alkenes). Cells with “<” indicate that the levels are below detection limits. There are large variations in EFs among the eight tests. The average PM2.5 organic compounds from CAT 797B-2 are about 80% higher than those from CAT 797B-1. EFs for hopanes and steranes are 16 and 6 times higher, respectively, from CAT 797B-2 than CAT 797B-1. The sum of the 113 organic compounds accounts for 0.8-2.1% of the OC measured by TOR. Most of the OC is unidentified or un-quantified (Fraser et al., 1999). Figure 4-6 shows that the total organic compounds identified by the TD-GC/MS are correlated with OC (r2

= 0.97), while the total PAH is less correlated with EC (r2 = 0.80). Total PAH would have good correlation with OC (r2 = 0.88) if the data outlier (on the upper right) from Run S3 was excluded. The identified organic species are dominated by alkanes, indicating unburned fuel and lube oil as the main sources (Maricq, 2007).

Table 4-10 lists EFs (in mg/kg fuel) for carbohydrates, organic acids, WSOC classes, and total WSOC. Most carbohydrates and organic acids are below detection limits. Neutral compounds are the most abundant WSOC classes measured in most runs. Total WSOC accounts for 8.1% and 2.9% of the OC from CAT 797B-1 and CAT 797B-2, respectively. Figure 4-7 shows that WSOC EFs are poorly correlated with OC (r2

= 0.25).

ERs in kg/day and tons/year are estimated from fuel-based EFs (g/kg fuel) and the fuel consumption rate (assuming 230 L/hr), assuming the trucks run continuously and the EFs from this study are representative of average values. These ERs are listed in Appendix A.

Page 75: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-8

Table 4-2. Average fuel-based emission factors for gases and particulate emittants for each test.

Run IDa S1 S2 S3 S4 S5 A1 A2 A3 CAT 797B-1

Average CAT 797B-2

Average Ratio S/A

GH

G

CO2 (g/kg) 3147 3150 3136 3150 3145 3145 3151 3156 3146 ± 6 3150 ± 6 1.0

CH4 (g/kg) 1.82 1.21 2.44 1.58 - 1.67 0.71 1.94 1.76 ± 0.52 1.44 ± 0.65 1.2

Oth

er g

ases

CO (g/kg) 8.85 6.74 15.79 6.73 9.93 10.22 6.32 3.07 9.61 ± 3.72 6.54 ± 3.58 1.5

NO (g/kg) - - - 31.35 29.06 37.26 33.64 23.76 30.21 ± 1.62 31.55 ± 6.99 1.0

NO2 (g/kg) - - - 3.92 1.98 4.99 4.12 2.87 2.95 ± 1.37 3.99 ± 1.07 0.7

NOx(g/kg) - - - 35.27 31.04 42.26 37.76 26.63 33.15 ± 3.00 35.55 ± 8.05 0.9

SO2(g/kg) 1.93E-3 1.72E-3 9.65E-3 3.66E-3 2.08E-3 1.94E-3 2.32E-3 1.94E-2 (3.81 ± 3.35)E-3 (7.90 ± 9.99)E-3 0.5

H2S(g/kg) 1.63E-4 1.10E-4 0 0 0 0 6.96E-5 0 (5.48 ± 7.73)E-5 (2.32 ± 4.02)E-5 2.4

NH3(g/kg) 7.41E-5 5.91E-5 0 0 0 0 4.40E-4 0 (2.66 ± 3.69)E-5 (1.47 ± 2.54)E-4 0.2

PM Number (#/kg) 3.7E14 4.44E14 4.4E14 7.3E14 5.9E14 8.6E15 5.3E15 2.4E15 (5.1 ± 1.4)E14 (5.4 ± 3.1)E15 0.1

PM2.5 (g/kg) 0.43 0.39 0.75 0.54 0.47 1.20 0.67 0.53 0.51 ± 0.14 0.80 ± 0.35 0.6

BC (g/kg) - - 0.62 0.47 0.40 0.64 0.44 0.40 0.50 ± 0.12 0.49 ± 0.13 1.0 a Run IDs S1 – S5 represent the five runs taken at Site S with CAT 797B-1. Run IDs A1–A3 represent the three runs taken at Site A with CAT 797B-2. Table 4-3. Comparison between CAT 797B EFs with the Environment Canada and U.S. EPA nonroad emission standards for NMHC, NOx, CO, and PM2.5.

Emittants CAT 797B EFs (g/kg fuel) Emission Standards (g/kg fuel)

CAT 797B-1 CAT 797B-2 Tier 1 Tier 2 Tier 4 NMHC 0.68 ± 0.33 0.95 ± 0.29 5.8 - 0.9

NOx 33.15 ± 3.00 35.55 ± 8.05 41.2 - 15.7

NMHC+NOx 33.83 ± 3.02 36.50 ± 8.06 - 28.6 -

CO 9.61 ± 3.72 6.54 ± 3.58 51.0 15.7 15.7

PM2.5 0.51 ± 0.14 0.80 ± 0.35 2.4 0.9 0.2

Page 76: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-9

Figure 4-3. Average fuel-based emission factors for major gases and PM2.5 in each run. Detailed data are in Table 4-2.

CO2 Emission Factor (by CO2 Analyzer)

3130

3135

3140

3145

3150

3155

3160

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

CO

2 E

mis

sio

n

(g/k

g f

uel

)CH4 Emission Factor (by Canister-GC/FID)

0

0.5

1

1.5

2

2.5

3

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

CH

4 E

mis

sio

n

(g/k

g f

uel

)

CO Emission Factor (by Canister-GC/FID)

0

2

4

6

8

10

12

14

16

18

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

CO

Em

issi

on

(g/k

g f

uel

)

NOX Emission Factor (by Emission Analyzer)

0

5

10

15

20

25

30

35

40

45

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

NO

X E

mis

sio

n

(g/k

g f

uel

)

SO2 Emission Factor (by Filter-IC)

0

0.005

0.01

0.015

0.02

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

SO

2 E

mis

sio

n

(g/k

g f

uel

)

H2S Emission Factor (by Filter-XRF)

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

1.8E-04

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

H2S

Em

issi

on

(g/k

g f

uel

)

NH3 Emission Factor (by Filter-AC)

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

4.5E-04

5.0E-04

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

NH

3 E

mis

sio

n

(g/k

g f

uel

)

Particle Number Emission Factor (by CPC)

0.0E+00

1.0E+15

2.0E+15

3.0E+15

4.0E+15

5.0E+15

6.0E+15

7.0E+15

8.0E+15

9.0E+15

1.0E+16

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

Par

ticl

e N

um

ber

Em

issi

on

(#/k

g f

uel

)

PM2.5 Emission Factor (by Teflon Filter)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

PM

2.5

Em

issi

on

(g/k

g f

uel

)

Page 77: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-10

Figure 4-3 (continued).

Black Carbon Emission Factor (by micro-Aethalometer)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S1 S2 S3 S4 S5 A1 A2 A3

Run ID

BC

Em

issi

on

(g/k

g f

uel

)

Page 78: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-11

Table 4-4. Comparison of emission factors with other studies.

Reference Vehicle Fuel CO

(g/kg fuel) NOx

(g/kg fuel) SO2

(g/kg fuel) Number

(#/kg fuel) PM2.5

(g/kg fuel) BC

(g/kg fuel)

This Study, CAT 797B-1 CAT 797B Diesel

9.6 ± 3.7 33.2±3.0 (3.81 ± 3.35 )×10-3 (5.1 ± 1.4) ×1014

dp > 10 nm 0.51 ± 0.14 0.50 ± 0.12

This Study, CAT 797B-2 6.5 ± 3.6 35.6 ± 8.1 (7.90 ± 9.99 )×10-3 (5.4 ± 3.1) ×1015

dp > 10 nm 0.80 ± 0.35 0.49 ± 0.13

(Dreher and Harley, 1998) on-road heavy-duty diesel trucks 40 ± 7 1.4 ± 0.2

(Pierson et al., 1996) 34

(Rogak et al., 1997) 0.95

(Kirchstetter et al., 1999) on-road heavy-duty diesel trucks 57± 7 (7.1±3.3)×1015

dp > 10 nm 2.7± 0.3 1.4± 0.6

(Ban-Weiss et al., 2008b) on-road heavy-duty diesel trucks 40± 3 1.4±0.3 0.86± 0.07

(Ban-Weiss et al., 2009) on-road heavy-duty diesel trucks 4.7×1015 1.7

(Ban-Weiss et al., 2010)) on-road heavy-duty diesel trucks (3.3±1.3)×1015

dp> 3 nm

(Kean et al., 2003) Light duty vehicle gasoline 22-46 (downhill) 36-101 (uphill)

1.5-4.5 (downhill) 5.1-7.2 (uphill)

(Ning et al., 2008)) Light duty vehicle (Highway CA-110) gasoline (1.8±0.3)×1015

dp> 7 nm 0.11 ± 0.03

(Ning et al., 2008)) Highway I-710 80% gasoline 20% diesel

(3.3±1.1)×1015

dp> 7 nm 0.22 ± 0.04

Page 79: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-12

Table 4-5. Emission factors for 55 photochemical assessment monitoring station (PAMS) compounds and other identified non-methane hydrocarbons (NMHC). Species with the highest emission factors species are highlighted in green, and the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Benzene and n-Heptane are significantly higher from CAT 797B-2 than CAT 797B-1 and are highlighted in lavender. Emission Factors in mg/kg Fuel

Compound Run ID CAT 797B-1

Average CAT 797B-2

Average S1 S2 S3 S4 A1 A2 A3

PAMS Compound

Acetylene 30.978 27.764 30.838 39.013 73.592 39.114 17.797 32.148 ± 4.811 43.501 ± 28.155

Ethene 113.765 121.418 296.930 179.211 227.199 176.718 165.495 177.831 ± 84.604 189.804 ± 32.868

Ethane 6.058 10.584 132.148 38.602 16.359 22.825 63.633 46.848 ± 58.660 34.272 ± 25.632

Propylene 44.766 48.885 123.060 75.117 72.836 65.557 69.044 72.957 ± 36.006 69.146 ± 3.640

Propane 1.934 2.526 32.866 11.570 6.746 5.005 14.431 12.224 ± 14.451 8.728 ± 5.016

1-Butene 15.738 19.386 106.404 51.371 27.962 29.284 56.140 48.225 ± 41.959 37.795 ± 15.901

cis-2-Butene 1.265 1.383 4.952 3.169 2.857 2.314 4.237 2.692 ± 1.740 3.136 ± 0.991

trans-2-Butene 1.690 1.978 9.880 5.551 3.817 3.725 8.024 4.775 ± 3.830 5.189 ± 2.456

n-Butane 3.003 3.932 46.267 19.370 7.405 7.352 22.266 18.143 ± 20.196 12.341 ± 8.595

Isobutane 2.064 1.328 2.272 2.470 1.534 0.615 1.662 2.033 ± 0.499 1.270 ± 0.571

Isopentane 1.551 1.072 3.586 2.344 2.055 1.056 2.670 2.138 ± 1.099 1.927 ± 0.814

1-Pentene 8.036 8.345 33.487 19.850 11.703 10.813 20.456 17.430 ± 12.034 14.324 ± 5.329

n-Pentane 5.245 3.898 21.903 11.421 5.918 4.051 11.510 10.617 ± 8.206 7.159 ± 3.882

Isoprene <0.098 <0.095 <0.145 <0.141 <0.160 <0.104 0.304 <0.120 ± 0.027 <0.189 ± 0.103 trans-2-Pentene 1.347 1.433 8.224 5.403 2.860 2.541 5.666 4.102 ± 3.336 3.689 ± 1.719

cis-2-Pentene 0.694 0.662 2.675 1.827 1.236 1.004 1.990 1.465 ± 0.972 1.410 ± 0.515

2,2-Dimethylbutane 0.209 0.303 0.454 0.481 0.290 0.397 1.189 0.362 ± 0.128 0.625 ± 0.491

Cyclopentane 0.130 0.123 0.502 0.285 0.295 0.260 0.546 0.260 ± 0.178 0.367 ± 0.156

2,3-Dimethylbutane 3.623 2.055 7.112 3.852 10.319 5.690 10.461 4.161 ± 2.123 8.823 ± 2.714

2-Methylpentane 0.249 0.192 0.603 0.565 0.359 0.255 0.945 0.402 ± 0.212 0.520 ± 0.372

3-Methylpentane 1.522 1.359 6.266 3.617 2.370 1.477 3.999 3.191 ± 2.293 2.615 ± 1.279

2-Methyl-1-Pentene 6.327 6.269 23.081 16.021 9.020 7.049 15.808 12.924 ± 8.176 10.625 ± 4.595

n-Hexane 6.969 5.336 21.569 14.504 7.239 4.511 12.491 12.094 ± 7.472 8.080 ± 4.056

Methylcyclopentane 0.839 0.645 2.279 1.704 1.044 0.508 1.173 1.367 ± 0.763 0.908 ± 0.352

Page 80: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-13

Table 4-5. Continued

Emission Factors in mg/kg Fuel

Compound Run ID CAT 797B-1

Average CAT 797B-2

Average S1 S2 S3 S4 A1 A2 A3

2,4-Dimethylpentane 0.814 0.954 2.129 2.537 1.908 1.216 2.594 1.608 ± 0.855 1.906 ± 0.689

Benzene 3.512 5.165 7.494 9.040 24.384 12.170 23.584 6.303 ± 2.449 20.046 ± 6.833

Cyclohexane 0.624 0.477 1.399 1.146 0.839 0.373 0.762 0.911 ± 0.434 0.658 ± 0.250

2-Methylhexane 6.288 3.646 6.129 5.833 11.054 3.869 9.100 5.474 ± 1.233 8.008 ± 3.715

2,3-Dimethylpentane 4.123 3.810 7.625 9.318 7.300 4.118 10.895 6.219 ± 2.694 7.438 ± 3.391

3-Methylhexane 0.401 0.258 0.310 0.551 1.282 0.426 0.000 0.380 ± 0.128 0.570 ± 0.653

2,2,4-Trimethylpentane 2.984 3.260 2.220 2.098 3.034 1.278 2.488 2.641 ± 0.570 2.267 ± 0.899

n-Heptane 13.237 7.519 23.588 21.591 433.523 95.063 148.231 16.484 ± 7.471 225.605 ± 182.014

Methylcyclohexane 1.030 1.025 1.731 2.095 9.641 3.010 4.487 1.470 ± 0.532 5.713 ± 3.481

2,3,4-Trimethylpentane 2.250 2.748 1.002 1.720 1.421 0.893 2.448 1.930 ± 0.748 1.588 ± 0.791

Toluene 20.026 14.571 20.616 27.898 28.910 17.742 34.170 20.778 ± 5.472 26.941 ± 8.389

2-Methylheptane 0.775 0.629 0.873 1.265 4.784 1.938 2.125 0.886 ± 0.272 2.949 ± 1.592

3-Methylheptane 0.666 0.533 1.190 1.889 3.444 1.508 3.159 1.070 ± 0.615 2.704 ± 1.045

n-Octane 3.846 2.931 4.458 6.499 11.268 4.933 10.107 4.434 ± 1.514 8.769 ± 3.372

Ethylbenzene 2.573 1.937 1.393 2.357 4.802 2.215 4.177 2.065 ± 0.520 3.731 ± 1.350

m/p-Xylene 8.554 7.226 5.556 7.726 12.233 7.184 13.516 7.265 ± 1.265 10.978 ± 3.347

Styrene 0.281 0.290 0.000 0.577 0.765 0.347 1.510 0.287 ± 0.235 0.874 ± 0.589

o-Xylene 4.700 4.316 3.919 4.805 5.935 3.687 7.235 4.435 ± 0.403 5.619 ± 1.795

n-Nonane 20.372 15.058 4.972 8.618 18.392 8.240 12.462 12.255 ± 6.832 13.031 ± 5.100

Isopropylbenzene 1.032 0.811 0.295 0.581 1.416 0.685 1.165 0.680 ± 0.316 1.089 ± 0.372

n-Propylbenzene 3.515 2.873 1.562 2.237 3.945 2.275 3.767 2.547 ± 0.838 3.329 ± 0.917

m-Ethyltoluene 8.552 7.667 4.445 6.166 9.465 5.849 9.252 6.708 ± 1.801 8.189 ± 2.029

p-Ethyltoluene 3.033 2.596 1.698 2.368 3.689 2.143 3.801 2.424 ± 0.557 3.211 ± 0.926

1,3,5-Trimethylbenzene 2.211 1.987 1.635 2.133 2.598 1.646 3.019 1.992 ± 0.255 2.421 ± 0.703

o-Ethyltoluene 3.233 2.977 3.231 4.018 4.471 3.042 5.893 3.365 ± 0.452 4.469 ± 1.425

1,2,4-Trimethylbenzene 2.604 2.514 4.029 5.828 6.840 4.802 9.584 3.744 ± 1.553 7.075 ± 2.399

n-Decane 25.650 21.753 12.529 17.530 25.586 14.181 23.225 19.366 ± 5.636 20.997 ± 6.020

1,2,3-Trimethylbenzene 1.336 1.110 2.298 3.423 6.276 4.041 8.512 2.042 ± 1.055 6.276 ± 2.235

m-Diethylbenzene 1.565 1.539 1.755 2.744 3.263 2.328 4.634 1.901 ± 0.570 3.408 ± 1.160

p-Diethylbenzene 0.987 0.972 0.870 1.356 1.545 1.000 1.852 1.046 ± 0.213 1.466 ± 0.431

Page 81: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-14

Table 4-5. Continued

Compound Run ID

CAT 797B-1 Average CAT 797B-2 Average S1 S2 S3 S4 A1 A2 A3

n-Undecane 4.800 4.499 7.705 12.645 13.906 11.248 20.556 7.412 ± 3.776 15.237 ± 4.795

Other identified HC

1,3-Butadiene 0.505 0.871 2.421 1.720 1.526 0.715 6.989 1.379 ± 0.861 3.077 ± 3.413

Isobutylene 5.428 7.254 21.377 13.312 15.767 8.233 20.421 11.843 ± 7.194 14.807 ± 6.150

1,2-Butadiene 3.118 2.888 3.346 3.678 6.436 4.095 2.464 3.257 ± 0.337 4.332 ± 1.996

2-Methyl-1-Butene 3.505 2.992 8.794 8.910 5.830 5.609 10.206 6.050 ± 3.242 7.215 ± 2.592

2-Methyl-2-Butene 0.344 0.259 0.773 0.610 0.503 0.411 0.888 0.497 ± 0.237 0.601 ± 0.253

Cyclopentene 1.242 1.345 3.544 2.442 1.859 1.472 2.987 2.143 ± 1.080 2.106 ± 0.787

t-2-Hexene 0.555 0.548 2.543 2.085 1.114 0.857 2.203 1.433 ± 1.035 1.391 ± 0.714

c-2-Hexene 0.255 0.263 0.759 0.735 0.414 0.274 0.726 0.503 ± 0.282 0.471 ± 0.232

1,3-Hexadiene <0.164 <0.158 1.375 <0.234 0.058 <0.173 2.156 <0.483 ± 0.596 <0.796 ± 1.179

Cyclohexene 0.609 0.651 2.083 1.843 1.164 0.690 1.621 1.296 ± 0.776 1.159 ± 0.466

1,3-Dimethylcyclopentane <0.194 <0.187 <0.286 <0.278 <0.315 <0.205 <0.503 <0.236 ± 0.053 <0.341 ± 0.151

1-Heptene 3.685 3.515 10.966 11.948 7.802 4.191 11.136 7.528 ± 4.555 7.710 ± 3.473

2,3-Dimethyl-2-Pentene <0.161 0.155 0.470 <0.231 0.226 <0.170 0.688 <0.254 ± 0.148 <0.361 ± 0.284

4-Methylheptane 0.787 0.686 2.059 4.495 5.189 3.915 10.365 2.007 ± 1.772 6.490 ± 3.416

alpha-Pinene <0.183 <0.176 1.633 0.383 14.301 2.660 <0.475 <0.594 ± 0.699 <5.812 ± 7.432

Indan 2.094 1.929 1.827 2.315 2.120 1.309 2.734 2.041 ± 0.213 2.054 ± 0.715

Sum of PAMS 413.576 398.529 1056.013 685.911 1162.934 615.573 900.244 638.507 ± 308.081 892.917 ± 273.754

Sum of Identified NMHC 435.701 421.884 1119.983 740.384 1227.243 650.006 975.830 679.488 ± 328.398 951.026 ± 289.417

Page 82: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-15

Table 4-6. Emission factors (in mg/kg fuel) of halocarbons.

Halocarbon MW S1 S2 S3 S4 A1 A2 A3

CAT 797B-1 Average

CAT 797B-2 Average

dichloromethane 85 2.173 2.679 2.478 2.475 0.993 0.628 1.118 2.451 ± 0.208 0.913 ± 0.255

chlorobenzene 113 0.052 0.044 <0.226 <0.220 0.100 0.039 0.088 <0.136 ± 0.101 0.075 ± 0.032

chloroform 119 <0.163 <0.157 0.476 0.354 <0.264 <0.172 0.338 <0.287 ± 0.155 <0.258 ± 0.083

dichlorodifluoromethane (F-12) 121 1.071 0.945 1.606 1.613 1.724 1.134 2.771 1.309 ± 0.351 1.876 ± 0.829

trichloroEthene 131 0.165 0.128 0.259 0.251 <0.291 <0.189 <0.465 0.201 ± 0.065 <0.315 ± 0.140

1,3-dichlorobenzene 147 5.255 4.729 7.696 11.142 17.994 13.627 30.616 7.205 ± 2.925 20.746 ± 8.823

o-dichlorobenzene 147 <0.200 <0.193 <0.296 <0.287 <0.326 <0.211 <0.520 <0.244 ± 0.055 <0.352 ± 0.156

p-dichlorobenzene 147 0.132 0.093 0.166 0.281 0.339 0.216 0.530 0.168 ± 0.081 0.362 ± 0.159

tetrachloromethane 154 0.193 0.145 0.285 0.234 0.272 0.159 0.403 0.214 ± 0.059 0.278 ± 0.122

bromodichloromethane 164 0.183 <0.215 0.481 0.498 0.435 0.231 0.522 0.388 ± 0.177 0.396 ± 0.149

tetrachloroethene 166 0.316 0.161 0.294 0.356 0.536 0.215 0.528 0.282 ± 0.084 0.426 ± 0.183

1,1,2,2-tetrachloroethane 168 3.929 3.510 2.945 3.627 <0.372 2.723 6.982 3.503 ± 0.412 4.852 ± 3.012

1,2-dichlorotetrafluoroethane (F-114) 171 <0.233 <0.224 <0.344 0.073 0.068 0.049 0.109 <0.219 ± 0.111 0.075 ± 0.031

1,1,2-trichloro-1,2,2-trifluoroethane 187 0.112 0.093 0.196 0.205 0.199 0.140 0.371 0.152 ± 0.057 0.237 ± 0.120

Page 83: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-16

Figure 4-4. Non-methane hydrocarbon (NMHC) emission factors (EFs) grouped into four sub-groups. Error bars indicate the standard deviation of multiple runs from the same sampling facility.

0

100

200

300

400

500

600

700

Alkanes &cycloalkanes Alkenes Acetylene Aromatics

NM

HC

Em

iss

ion

Fa

cto

r (m

g/k

g f

ue

l)

NMHC Compound Group

CAT 797B-1

CAT 797B-2

Page 84: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-17

Table 4-7. Emission factors of speciated PM2.5 particle compositions. Cells with “<” indicate that the species is below the instrument detection limit. Data from Run S3 were excluded in calculating CAT 797B-1 Average.

Emission Factors in mg/kg fuel

Chemical Species Run ID

CAT 797B-1 Average

CAT 797B-2 Average S1 S2 S3b S4 S5 A1 A2 A3

Cl- <2.574 <2.119 <2.187 <2.743 <1.520 0.029 <1.454 <1.581 <2.138 <1.344

NO2- 3.804 0.376 0.323 1.816 0.352 0.111 0.106 0.566 1.587 ± 1.629 0.261 ± 0.264

NO3- 3.037 1.004 15.946 2.349 1.424 16.003 6.565 8.856 1.954 ± 0.915 10.475 ± 4.923

PO43- 2.485 1.771 5.250 1.797 1.134 12.692 9.519 12.898 1.797 ± 0.552 11.703 ± 1.894

SO42- 2.114 1.205 3.237 1.175 0.712 3.547 1.728 1.948 1.302 ± 0.587 2.408 ± 0.993

NH4+ 2.022 1.197 4.168 1.849 1.029 1.808 0.756 1.504 1.524 ± 0.485 1.356 ± 0.542

Na+ 0.103 <0.334 <0.344 <0.432 0.029 0.549 0.036 0.012 <0.336 0.199 ± 0.303

Mg2+ 0.028 <0.077 0.259 0.009 <0.055 4.344 3.035 3.651 <0.078 3.677 ± 0.655

K+ <0.257 <0.212 <0.218 <0.274 <0.152 0.172 <0.145 <0.158 <0.213 <0.134

Ca2+ 1.324 0.789 2.991 0.894 0.663 2.691 1.879 2.237 0.918 ± 0.287 2.269 ± 0.407

OC1 54.517 29.217 82.247 55.095 17.056 483.934 126.682 55.331 38.971 ± 18.948 221.982 ± 229.645 OC2 41.475 28.735 94.778 23.315 26.328 114.365 38.871 39.254 29.963 ± 7.988 64.163 ± 43.476 OC3 21.044 20.659 97.318 18.097 17.041 43.905 22.739 14.949 19.210 ± 1.950 27.198 ± 14.984 OC4 5.906 7.056 15.571 3.650 6.796 18.979 8.479 10.324 5.852 ± 1.549 12.594 ± 5.606 OP <0.221 <0.182 <0.188 <0.236 <0.131 <0.101 <0.125 <0.136 <0.184 <0.116

EC1 17.096 13.370 45.351 15.866 14.627 261.253 86.919 121.535 15.240 ± 1.603 156.569 ± 92.297 EC2 227.297 242.542 1632.699 377.921 310.673 183.765 227.927 189.967 289.608 ± 69.139 200.553 ± 23.909 EC3 1.901 0.144 <0.056 1.330 0.081 <0.030 0.601 0.792 0.864 ± 0.899 <0.035

CO32- 0.172 0.000 0.531 0.000 0.000 0.032 0.000 0.000 0.141 0.011

OC 122.940 85.666 289.911 100.154 67.222 661.183 196.771 119.858 93.996 ± 23.537 325.937 ± 292.867 EC 245.854 255.788 1676.938 394.575 325.085 444.718 315.260 311.777 305.326 ± 69.154 357.252 ± 75.768 TC 368.794 341.455 1966.850 494.730 392.307 1105.902 512.031 431.636 399.321 ± 66.914 683.190 ± 368.280

Page 85: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-18

Table 4-7. Continued

Emission Factors in mg/kg fuel

Chemical Species Run ID

CAT 797B-1 Average

CAT 797B-2 Average S1 S2 S3 S4 S5 A1 A2 A3

Na 0.388 <5.302 <5.472 <6.863 1.320 2.449 <3.638 <3.956 <5.349 <3.364 Mg 0.054 <1.602 <1.653 0.156 <1.149 3.103 2.959 1.717 <1.616 2.593 ± 0.762 Al 0.725 <0.633 <0.654 <0.820 0.417 <0.353 <0.434 <0.472 <0.639 <0.402 Si <0.620 0.799 9.745 3.101 0.089 0.711 1.021 1.142 <0.515 0.958 ± 0.222 P 0.878 0.729 4.710 0.668 0.671 3.863 3.895 3.774 0.737 ± 0.098 3.844 ± 0.063

S 0.766 0.579 3.485 0.345 0.190 2.124 1.066 0.915 0.470 ± 0.254 1.368 ± 0.659 Cl 0.089 0.080 0.830 0.304 0.073 6.206 0.684 1.137 0.137 ± 0.112 2.675 ± 3.066 K 0.048 0.013 0.462 0.110 0.055 0.070 0.023 0.027 0.056 ± 0.040 0.040 ± 0.026 Ca 1.928 1.388 13.217 4.047 1.103 5.795 3.899 3.782 2.117 ± 1.332 4.492 ± 1.130 Sc 0.733 <0.274 <0.283 0.721 0.458 0.262 <0.188 <0.204 <0.276 <0.174

Ti <0.059 0.006 0.097 0.051 0.006 0.016 <0.034 0.018 <0.049 <0.031 V 0.004 <0.012 <0.012 0.010 0.006 <0.006 <0.008 <0.009 <0.012 <0.007 Cr 0.011 <0.054 <0.056 <0.070 <0.039 <0.030 <0.037 <0.040 <0.054 <0.034 Mn <0.143 0.007 <0.122 <0.153 <0.085 0.019 <0.081 <0.088 <0.119 <0.075 Fe 0.124 0.037 0.521 0.120 <0.077 0.203 0.119 0.107 <0.108 0.143 ± 0.052

Co <0.007 <0.006 <0.006 <0.007 <0.004 <0.003 <0.004 <0.004 <0.006 <0.004 Ni 0.005 0.006 0.010 <0.024 0.001 0.017 0.005 0.013 <0.019 0.011 ± 0.006 Cu 0.027 0.235 0.499 0.070 0.119 0.094 0.168 0.141 0.113 ± 0.090 0.134 ± 0.038 Zn 0.977 0.786 6.035 1.238 0.714 5.232 4.754 5.249 0.929 ± 0.234 5.079 ± 0.281 Ga 0.116 0.024 0.282 0.153 0.075 0.058 0.076 0.073 0.092 ± 0.056 0.069 ± 0.010

As <0.025 <0.021 <0.021 <0.027 <0.015 <0.012 <0.014 <0.015 <0.021 <0.013 Se <0.050 <0.041 0.031 <0.053 <0.029 <0.023 0.019 <0.031 <0.041 <0.026 Br 0.017 0.017 0.049 0.055 0.007 0.001 0.008 <0.043 0.024 ± 0.021 <0.037 Rb <0.046 <0.038 0.058 <0.049 0.010 <0.021 0.002 0.023 <0.039 <0.024 Sr 0.017 0.006 0.049 0.063 0.013 0.020 0.012 0.038 0.025 ± 0.026 0.023 ± 0.014

Page 86: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-19

Table 4-7. Continued

Yt 0.007 0.001 0.031 0.002 <0.038 0.023 0.015 0.020 <0.054 0.019 ± 0.004 Zr 0.063 <0.143 0.141 0.034 0.006 0.029 <0.098 0.025 <0.144 <0.091 Nb 0.014 0.018 0.052 0.047 0.038 0.037 <0.065 0.022 0.029 ± 0.016 <0.060 Mo 0.040 0.026 <0.093 0.066 0.030 0.188 0.173 0.153 0.040 ± 0.018 0.171 ± 0.017 Pd <0.266 <0.219 <0.226 <0.283 <0.157 <0.122 <0.150 <0.163 <0.221 <0.139

Ag 0.089 <0.208 <0.215 0.129 <0.149 0.058 0.017 <0.155 <0.210 <0.132 Cd <0.198 <0.163 <0.168 <0.211 <0.117 <0.091 <0.112 <0.121 <0.164 <0.103 In <0.218 <0.179 <0.185 <0.232 <0.129 <0.100 <0.123 <0.134 <0.181 <0.114 Sn 0.036 0.043 0.174 <0.251 0.038 0.018 0.023 0.013 <0.196 0.018 ± 0.005 Sb 0.087 0.015 0.254 0.133 0.093 0.153 0.088 0.327 0.082 ± 0.049 0.189 ± 0.123

Cs <0.100 <0.083 <0.085 <0.107 <0.059 <0.046 <0.057 <0.062 <0.083 <0.052 Ba 0.109 <0.089 0.679 0.203 0.048 0.046 0.054 <0.067 <0.090 <0.057 La <0.074 <0.061 0.429 1.056 <0.044 0.664 <0.042 <0.046 <0.062 <0.039 Ce 0.174 <0.059 1.197 <0.076 0.177 <0.033 0.007 <0.044 <0.059 <0.037 Sm 0.235 0.510 <0.126 <0.158 <0.087 0.637 <0.084 <0.091 <0.123 <0.077

Eu <0.227 0.339 1.006 0.303 <0.134 <0.104 <0.128 0.210 <0.189 <0.119 Tb <0.167 <0.138 0.078 <0.178 <0.099 <0.077 <0.095 <0.103 <0.139 <0.087 Hf <0.678 <0.558 <0.576 <0.722 <0.400 <0.311 <0.383 <0.416 <0.563 <0.354 Ta <0.442 0.069 <0.376 <0.472 0.083 <0.203 <0.250 0.178 <0.367 <0.231 Wo <0.619 <0.510 <0.526 0.328 0.163 <0.284 <0.350 <0.380 <0.514 <0.323

Ir 0.083 <0.168 0.031 0.124 <0.121 0.012 <0.116 <0.126 <0.170 <0.107

Au <0.336 <0.277 0.090 0.073 <0.199 <0.154 <0.190 0.016 <0.279 <0.176 Hg <0.167 <0.137 <0.142 <0.178 <0.098 <0.076 <0.094 <0.102 <0.138 <0.087 Tl 0.023 0.015 <0.095 <0.120 <0.066 0.001 <0.063 <0.069 <0.093 <0.059 Pb <0.162 0.009 <0.138 0.077 <0.096 0.007 <0.092 <0.100 <0.135 <0.085 Ur <0.283 0.033 0.075 <0.301 0.014 0.069 0.032 0.130 <0.235 0.077 ± 0.049

Sum of Speciesa 388.169 351.489 2032.155 516.342 400.822 1165.599 544.973 473.914 414.205 ± 71.232 728.162 ± 380.494 a Including TC, Na+, Mg++, K, Cl, Ca, PO4

≡, and SO4=, Excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3

=, K+, Cl- , and Ca++ Run S3 is excluded from calculating CAT797B-1 average due to its suspicious Teflon filter mass

Page 87: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-20

Table 4-8. Emission factors of Cs, Ba, rare earth elements, and Pb in PM2.5. Cells with “<” indicates that the species is below the instrument detection limit. Emission Factors in mg/kg fuel

Chemical Species

Run ID CAT 797B-1 Average

CAT 797B-2 Average S1 S2 S3 S4 S5 A1 A2 A3

Cs 0.00046 0.00000 <0.00745 <0.01085 0.00300 <0.00450 <0.00583 <0.00606 <0.00762 <0.00519 Ba 0.03470 <0.00068 <0.00075 <0.00108 0.00183 <0.00045 0.02120 0.00311 <0.00076 <0.00052 La 0.00011 <0.00014 <0.00015 <0.00022 0.00005 <0.00009 0.00003 0.00032 <0.00015 <0.00010 Ce 0.00031 0.00002 <0.00015 <0.00022 0.00003 <0.00009 0.00008 0.00060 <0.00015 <0.00010 Pr <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Nd 0.00014 0.00002 <0.00015 0.00004 0.00008 <0.00009 0.00005 0.00012 <0.00015 <0.00010 Sm 0.00002 <0.00014 <0.00015 <0.00022 0.00002 <0.00009 0.00001 0.00003 <0.00015 <0.00010 Eu <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Gd <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Tb <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Dy 0.00001 <0.00014 <0.00015 <0.00022 0.00001 <0.00009 <0.00012 0.00001 <0.00015 <0.00010 Ho <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Er 0.00004 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Tm <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Yb <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Lu <0.00017 <0.00014 <0.00015 <0.00022 <0.00013 <0.00009 <0.00012 <0.00012 <0.00015 <0.00010 Pb 0.00100 0.00002 <0.00045 <0.00065 0.00074 <0.00027 0.00351 0.01111 <0.00046 <0.00031

Page 88: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-21

Figure 4-5. Elemental carbon (EC) and total carbon (TC) emission factors obtained by thermal/optical reflectance analysis (TOR), following the IMPROVE_A protocol (Chow et al., 2007b) with the slope at 0.80 when the intercept was not zero, and 0.74 when the intercept was zero.

y = 0.80x - 64.9

r2 = 0.89

0

500

1000

1500

2000

0 500 1000 1500 2000

Emission factor of TC (mg/kg fuel)

Em

iss

ion

fa

cto

r o

f E

C

(mg

/kg

fu

el)

Page 89: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-22

Table 4-9. Emission factors of non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from filter samples. Cells with “<” indicate the compound is below instrument detection limit. Data from Run S3 were excluded when calculating CAT 797B-1 averages. Emission Factors in µg/kg Fuel

Run ID CAT 797B-1 Average

CAT 797B-2 Average Compound MW S1 S2 S3 S4 S5 A1 A2 A3

PAHs

acenaphthylene 152 <2.867 0.597 <6.906 <3.385 <1.915 1.657 3.344 <3.290 <3.373 <2.166

acenaphthene 154 <12.399 <7.755 <29.870 <14.641 <8.282 <8.607 <5.266 <14.228 <14.590 <9.367

fluorene 166 0.239 0.895 9.773 1.409 1.435 0.828 1.013 0.822 0.994 ± 0.562 0.888 ± 0.109

phenanthrene 178 9.784 28.057 155.216 43.958 38.416 30.977 45.807 32.313 30.054 ± 15.034 36.366 ± 8.204

anthracene 178 15.273 36.564 43.116 42.267 39.054 42.241 34.254 35.051 33.289 ± 12.236 37.182 ± 4.400

fluoranthene 202 12.409 12.387 44.265 11.553 8.448 37.934 9.425 12.596 11.199 ± 1.877 19.985 ± 15.625

pyrene 202 16.227 14.476 39.666 20.006 14.824 36.278 11.046 15.335 16.384 ± 2.531 20.886 ± 13.501

benzo[a]anthracene 228 2.625 1.343 1.725 1.972 0.638 31.474 3.851 0.822 1.645 ± 0.851 12.049 ± 16.891

chrysene 228 2.625 1.642 12.647 3.100 1.594 34.787 5.168 1.643 2.240 ± 0.744 13.866 ± 18.204

benzo[b]fluoranthene 252 0.716 0.597 3.449 1.409 <5.696 18.553 9.628 1.917 <10.033 10.032 ± 8.326

benzo[j+k]fluoranthene 252 1.909 0.746 4.024 1.409 <7.062 13.749 10.540 2.191 <12.439 8.826 ± 5.967

benzo[a]fluoranthene 252 0.477 0.746 4.599 0.282 <5.696 2.816 2.736 0.548 <10.033 2.033 ± 1.287

benzo[e]pyrene 252 0.955 1.045 2.874 1.409 <3.414 18.719 14.087 2.191 <6.014 11.665 ± 8.526

benzo[a]pyrene 252 1.670 0.298 0.575 0.845 <4.257 19.878 13.884 2.738 <7.498 12.167 ± 8.698

perylene 252 0.955 1.045 1.725 0.845 <2.290 9.774 7.094 1.369 <4.034 6.079 ± 4.293

indeno[1,2,3-cd]pyrene 276 0.955 1.194 <14.690 <7.200 <4.073 1.657 3.040 1.369 <7.175 2.022 ± 0.893

dibenzo[a,h]anthracene 278 <7.905 0.149 <19.042 <9.334 <5.280 <5.487 0.709 <9.071 <9.301 <5.972

benzo[ghi]perylene 276 1.432 1.343 <23.408 0.564 <6.491 4.473 7.702 3.286 <11.433 5.154 ± 2.285

coronene 300 <14.786 <9.247 <35.621 <17.460 <9.877 <10.264 <6.279 <16.968 <17.398 <11.170

dibenzo[a,e]pyrene 302 <39.395 <24.638 <94.903 <46.517 <26.315 <27.347 10.033 <45.206 <46.353 <29.761

9-fluorenone 180 6.682 15.820 94.280 16.343 12.912 11.927 22.397 19.990 12.939 ± 4.436 18.105 ± 5.484

dibenzothiophene 184 0.477 1.194 8.623 1.409 1.435 0.497 1.115 1.095 1.129 ± 0.447 0.902 ± 0.351

1 methyl phenanthrene 192 5.489 9.999 65.536 19.725 17.534 8.614 9.222 9.858 13.187 ± 6.610 9.231 ± 0.622

2 methyl phenanthrene 192 2.148 4.477 27.594 7.890 6.535 3.976 4.763 4.655 5.263 ± 2.506 4.465 ± 0.427

Page 90: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-23

Table 4-9. Continued

Run ID CAT 797B-1 Average

CAT 797B-2 Average Compound MW S1 S2 S3 S4 S5 A1 A2 A3

PAHs (Continued)

3,6 dimethyl phenanthrene 206 <4.837 <3.025 <11.653 4.790 <3.231 2.982 13.073 5.751 <5.692 7.268 ± 5.214

methylfluoranthene 216 0.955 1.642 25.869 2.254 <4.187 11.430 4.763 2.738 <7.376 6.310 ± 4.548

retene 219 0.477 1.940 36.217 1.972 3.188 8.945 13.276 2.465 1.894 ± 1.109 8.229 ± 5.441

benzo(ghi)fluoranthene 226 3.579 3.582 24.145 4.508 2.869 42.904 7.499 2.738 3.635 ± 0.672 17.714 ± 21.945

benzo(c)phenanthrene 228 1.193 1.045 6.324 0.845 0.319 17.890 3.952 0.822 0.851 ± 0.382 7.555 ± 9.087

benzo(b)naphtho[1,2-d]thiophene 234 <14.408 0.597 11.498 <17.013 <9.624 <10.001 0.101 0.274 <16.953 <10.884

cyclopenta[cd]pyrene 226 10.023 19.401 110.951 <6.067 <3.432 52.512 3.142 <5.896 <6.045 <3.881

benz[a]anthracene-7,12-dione 258 <14.072 <8.801 <33.900 <16.616 <9.400 0.331 1.115 <16.148 <16.558 <10.631

methylchrysene 242 <4.949 <3.095 <11.923 <5.844 <3.306 2.153 0.507 <5.679 <5.823 <3.739

benzo(b)chrysene 278 <9.570 0.298 <23.054 <11.300 <6.392 <6.643 1.317 <10.982 <11.260 <7.230

picene 278 <12.767 <7.985 <30.757 <15.076 <8.528 <8.863 1.621 <14.651 <15.023 <9.645

anthanthrene 276 <9.422 <5.892 <22.697 <11.125 <6.294 <6.540 <4.001 <10.812 <11.086 <7.118

Alkane/Alkene

n-alkane

n-pentadecane (n-C15) 212 2.625 4.328 63.811 14.089 12.274 5.798 6.587 9.310 8.329 ± 5.695 7.232 ± 1.843

n-hexadecane (n-C16) 226 6.682 4.477 58.062 25.924 12.752 13.915 11.350 17.252 12.459 ± 9.634 14.172 ± 2.959

n-heptadecane (n-C17) 240 6.920 5.223 62.661 29.869 15.143 44.064 27.058 21.907 14.289 ± 11.254 31.010 ± 11.595

n-octadecane (n-C18) 254 7.159 8.358 80.483 28.178 18.969 113.803 62.934 22.181 15.666 ± 9.887 66.306 ± 45.904

n-nonadecane (n-C19) 268 11.454 15.670 151.767 57.201 39.851 275.481 138.130 40.254 31.044 ± 21.462 151.288 ± 118.164

n-icosane (n-C20) 282 12.170 16.417 169.013 47.903 32.837 359.135 139.346 42.992 27.332 ± 16.355 180.491 ± 162.038

n-heneicosane (n-C21) 296 20.761 23.431 178.786 58.892 38.735 395.413 152.014 72.019 35.455 ± 17.517 206.482 ± 168.437

n-docosane (n-C22) 310 22.432 15.969 120.724 53.820 30.286 291.218 103.673 60.792 30.627 ± 16.533 151.894 ± 122.548

n-tricosane (n-C23) 324 44.863 29.251 117.850 44.521 22.316 159.524 9.019 59.970 35.238 ± 11.279 76.171 ± 76.549

n-tetracosane (n-C24) 338 89.249 42.832 162.690 56.638 24.229 227.441 4.155 88.449 53.237 ± 27.436 106.682 ± 112.754

n-pentacosane (n-C25) 352 120.271 48.056 219.028 70.163 38.894 271.339 22.599 125.143 69.346 ± 36.399 139.694 ± 125.007

n-hexacosane (n-C26) 366 97.840 38.952 167.864 60.864 34.112 326.667 24.525 107.892 57.942 ± 29.034 153.028 ± 156.046

n-heptacosane (n-C27) 380 81.851 19.551 128.772 39.449 22.476 323.520 44.489 63.530 40.832 ± 28.719 143.846 ± 155.893

n-octacosane (n-C28) 394 153.680 39.997 100.028 65.373 20.882 178.905 3.851 81.056 69.983 ± 58.698 87.937 ± 87.730

Page 91: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-24

Table 4-9. Continued

Run ID CAT 797B-1 Average

CAT 797B-2 Average Compound MW S1 S2 S3 S4 S5 A1 A2 A3

Alkane/Alkene (Continued)

n-alkane (Continued)

n-nonacosane (n-C29) 408 105.237 30.445 127.048 47.621 27.736 72.225 24.119 67.090 52.760 ± 36.076 54.478 ± 26.416

n-triacontane (n-C30) 422 87.817 25.073 82.207 44.239 16.259 96.741 80.060 55.315 43.347 ± 31.865 77.372 ± 20.844

n-hentriacotane (n-C31) 436 66.817 17.909 34.493 25.360 11.477 122.749 12.769 38.337 30.391 ± 24.938 57.952 ± 57.554

n-dotriacontane (n-C32) 450 47.011 15.073 22.420 18.034 9.245 <7.326 3.040 28.753 22.341 ± 16.847 <7.973

n-tritriactotane (n-C33) 464 78.033 20.446 <20.191 28.460 6.057 <5.818 19.964 16.704 33.249 ± 31.262 <6.332

n-tetratriactoane (n-C34) 478 75.885 27.759 <35.468 26.769 <9.835 <10.220 <6.252 26.562 <17.323 <11.122

n-pentatriacontane (n-C35) 492 131.725 44.623 <65.689 27.051 <18.214 <18.928 <11.580 39.980 <32.084 <20.600

n-hexatriacontane (n-C36) 506 30.784 <12.209 <47.029 <23.052 <13.040 <13.552 <8.291 15.609 <22.970 <14.748

n-heptatriacontane (n-C37) 521 71.829 <18.682 <71.962 <35.273 <19.954 <20.736 <12.686 48.195 <35.148 <22.567

n-octatriacontane (n-C38) 535 <32.459 <20.300 <78.195 <38.328 <21.682 <22.532 <13.785 <37.248 <38.193 <24.522

n-nonatriacontane (n-C39) 549 <49.128 <30.725 <118.352 <58.011 <32.817 <34.104 <20.864 <56.376 <57.807 <37.114

n-tetracontane (n-C40) 563 <119.316 <74.621 <287.438 <140.890 <79.701 <82.826 <50.671 <136.918 <140.393 <90.139

iso/anteiso-alkane

iso-nonacosane (iso-C29) 408 13.841 8.656 36.792 5.354 5.260 74.875 25.437 8.215 8.278 ± 4.031 36.176 ± 34.603

anteiso-nonacosane (anteiso-C29) 408 14.795 8.208 44.840 10.144 4.782 72.887 59.691 19.442 9.482 ± 4.179 50.673 ± 27.840

iso-triacontane (iso-C30) 422 13.125 8.059 17.246 9.299 5.420 70.734 32.227 12.596 8.976 ± 3.204 38.519 ± 29.575

anteiso-triacontane (anteiso-C30) 422 23.147 9.253 51.164 12.117 7.332 37.438 46.820 22.728 12.962 ± 7.069 35.662 ± 12.144

iso-hentriacotane (iso-C31) 436 13.125 9.402 10.923 8.735 4.144 38.431 16.519 6.024 8.852 ± 3.685 20.325 ± 16.535

anteiso-hentriacotane (anteiso-C31) 436 18.375 10.298 9.773 7.608 4.463 61.788 15.911 9.310 10.186 ± 5.957 29.003 ± 28.584

iso-dotriacontane (iso-C32) 450 16.704 13.133 14.372 8.735 4.463 89.121 53.002 8.215 10.759 ± 5.314 50.113 ± 40.530

anteiso-dotriacontane (anteiso-C32) 450 6.682 7.164 3.449 9.862 3.347 29.321 60.501 4.929 6.764 ± 2.673 31.584 ± 27.855

iso-tritriactotane (iso-C33) 464 12.648 4.477 7.473 <9.897 0.797 21.038 1.520 2.191 <9.862 8.250 ± 11.080

anteiso-tritriactotane (anteiso-C33) 464 10.261 2.089 8.048 <9.897 2.232 25.511 5.777 4.108 <9.862 11.798 ± 11.905

hopane

22,29,30-trisnorneophopane (Ts) 370 2.148 1.642 5.749 1.972 1.435 66.758 21.991 10.953 1.799 ± 0.321 33.234 ± 29.552

22,29,30-trisnorphopane (Tm) 370 0.716 0.597 2.874 0.845 0.478 36.941 2.128 3.286 0.659 ± 0.158 14.118 ± 19.773

Page 92: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-25

Table 4-9. Continued

Run ID CAT 797B-1 Average

CAT 797B-2 Average Compound MW S1 S2 S3 S4 S5 A1 A2 A3

Alkane/Alkene (Continued)

hopane (Continued)

αβ-norhopane (C29αβ-hopane) 398 4.295 2.686 10.348 3.100 2.391 176.586 51.685 19.169 3.118 ± 0.837 82.480 ± 83.104

22,29,30-norhopane (29Ts) 398 1.432 0.597 2.300 1.691 0.797 8.117 54.218 3.834 1.129 ± 0.517 22.056 ± 27.935

αα- + βα-norhopane (C29αα- + βα -hopane) 398 0.955 0.298 3.449 1.691 0.638 39.094 2.534 3.834 0.895 ± 0.594 15.154 ± 20.743

αβ-hopane (C30αβ -hopane) 412 3.341 1.940 6.899 2.536 1.275 120.927 0.608 13.692 2.273 ± 0.879 45.075 ± 66.014

αα-hopane (30αα-hopane) 412 0.477 0.149 0.575 0.282 0.319 12.424 1.824 1.369 0.307 ± 0.135 5.206 ± 6.255

βα-hopane (C30βα -hopane) 412 0.477 0.448 1.150 0.564 0.319 7.951 0.912 1.643 0.452 ± 0.101 3.502 ± 3.870

αβS-homohopane (C31αβS-hopane) 426 2.386 1.343 3.449 1.972 0.956 68.249 20.066 8.489 1.665 ± 0.638 32.268 ± 31.694

αβR-homohopane (C31αβR-hopane) 426 3.102 1.642 3.449 1.691 0.956 91.275 23.815 8.489 1.848 ± 0.901 41.193 ± 44.044

αβS-bishomohopane (C32αβS-hopane) 440 1.432 0.895 2.300 <1.570 <0.888 40.585 10.844 4.381 <1.564 18.603 ± 19.309

αβR-bishomohopane (C32αβR-hopane) 440 1.432 0.895 1.725 <1.833 <1.037 33.959 8.715 3.286 <1.826 15.320 ± 16.368

22S-trishomohopane (C33) 454 1.193 <0.831 <3.202 <1.570 <0.888 24.682 6.486 2.738 <1.564 11.302 ± 11.738

22R-trishomohopane (C33) 454 1.670 <0.971 <3.739 <1.833 <1.037 22.860 4.763 1.917 <1.826 9.847 ± 11.359

22S-tretrahomohopane (C34) 468 <1.329 <0.831 <3.202 <1.570 <0.888 12.424 3.243 1.095 <1.564 5.587 ± 6.017

22R-tetrashomohopane (C34) 468 <1.552 <0.971 <3.739 <1.833 <1.037 14.909 2.128 1.369 <1.826 6.135 ± 7.607

22S-pentashomohopane(C35) 482 <1.329 <0.831 <3.202 <1.570 <0.888 22.032 3.142 1.369 <1.564 8.848 ± 11.452

22R-pentashomohopane(C35) 482 <1.552 <0.971 <3.739 <1.833 <1.037 20.375 1.723 1.369 <1.826 7.822 ± 10.873

sterane

ααα 20S-Cholestane 372 0.716 0.448 1.725 <3.751 <2.122 11.430 0.709 4.108 <3.738 5.416 ± 5.479

αββ 20R-Cholestane 372 1.193 0.895 2.300 <1.593 <0.901 16.897 1.013 4.381 <1.588 7.430 ± 8.369

αββ 20s-Cholestane 372 1.193 0.746 1.150 <1.843 <1.043 23.026 11.046 3.012 <1.837 12.361 ± 10.071

ααα 20R-Cholestane 372 0.716 0.149 0.575 <1.843 <1.043 8.614 <0.663 3.012 <1.837 <1.179

ααα 20S 24S-Methylcholestane 386 0.716 0.597 2.300 <2.134 <1.207 33.793 15.100 4.381 <2.126 17.758 ± 14.885

αββ 20R 24S-Methylcholestane 386 1.193 0.448 2.300 <2.134 <1.207 10.767 2.736 1.369 <2.126 4.958 ± 5.078

αββ 20S 24S-Methylcholestane 386 0.477 0.149 1.725 <2.134 <1.207 17.062 4.358 1.643 <2.126 7.688 ± 8.231

ααα 20R 24R-Methylcholestane 386 <2.114 <1.322 <5.094 <2.497 <1.412 1.657 0.507 0.274 <2.488 0.812 ± 0.740

ααα 20S 24R/S-Ethylcholestane 386 0.716 0.448 0.575 <2.072 <1.172 9.111 5.878 1.643 <2.065 5.544 ± 3.745

αββ 20R 24R-Ethylcholestane 400 <1.417 <0.886 <3.414 <1.673 <0.947 0.497 0.101 0.274 <1.667 0.291 ± 0.198

αββ 20S 24R-Ethylcholestane 400 <1.417 <0.886 <3.414 <1.673 <0.947 1.160 0.608 <1.626 <1.667 <1.070

ααα 20R 24R-Ethylcholestane 400 <3.745 <2.342 <9.023 <4.423 <2.502 2.816 0.405 0.274 <4.407 1.165 ± 1.431

Page 93: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-26

Table 4-9. Continued

Run ID CAT 797B-1 Average

CAT 797B-2 Average Compound MW S1 S2 S3 S4 S5 A1 A2 A3

Alkane/Alkene (Continued)

methyl-alkane

2-methylnonadecane 282 1.670 1.940 13.797 3.100 2.710 44.892 15.303 3.834 2.355 ± 0.664 21.343 ± 21.185

3-methylnonadecane 282 0.955 0.895 6.324 2.254 2.072 13.252 26.957 3.286 1.544 ± 0.719 14.498 ± 11.885

branched-alkane

pristane 268 1.909 2.239 28.169 8.453 5.738 12.424 18.444 7.667 4.585 ± 3.107 12.845 ± 5.401

phytane 282 3.102 2.239 18.971 7.044 3.985 35.947 11.553 4.381 4.093 ± 2.093 17.294 ± 16.547

squalane 422 5.011 14.626 16.671 3.663 0.478 6.295 27.058 10.132 5.945 ± 6.092 14.495 ± 11.048

cycloalkane

octylcyclohexane 196 0.716 0.895 1.725 0.564 1.594 0.828 0.304 0.822 0.942 ± 0.455 0.651 ± 0.301

decylcyclohexane 224 0.239 1.045 1.725 3.945 1.913 2.485 1.013 1.095 1.785 ± 1.594 1.531 ± 0.827

tridecylcyclohexane 266 0.716 0.149 5.749 0.282 1.116 9.939 7.094 1.095 0.566 ± 0.439 6.043 ± 4.515

n-heptadecylcyclohexane 322 1.909 0.746 2.874 1.127 0.956 118.110 48.543 20.538 1.185 ± 0.507 62.397 ± 50.240

nonadecylcyclohexane 350 3.818 2.239 8.623 3.100 1.594 49.696 3.648 11.501 2.688 ± 0.974 21.615 ± 24.634

alkene

1-octadecene 252 0.716 1.492 26.444 4.508 6.535 9.608 3.142 6.298 3.313 ± 2.700 6.349 ± 3.233

Total

Total PAHs 99.271 163.121 734.691 190.765 149.200 469.957 281.225 164.576 150.590 ± 38.326 305.253 ± 154.102

Total n-alkanes 1373.094 493.842 2047.708 870.417 434.530 3277.937 889.685 1149.293 792.971 ± 432.242 1772.305 ± 1310.361

Total iso/anteiso-alkanes 142.703 80.740 204.081 71.854 42.242 521.144 317.404 97.760 84.384 ± 42.219 312.103 ± 211.742

Total hopanes 25.056 13.133 44.265 16.343 9.564 820.147 220.825 92.283 16.024 ± 6.628 377.752 ± 388.479

Total steranes 6.920 3.880 12.647 0.000 0.000 136.829 42.462 24.371 2.700 ± 3.356 67.888 ± 60.386

Total methyl-alkanes 2.625 2.836 20.121 5.354 4.782 58.144 42.260 7.120 3.899 ± 1.372 35.841 ± 26.111

Total branched-alkanes 10.023 19.103 63.811 19.161 10.202 54.665 57.056 22.181 14.622 ± 5.208 44.634 ± 19.482

Total cycloalkanes 7.398 5.074 20.696 9.017 7.173 181.058 60.603 35.051 7.165 ± 1.618 92.237 ± 77.975

Total alkenes 0.716 1.492 26.444 4.508 6.535 9.608 3.142 6.298 3.313 ± 2.700 6.349 ± 3.233

Grand total 1667.806 783.222 3174.464 1187.419 664.229 5529.490 1914.661 1598.933 1075.669 ± 453.844 3014.361 ± 2183.878

Page 94: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-27

a)

b)

c)

Figure 4-6. Correlations of emission factors between: a) total measured organic species and OC, b) polycyclic aromatic hydrocarbons (PAHs) and OC, and c) total PAHs and EC. OC and EC are analyzed by thermal/optical reflectance following the IMPROVE_A protocol. Organic species are analyzed by the thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS).

y = 0.008x + 0.4232

r2 = 0.9702

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700

Emission factor of OC (mg/kg fuel)

Em

iss

ion

fa

cto

r o

f to

tal o

rga

nic

s

pec

ies

by

TD

-GC

/MS

(μg

/kg

fu

el)

y = 0.5557x + 109.4

r2 = 0.8823

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700

Emission factor of OC (mg/kg fuel)

Em

iss

ion

fa

cto

r o

f to

tal P

AH

by

T

D-G

C/M

S (μ

g/k

g f

ue

l)

Outlier data from Run S3 wasexcluded from regression.

y = 0.4022x + 82.031

r2 = 0.8017

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000

Emission factor of EC (mg/kg fuel)

Em

iss

ion

fa

cto

r o

f to

tal P

AH

by

T

D-G

C/M

S (μ

g/k

g f

ue

l)

Page 95: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-28

4.4. Variability within a Test Cycle

Since emissions depend on truck operating conditions, this section examines the emission variation within a test cycle. Figure 4-8 plots emission concentrations and truck parameters (i.e., engine speed, load, and ground speed) during Run S5. Part of this run (one hour from 14:50 – 15:50 LST on Sep. 29, 2009) is plotted in Figure 4-9 for more detailed examination. Since most of the background CO2 was relatively constant and SO2 was below detection limits, these data are not included in the Figures. The spikes and occasionally elevated background CO2 concentrations were caused by other mining trucks driving in front of or near to the test truck. The CO/CO2 ratio and an estimate of the road elevation are included. The CO/CO2 ratio is an indication of combustion completeness, and is calculated from un-averaged CO and CO2 concentrations to preserve the high time resolution. Time series plots for all runs are plotted in Appendix B. The engine data in Figures 4-8 and 4-9 was interpolated into second-by-second data from the raw data with time resolutions of 5-60 s to preserve finest time-resolution.

The main findings in Figure 4-8 and Figure 4-9 are (a through e below correspond to the labeled truck activity in Figure 4-9):

a. During truck idling, most emittant concentrations were stable with lower emission concentrations than when the truck was moving. However, NO2 concentrations were elevated, especially at the beginning of the test cycle when the truck idled for more than 30 minutes. The CO/CO2 ratio was low, indicating near-complete fuel combustion.

b. When the truck started moving, all emittant concentrations increased, reaching local maxima. As the truck accelerated toward the loading pit, the emittant concentration gradually decreased.

c. While the truck waited for a load (idling), PM2.5, BC, and CO concentrations, as well as the CO/CO2 ratio decreased while the NO and NO2 concentrations increased. There was not much change to the particle number concentrations. When the truck moved forward in the waiting line, the PM2.5, BC, and CO concentrations increased, but the NO, NO2 and particle number concentration decreased. When the truck backed to the shovel, the CO/CO2 ratio reached its maximum. Other emittants did not follow this pattern.

d. When the truck left the pit with its cargo, the engine speed and load were close to their maximum values, NO, NO2 and particle number concentration decreased while PM2.5, BC, and CO concentrations increased. When the truck accelerated uphill out of the pit, all emittant concentrations reached local maxima. Cruising on a level road at ~32 km/hr produced slightly elevated particle number, PM2.5, BC, and CO concentrations, but NO and NO2 stayed at lower concentrations. PM2.5 and BC approximately followed the trend of CO/CO2 ratio.

e. When the truck was dumping its cargo, the engine load was ~85% and the engine speed approached maximum (~2,000 rpm). The CO/CO2 ratio had a sharp peak, which produced small peaks of particle number, PM2.5, BC, and CO concentrations. After dumping the cargo, the truck accelerated downhill. All emittant concentrations dropped. However, the particle number concentration reached a maximum when the truck was cruising at 61 km/hr. The CO/CO2 ratio was higher when the empty truck was driving downhill to the loading pit than when it was moving uphill to the dumping area with its cargo.

Page 96: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-29

Table 4-10. Emission factors of carbohydrates, organic acids and water-soluble organic carbon (WSOC) from PM2.5 particles collected on the quartz filters. Cells with “<” indicate the compound is below instrument detection limit.

Compound Run ID CAT 797B-1

Average CAT797B-2

Average MW S1 S2 S3 S4 S5 A1 A2 A3

Carbohydrates

Glycerol (C3H8O3 ) 92 0.132 <0.050 0.572 <0.185 <0.182 <0.188 <0.091 <0.237 <0.147 <0.172

Inositol (C6H12O6) 180 <0.047 <0.050 <0.274 <0.185 <0.182 <0.188 <0.091 1.839 <0.147 <0.172

Erythritol (C4H10O4) 122 <0.070 <0.074 <0.411 <0.277 <0.273 <0.282 <0.137 <0.356 <0.221 <0.258

Xylitol (C5H12O5 ) 152 <0.047 <0.050 <0.274 <0.185 <0.182 <0.188 <0.091 2.093 <0.147 <0.172

Levoglucosan (C6H10O5 ) 162 <0.093 <0.099 <0.548 <0.370 <0.363 <0.376 <0.183 <0.474 <0.295 <0.344

Sorbitol (C6H14O6 ) 182 <0.117 <0.124 <0.685 <0.462 <0.454 <0.470 <0.229 <0.593 <0.369 <0.430

Mannosan (C6H10O5 ) 162 <0.070 <0.074 <0.411 <0.277 <0.273 <0.282 <0.137 2.093 <0.221 <0.258

Trehalose (C12H22O11 ) 342 <0.093 <0.099 <0.548 <0.370 <0.363 <0.376 <0.183 <0.474 <0.295 <0.344

Mannitol (C6H14O6 ) 182 <0.070 <0.074 <0.411 <0.277 <0.273 1.685 <0.137 <0.356 <0.221 <0.258

Arabinose (C5H10O5) 150 <0.070 <0.074 <0.411 <0.277 <0.273 <0.282 <0.137 <0.356 <0.221 <0.258

Glucose (C6H12O6 ) 180 <0.047 <0.050 <0.274 <0.185 <0.182 <0.188 <0.091 4.653 <0.147 <0.172

Galactose (C6H12O6 ) 180 <0.093 <0.099 <0.548 <0.370 <0.363 <0.376 <0.183 <0.474 <0.295 <0.344

Maltitol (C12H24O11) 344 <0.117 <0.124 <0.685 <0.462 <0.454 <0.470 <0.229 <0.593 <0.369 <0.430

Organic Acids

Lactic acid (C3H6O3) 90 0.039 0.083 0.020 <0.277 <0.273 0.025 0.098 0.058 <0.221 0.060±0.158

Acetic acid (C2H4O2 ) 60 0.375 0.192 <0.822 <0.554 <0.545 <0.564 <0.274 <0.711 <0.442 <0.517

Formic acid (CH2O ) 46 <0.140 <0.149 <0.822 <0.554 0.001 0.061 <0.274 <0.711 <0.442 <0.517

Methanesulfonic acid (CH4SO3 ) 96 <0.093 <0.099 <0.548 <0.370 <0.363 <0.376 <0.183 <0.474 <0.295 <0.344

Glutaric acid (C5H8O4) 132 <0.117 <0.124 <0.685 <0.462 <0.454 <0.470 <0.229 <0.593 <0.369 <0.430

Succinic acid (C4H6O4 ) 118 <0.093 <0.099 <0.548 <0.370 <0.363 <0.376 <0.183 <0.474 <0.295 <0.344

Malonic acid (C3H4O4) 104 <0.140 <0.149 <0.822 <0.554 <0.545 <0.564 <0.274 <0.711 <0.442 <0.517

Maleic acid (C4H4O4 ) 116 <0.117 <0.124 <0.685 <0.462 <0.454 <0.470 <0.229 <0.593 <0.369 <0.430

Oxalic acid (C2H2O4) 90 <0.093 <0.099 0.398 <0.370 0.038 0.239 0.053 0.047 <0.295 0.113±0.211

WSOC

Neutral compounds 6.910 1.019 4.623 1.380 1.120 0.853 0.657 2.596 3.011±2.646 1.369±1.068

Mono-/di- carboxylic acids 2.652 0.111 2.451 <2.069 0.117 0.062 0.141 <2.009 <2.354 <1.368

Polycarboxylic acids (including HULIS) <2.921 <1.826 1.800 2.051 1.442 0.172 0.539 <3.349 <3.499 <2.221

Sum of speciated WSOC 9.563 1.130 8.875 3.431 2.679 1.087 1.337 2.596 5.136±3.826 1.673±1.708

Total WSOC 13.874 13.278 9.126 6.980 2.593 14.511 7.836 3.010 9.170±4.677 8.452±6.427

Page 97: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-30

Figure 4-7. Correlations of emission factors between organic carbon (OC) and water soluble organic carbon (WSOC).

y = 0.0118x + 6.4762

r2 = 0.2463

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700

Emission factor of OC (mg/kg fuel)

Em

iss

ion

fa

cto

r o

f W

SO

C

(mg

/kg

fu

el)

Page 98: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-31

Figure 4-8. Time series of emission concentration and engine operation parameters for Run S5 for 14:50–15:50 LST on Sep. 29, 2009. All emittant concentrations except the tailpipe CO2 were corrected for dilution and averaged by 60 s. Engine data were interpolated to second-by-second resolution.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

0

2000

4000

6000

Background CO2

(ppm)

200

300

400

500

NumberConcentration

(cm-3)

01e+72e+73e+74e+7

Black CarbonConcentration

(mg/m3)0

20

40

PM2.5 Concentration

(mg/m3)

010203040

CO(ppm)

0

200

400

600

NO(ppm)

02004006008001000

NO2

(ppm)

0

20

40

60

SO2

(ppm)

0

5

10

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time 14:38 14:58 15:18 15:38 15:58 16:18 16:38 16:58 17:18

Ground Speed(km/h)

020406080

Idle

Dump Dump Dump Dump

Load Load Load LoadRefuel

Page 99: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-32

Figure 4-9. Time series of emission concentration and engine operation parameters for part of Run S5 from 14:50–15:50 LST on Sep. 29, 2009. The letters (a-e) in front of individual activity correspond to the bullet points discussed in the text.

CO/CO2

0.000.010.020.030.04

Time 14:50 15:00 15:10 15:20 15:30 15:40 15:50

Road Elevation

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

0

2000

4000

6000

NumberConcentration

(cm-3)

01e+72e+73e+74e+7

Black CarbonConcentration

(mg/m3)0

20

40

PM2.5 Concentration

(mg/m3)

010203040

CO(ppm)

0

200

400

600

NO(ppm)

02004006008001000

NO2

(ppm)

0

20

40

60

Engine Speed(rpm)

500

1000

1500

2000

Engine Load(%)

020406080100

Ground Speed(km/h)

020406080

e. Dumpingoil sand

a. Idleb. Leavingparking lot

c. Wait to load

Backingto shovel

d. Leaving with load

Wait toload

Leaving with load

Backingto shovel

Page 100: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-33

Table 4-11 lists the squared correlation coefficients (r2) between emittants and truck parameters. Example correlations are plotted in Figure 4-10. The r2 are all < 0.8. CO2 has reasonable correlation with engine speed (r2 = 0.57), load (r2 = 0.51), and temperature (r2 = 0.79). CO2 is not correlated with CO (r2 = 0.2), but better correlated to NO (r2 = 0.65). This is probably because the NO is generated when combustion temperatures and pressures are high, especially when the combustion is more complete. On the other hand, CO is a product of incomplete combustion, which is better correlated with BC (r2 = 0.6) and PM2.5 (r

2 = 0.57). Particle number concentration is only weakly correlated with PM2.5 (r

2 = 0.2) or BC (r2 = 0.28), mainly due to the large number of nanoparticles that do not contribute much to particle mass. The CO/CO2 ratio does not have any strong correlations with emittants or truck parameters.

4.5. Emission Factors Variability within the Operating Cycle

Emissions vary under different truck operating conditions. Each test was divided into idle, load-to-dump, and dump-to-load sub-activities to analyze the fuel-based EFs for each sub-activity. Figure 4-11 shows the average truck operating parameters when performing different sub-activities during Run S5 with CAT 797B-1. The engine speed, load, and exhaust temperature are highest when the truck is traveling from the loading to dumping area with cargo. These parameters are the lowest the when the truck is idling.

Figure 4-12 shows an example of sub-activity emission factors from Run S5. Data for all other runs are plotted in Appendix C. Fuel-based EFs are similar among the three sub-activities for most emittants. NO, NO2, and particle number show higher EFs when the truck was idling. This observation agrees with results by Cocker et al. (2004b) which shows higher NOx EFs for the cold-start/idle mode than other modes. On the other hand, PM2.5 and BC EFs are higher during the dump-to-load trip when the truck was empty and the route was generally downhill.

4.6. Emission Factor Summary

Fuel-based EFs were averaged from each 95 to 190 min test for sub-activities during each test. Key observations are:

Average EFs for the four measured criteria air pollutants are: 8.5 g/kg fuel for CO; 34.6 g/kg fuel for NOx; 0.005 g/kg fuel for SO2; and 0.62 g/kg fuel for PM2.5. NOx EFs are similar to those for on-road heavy-duty diesel trucks, while PM2.5 EFs are 2‒5 times lower than on-road heavy-duty trucks.

EFs for NMHC, NOx, CO, and PM2.5 are below U.S. EPA Tier 1 limits. CO and PM2.5 are also below Tier 2 limits, but the NMHC+NOx EFs exceed the Tier 2 limit.

Average particle number EFs measured from CAT 797B-2 are (5.43.1)1015 particle/kg fuel and are ~10 times higher than those from CAT 797B-1 [(5.11.4)1014 particle/kg fuel]. The EF from CAT 797B-2 is in the same range as those for on-road heavy-duty diesel trucks.

EFs for H2S and NH3 are low and close to the instrument MDLs.

Among the measured NMHCs, alkanes and cycloalkanes, and alkenes are the most abundant species, accounting for 34% and 48% of total NMHC, respectively. Most NMHC species listed as MSATs by U.S. EPA have emission factors > 1 mg/kg fuel. The NMHC EFs are 40% higher for CAT 797B-2 than for CAT 797B-1. In particular, the benzene EF for CAT 797B-2 is about three times higher, while n-heptane is ~14 times higher.

Page 101: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-34

The EC/TC ratio ranged from 0.40 to 0.85, with an average of ~0.70. Approximately 40–95% of EC is in the high-temperature (740 °C) EC2 fraction, a source marker for diesel exhaust.

Constituent elements of lube oil (P, S, Ca, and Zn) are present in the exhaust in appreciable amounts (2.11.7, 0.90.6, 3.11.7, and 2.72.2 mg/g fuel, respectively).

The identified non-polar organic compound EFs for CAT 797B-2 are ~80% higher than those for CAT 797B-1. EFs for hopanes and steranes are 16 and 6 times higher, respectively, for CAT 797B-2 than for CAT 797B-1. The sum of the 113 speciated organic compounds accounts for 0.8-2.1% of the OC. Most of the OC remains unidentified or un-quantified.

Most carbohydrates and organic acids are below the detection limits. Water-soluble organic carbon (WSOC) accounts for only 8.1% and 2.9% of the OC from CAT 797B-1 and CAT 797B-2, respectively, and is poorly correlated to the OC (r2 = 0.25).

CO2 has a reasonable correlation with engine speed (r2 = 0.57), load (r2 = 0.51), and temperature (r2 = 0.79), as well as NO (r2 = 0.63). CO is highly correlated with PM2.5 (r2 = 0.57) and BC (r2 = 0.60) concentrations.

Particle number and NOx have higher EFs when the truck is idling. The EFs for PM2.5 and BC are higher during the dump-to-load trip when the truck is empty and the route is generally downhill.

Page 102: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-35

Table 4-11. Correlation (r2) between emittants and truck parameters. For correlation between emittants, data before averaging and dilution correction were used to avoid smearing due to averaging. For correlation between emittant and truck parameters, averaged data after dilution correction were used. (Yellow highlights indicate r2 > 0.5.)

CO2 CO NO NO2 SO2 CO/CO2 Number concentration

BC PM2.5 Engine speed

Engine load

Ground speed

Engine T

CO2 - 0.20 0.63 0.07 - 0.11 0.07 0.27 0.21 0.57 0.51 0.30 0.79 CO 0.20 - 0.02 0.01 - 0.36 0.20 0.60 0.57 0.10 0.04 0.06 0.08 NO 0.63 0.02 - 0.38 - 0.11 0.06 0.04 0.02 0.11 0.23 0.03 0.29 NO2 0.07 0.01 0.38 - - 0.02 0.13 0.03 0.00 0.25 0.03 0.16 0.16 SO2 - - - - - - - - - - - - - CO/CO2 0.11 0.36 0.11 0.02 - 0.04 0.01 0.01 0.02 0.01 0.00 0.02 Number concentration

0.07 0.20 0.06 0.13 - 0.04 - 0.28 0.20 0.07 0.01 0.04 0.00

BC 0.27 0.60 0.04 0.03 - 0.01 0.28 - 0.57 0.30 0.09 0.21 0.21 PM2.5 0.21 0.57 0.02 0.00 - 0.01 0.20 0.57 - 0.35 0.07 0.24 0.23 Engine speed 0.57 0.10 0.11 0.25 - 0.02 0.07 0.30 0.35 - 0.41 0.58 0.76 Engine load 0.51 0.04 0.23 0.03 - 0.01 0.01 0.09 0.07 0.41 - 0.12 0.67 Ground speed 0.30 0.06 0.03 0.16 - 0.00 0.04 0.21 0.24 0.58 0.12 - 0.45 Engine T 0.79 0.08 0.29 0.16 - 0.02 0.00 0.21 0.23 0.76 0.67 0.45 -

Page 103: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-36

a) b) c)

d) e) f)

Figure 4-10. Correlations between diluted emittants (without averaging or dilution correction) during Run S5 for a) NO vs. CO2, b) NO vs. black carbon (BC), c) CO vs. CO2, d) CO vs. BC, e) number concentration vs. BC, and f) PM2.5 vs. BC.

y = 0.0092x + 6.89

r2 = 0.65

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000CO2 (ppm)

NO

(p

pm

)

y = 8.31x + 25.78

r2 = 0.05

0

20

40

60

80

100

-1 0 1 2 3 4Black carbon (mg/m3)

NO

(p

pm

)

y = 0.0028x + 3.6392

r2 = 0.1998

0

20

40

60

80

100

120

0 2000 4000 6000 8000CO2 (ppm)

CO

(p

pm

)

y = 16.04x + 2.83

r2 = 0.60

0

40

80

120

-1 0 1 2 3 4Black carbon (mg/m3)

CO

(p

pm

)

y = 5.52E+05x + 4.43E+05

r2 =0.37

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

-1 0 1 2 3 4

Black carbon (mg/m3)

Nu

mb

er C

on

cen

trat

ion

(#/

cm3) y = 1.97x + 0.11

r2 = 0.57

-2

0

2

4

6

8

10

12

14

-1 0 1 2 3 4Black carbon (mg/m3)

PM

2.5 (

mg

/m3)

Page 104: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-37

Figure 4-11. Averaged truck operating parameters at different sub-activities during Run S5.

0

300

600

900

1200

1500

1800

Idle Load to dump Dump to load

Truck Operation

En

gin

e S

pee

d (

rpm

)

Engine speed

0

30

60

90

Idle Load to dump Dump to load

Truck Operation

En

gin

e L

oad

(%

)

Engine load

0

100

200

300

400

500

600

Idle Load to dump Dump to load

Truck Operation

Exh

aust

T (

C)

Exhaust temperature

0

10

20

30

Idle Load to dump Dump to load

Truck Operation

Gro

un

d s

pee

d (

km/h

r)

Ground speed

Page 105: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

4-38

Figure 4-12. Fuel-based emission factor for idle, load-to-dump and dump-to-load sub-activities during Run S5.

3150

3160

3170

3180

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)CO2

0

4

8

12

16

20

Idle Load to dump Dump to load

Truck Operation

CO

Em

issi

on

(g

/kg

fu

el) CO

0

20

40

60

Idle Load to dump Dump to load

Truck Operation

NO

Em

issi

on

(g

/kg

fu

el) NO

0

2

4

6

8

10

12

14

Idle Load to dump Dump to load

Truck Operation

NO

2 E

mis

sio

n (

g/k

g f

uel

) NO2

0

0.02

0.04

0.06

Idle Load to dump Dump to load

Truck Operation

SO

2 E

mis

sio

n (

g/k

g f

ue

l)

SO2

0

0.2

0.4

0.6

Idle Load to dump Dump to load

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC

0

0.3

0.6

0.9

1.2

1.5

Idle Load to dump Dump to load

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

0.0E+00

4.0E+14

8.0E+14

1.2E+15

1.6E+15

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

Page 106: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-1

5. Source Profiles This section reports chemical source profiles for NMHC (C2-C10) and PM2.5. As

described in Section 3, NMHC were collected by canisters and analyzed by GC-FID/MS, and PM2.5 particles were collected on Teflon-membrane or quartz-fiber filters and submitted to comprehensive chemical analysis.

5.1. NMHC Source Profiles

Table 5-1 lists source profiles of the NMHC (C2-C10). It is estimated that the identified NMHC consists of ~95% of the total NMHC. The NMHC concentrations reported in ppbC were normalized to the sum of 55 PAMS target hydrocarbons (Watson et al., 2001). The top 10 abundant species are (in descending order): ethene, n-heptane, propylene, acetylene, 1-butene, ethane, toluene, n-decane, 1-pentene, and n-nonane. CAT 797B-2 shows about 10 times more abundant n-heptane than CAT 797B-1, and benzene is about twice as abundant with CAT 797B-2.

The identified NMHC are grouped into four categories: alkanes and cycloalkanes, alkenes, alkynes (only acetylene was detected), and aromatics. Figure 5-1 depicts the fractional abundances of the major NMHC compound groups. Alkenes and alkanes are the two most abundant groups, accounting for 36% and 53% of the sum of PAMS compounds, on average. Although the EFs of aromatics and acetylene are 60% and 35% higher from CAT 797B-2 than CAT 797B-1 (Figure 4-4), aromatic compound and acetylene abundances are similar between the two trucks. Source profiles for species with abundances >1% are plotted in Figure 5-2.

Table 5-2 lists source profiles of halocarbons normalized to the sum of PAMS compounds. All halocarbon abundances were low (<1.5% of PAMS).

5.2. PM2.5 Source Profiles

Source profiles are normalized by PM2.5 mass measured from the Teflon filter. The PM2.5 source profiles for the eight tests at the two facilities are listed in Table 5-3, and the Cs, Ba, rare earth elements, and Pb source profiles are listed in Table 5-4. Also listed are the average profile from each truck, and the ratio of CAT 797B-1 (Site S) to CAT 797B-2 (Site A). Source profiles for Run S3 are only listed for indicative propose and are not included in the averages. Figure 5-3 illustrates average source profiles from both facilities for the most abundant (>0.1%) species. Figure 5-4 shows the fractions of PM2.5 compositions grouped into OC, EC, elements, soluble ions, and unidentified species. Carbon is the most abundant species. Average TC accounts for 88.1 ± 6.1% and 84.5 ± 8.8% of the total PM2.5 for CAT 797B-1 and CAT 797B-2, respectively. EC accounts for 67.0 ± 7.0% and 48.6 ± 13.4% to PM2.5 mass while OC contributes to 21.1 ± 6.0% and 35.9 ± 16.4%, for CAT 797B-1 and CAT 797B-2, respectively. The EC/ TC ratios ranged 0.40‒0.85, which are similar to those found for diesel trucks in previous studies (Watson et al., 2001; 2008).

Carbon fraction abundances are shown in Figure 5-5, along with diesel exhaust carbon fraction abundance from an earlier study by Watson et al. (1994). Note that the high-temperature (740 °C) EC2 fraction is the most abundant carbon fraction, accounting for 52–69% and 15–38% of PM2.5, and 92–97% and 41–72% of EC for CAT 797B-1 and CAT 797B-2, respectively. EC2 has been found to be the dominant fraction in diesel exhaust consistently over the past two decades. The EC2/EC ratios were 85% for medium and heavy duty on-road diesel trucks in the

Page 107: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-2

Table 5-1. Non-methane hydrocarbons (NMHC) source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green, the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Species that belong to both categories are highlighted in purple. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.

Group Compound Run ID CAT 797B-1

Average CAT 797B-2

Average Ratio: S/A

S1 S2 S3 S4 A1 A2 A3

Alk

anes

&cy

cloa

lkan

es

Ethane 0.014 ± 0.001 0.025 ± 0.002 0.118 ± 0.007 0.052 ± 0.003 0.013 ± 0.002 0.034 ± 0.003 0.066 ± 0.005 0.052 ± 0.047 0.038 ± 0.027 1.4 ± 1.6

Propane 0.004 ± 0.000 0.006 ± 0.000 0.030 ± 0.002 0.016 ± 0.001 0.006 ± 0.001 0.008 ± 0.001 0.015 ± 0.001 0.014 ± 0.012 0.010 ± 0.005 1.5 ± 1.5

n-Butane 0.007 ± 0.001 0.009 ± 0.001 0.043 ± 0.005 0.027 ± 0.003 0.006 ± 0.001 0.011 ± 0.002 0.024 ± 0.003 0.022 ± 0.017 0.014 ± 0.009 1.6 ± 1.6

Isobutane 0.005 ± 0.001 0.003 ± 0.001 0.002 ± 0.000 0.003 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.003 ± 0.001 0.001 ± 0.000 2.5 ± 1.1

Isopentane 0.004 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.003 ± 0.000 0.002 ± 0.001 1.5 ± 0.6

n-Pentane 0.012 ± 0.002 0.009 ± 0.002 0.020 ± 0.004 0.016 ± 0.003 0.005 ± 0.001 0.006 ± 0.001 0.012 ± 0.002 0.015 ± 0.005 0.008 ± 0.004 1.8 ± 1.1

2,2-Dimethylbutane 0.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 0.8 ± 0.6

Cyclopentane 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.9 ± 0.4

2,3-Dimethylbutane 0.008 ± 0.002 0.005 ± 0.001 0.007 ± 0.002 0.005 ± 0.001 0.009 ± 0.002 0.009 ± 0.002 0.011 ± 0.003 0.006 ± 0.002 0.010 ± 0.001 0.7 ± 0.2

2-Methylpentane 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 1.0 ± 0.8

3-Methylpentane 0.004 ± 0.002 0.003 ± 0.002 0.006 ± 0.003 0.005 ± 0.002 0.002 ± 0.001 0.002 ± 0.001 0.004 ± 0.002 0.004 ± 0.001 0.003 ± 0.001 1.5 ± 0.8

n-Hexane 0.016 ± 0.005 0.013 ± 0.004 0.020 ± 0.006 0.021 ± 0.006 0.006 ± 0.002 0.007 ± 0.002 0.014 ± 0.004 0.017 ± 0.004 0.009 ± 0.004 2.0 ± 1.0

Methylcyclopentane 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 2.1 ± 0.6

2,4-Dimethylpentane 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.004 ± 0.002 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 1.2 ± 0.5

Cyclohexane 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 2.0 ± 0.4

2-Methylhexane 0.015 ± 0.005 0.009 ± 0.003 0.006 ± 0.002 0.008 ± 0.003 0.010 ± 0.004 0.006 ± 0.002 0.010 ± 0.004 0.010 ± 0.004 0.009 ± 0.002 1.1 ± 0.5

2,3-Dimethylpentane 0.010 ± 0.003 0.009 ± 0.003 0.007 ± 0.003 0.013 ± 0.005 0.006 ± 0.002 0.007 ± 0.002 0.012 ± 0.004 0.010 ± 0.003 0.008 ± 0.003 1.2 ± 0.6

3-Methylhexane 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 1.1 ± 1.2

1,3-Dimethylcyclopentane 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 -

2,2,4-Trimethylpentane 0.007 ± 0.005 0.008 ± 0.005 0.002 ± 0.001 0.003 ± 0.002 0.003 ± 0.002 0.002 ± 0.001 0.003 ± 0.002 0.005 ± 0.003 0.002 ± 0.001 2.1 ± 1.4

n-Heptane 0.031 ± 0.010 0.018 ± 0.006 0.022 ± 0.007 0.031 ± 0.010 0.365 ± 0.121 0.151 ± 0.048 0.162 ± 0.051 0.026 ± 0.006 0.226 ± 0.121 0.1 ± 0.1

Methylcyclohexane 0.002 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.008 ± 0.003 0.005 ± 0.002 0.005 ± 0.002 0.002 ± 0.001 0.006 ± 0.002 0.4 ± 0.2

2,3,4-Trimethylpentane 0.005 ± 0.002 0.007 ± 0.003 0.001 ± 0.000 0.002 ± 0.001 0.001 ± 0.001 0.001 ± 0.001 0.003 ± 0.001 0.004 ± 0.003 0.002 ± 0.001 2.2 ± 1.8

2-Methylheptane 0.002 ± 0.001 0.002 ± 0.001 0.001 ± 0.000 0.002 ± 0.001 0.004 ± 0.002 0.003 ± 0.002 0.002 ± 0.001 0.001 ± 0.000 0.003 ± 0.001 0.5 ± 0.2

3-Methylheptane 0.002 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.003 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.6 ± 0.3

4-Methylheptane 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.006 ± 0.002 0.004 ± 0.001 0.006 ± 0.002 0.011 ± 0.004 0.003 ± 0.002 0.007 ± 0.004 0.4 ± 0.4

n-Octane 0.009 ± 0.003 0.007 ± 0.002 0.004 ± 0.001 0.009 ± 0.003 0.010 ± 0.003 0.008 ± 0.003 0.011 ± 0.004 0.007 ± 0.002 0.009 ± 0.002 0.8 ± 0.3

n-Nonane 0.048 ± 0.015 0.037 ± 0.012 0.005 ± 0.001 0.012 ± 0.004 0.016 ± 0.005 0.013 ± 0.004 0.014 ± 0.004 0.025 ± 0.020 0.014 ± 0.003 1.8 ± 1.5

n-Decane 0.061 ± 0.021 0.053 ± 0.019 0.012 ± 0.004 0.025 ± 0.009 0.022 ± 0.008 0.023 ± 0.008 0.025 ± 0.009 0.038 ± 0.023 0.023 ± 0.005 1.6 ± 1.0

n-Undecane 0.011 ± 0.001 0.011 ± 0.001 0.007 ± 0.000 0.018 ± 0.001 0.012 ± 0.001 0.018 ± 0.001 0.023 ± 0.002 0.012 ± 0.005 0.017 ± 0.005 0.7 ± 0.3

Page 108: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-3

Table 5-1. Continued.

Group Compound Run ID CAT 797B-1

Average CAT 797B-2

Average Ratio: S/A

S1 S2 S3 S4 A1 A2 A3

Alk

enes

Ethene 0.273 ± 0.017 0.302 ± 0.019 0.284 ± 0.016 0.261 ± 0.015 0.195 ± 0.025 0.286 ± 0.021 0.184 ± 0.014 0.280 ± 0.018 0.222 ± 0.056 1.3 ± 0.3

Propylene 0.107 ± 0.007 0.122 ± 0.007 0.118 ± 0.007 0.109 ± 0.006 0.063 ± 0.008 0.106 ± 0.008 0.077 ± 0.006 0.114 ± 0.007 0.082 ± 0.022 1.4 ± 0.4

1-Butene 0.038 ± 0.002 0.048 ± 0.003 0.102 ± 0.006 0.075 ± 0.004 0.024 ± 0.003 0.047 ± 0.003 0.062 ± 0.005 0.066 ± 0.029 0.045 ± 0.019 1.5 ± 0.9

cis-2-Butene 0.003 ± 0.000 0.003 ± 0.000 0.005 ± 0.001 0.005 ± 0.001 0.002 ± 0.000 0.004 ± 0.000 0.005 ± 0.001 0.004 ± 0.001 0.004 ± 0.001 1.1 ± 0.4

trans-2-Butene 0.004 ± 0.000 0.005 ± 0.000 0.009 ± 0.001 0.008 ± 0.000 0.003 ± 0.000 0.006 ± 0.000 0.009 ± 0.001 0.007 ± 0.003 0.006 ± 0.003 1.1 ± 0.7

1-Pentene 0.019 ± 0.006 0.021 ± 0.007 0.032 ± 0.010 0.029 ± 0.009 0.010 ± 0.003 0.018 ± 0.006 0.023 ± 0.007 0.025 ± 0.006 0.017 ± 0.006 1.5 ± 0.7

Isoprene 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.0 ± -

trans-2-Pentene 0.003 ± 0.001 0.004 ± 0.001 0.008 ± 0.002 0.008 ± 0.002 0.002 ± 0.001 0.004 ± 0.001 0.006 ± 0.002 0.006 ± 0.003 0.004 ± 0.002 1.3 ± 0.8

cis-2-Pentene 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.001 ± 0.000 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 1.3 ± 0.6

2-Methyl-1-Pentene 0.015 ± 0.005 0.016 ± 0.005 0.022 ± 0.007 0.023 ± 0.007 0.008 ± 0.003 0.011 ± 0.004 0.018 ± 0.006 0.019 ± 0.004 0.012 ± 0.005 1.6 ± 0.7

1,3-Butadiene 0.001 ± 0.000 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.008 ± 0.002 0.002 ± 0.001 0.004 ± 0.004 0.6 ± 0.7

Isobutylene 0.013 ± 0.001 0.018 ± 0.001 0.020 ± 0.001 0.019 ± 0.001 0.014 ± 0.002 0.013 ± 0.001 0.023 ± 0.002 0.018 ± 0.003 0.017 ± 0.005 1.1 ± 0.4

1,2-Butadiene 0.008 ± 0.000 0.007 ± 0.000 0.003 ± 0.000 0.006 ± 0.000 0.006 ± 0.001 0.007 ± 0.001 0.003 ± 0.000 0.006 ± 0.002 0.005 ± 0.002 1.2 ± 0.6

2-Methyl-1-Butene 0.008 ± 0.002 0.007 ± 0.002 0.008 ± 0.002 0.013 ± 0.003 0.005 ± 0.001 0.009 ± 0.002 0.011 ± 0.003 0.009 ± 0.002 0.008 ± 0.003 1.1 ± 0.5

2-Methyl-2-Butene 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 1.1 ± 0.5

Cyclopentene 0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.003 ± 0.001 0.001 ± 0.000 0.002 ± 0.001 0.003 ± 0.001 0.003 ± 0.000 0.002 ± 0.001 1.4 ± 0.5

t-2-Hexene 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.001 0.003 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 1.3 ± 0.8

c-2-Hexene 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 1.4 ± 0.7

1,3-Hexadiene 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.002 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.004 0.000 ± 0.001 0.001 ± 0.001 0.4 ± 1.0

Cyclohexene 0.001 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.001 0.002 ± 0.001 0.001 ± 0.000 1.5 ± 0.6

1-Heptene 0.009 ± 0.002 0.009 ± 0.002 0.010 ± 0.003 0.017 ± 0.005 0.007 ± 0.002 0.007 ± 0.002 0.012 ± 0.004 0.011 ± 0.004 0.009 ± 0.003 1.3 ± 0.7

2,3-Dimethyl-2-Pentene 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.7 ± 1.1

alpha-Pinene 0.000 ± 0.000 0.000 ± 0.000 0.002 ± 0.000 0.001 ± 0.000 0.013 ± 0.002 0.004 ± 0.001 0.000 ± 0.000 0.001 ± 0.001 0.006 ± 0.006 0.1 ± 0.2

Alkyne Acetylene 0.080 ± 0.005 0.074 ± 0.005 0.032 ± 0.002 0.061 ± 0.004 0.068 ± 0.009 0.068 ± 0.005 0.021 ± 0.002 0.062 ± 0.022 0.053 ± 0.027 1.2 ± 0.7

Page 109: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-4

Table 5-1. Continued.

Group Compound Run ID CAT 797B-1

Average CAT 797B-2

Average Ratio: S/A

S1 S2 S3 S4 A1 A2 A3

Aro

mat

ics

Benzene 0.009 ± 0.003 0.014 ± 0.005 0.008 ± 0.003 0.014 ± 0.005 0.023 ± 0.008 0.021 ± 0.007 0.028 ± 0.009 0.011 ± 0.003 0.024 ± 0.005 0.5 ± 0.2

Toluene 0.051 ± 0.016 0.039 ± 0.012 0.021 ± 0.006 0.043 ± 0.013 0.026 ± 0.009 0.031 ± 0.010 0.041 ± 0.013 0.038 ± 0.013 0.033 ± 0.007 1.2 ± 0.5

Ethylbenzene 0.007 ± 0.002 0.005 ± 0.002 0.001 ± 0.000 0.004 ± 0.001 0.004 ± 0.002 0.004 ± 0.001 0.005 ± 0.002 0.004 ± 0.002 0.004 ± 0.001 1.0 ± 0.5

m/p-Xylene 0.022 ± 0.007 0.019 ± 0.006 0.006 ± 0.002 0.012 ± 0.004 0.011 ± 0.004 0.012 ± 0.004 0.016 ± 0.005 0.015 ± 0.007 0.013 ± 0.003 1.1 ± 0.6

Styrene 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.002 ± 0.001 0.001 ± 0.000 0.001 ± 0.001 0.6 ± 0.5

o-Xylene 0.012 ± 0.004 0.011 ± 0.004 0.004 ± 0.001 0.007 ± 0.002 0.005 ± 0.002 0.006 ± 0.002 0.009 ± 0.003 0.009 ± 0.004 0.007 ± 0.002 1.3 ± 0.6

Isopropylbenzene 0.003 ± 0.001 0.002 ± 0.001 0.000 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.000 0.001 ± 0.001 0.001 ± 0.000 1.2 ± 0.9

n-Propylbenzene 0.009 ± 0.003 0.008 ± 0.002 0.002 ± 0.001 0.003 ± 0.001 0.004 ± 0.001 0.004 ± 0.001 0.004 ± 0.001 0.005 ± 0.003 0.004 ± 0.001 1.4 ± 0.9

m-Ethyltoluene 0.022 ± 0.007 0.020 ± 0.007 0.004 ± 0.002 0.009 ± 0.003 0.009 ± 0.003 0.010 ± 0.003 0.011 ± 0.004 0.014 ± 0.008 0.010 ± 0.002 1.4 ± 0.9

p-Ethyltoluene 0.008 ± 0.003 0.007 ± 0.002 0.002 ± 0.001 0.004 ± 0.001 0.003 ± 0.001 0.004 ± 0.001 0.004 ± 0.002 0.005 ± 0.003 0.004 ± 0.001 1.3 ± 0.8

1,3,5-Trimethylbenzene 0.006 ± 0.002 0.005 ± 0.002 0.002 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.004 ± 0.001 0.004 ± 0.002 0.003 ± 0.001 1.4 ± 0.7

o-Ethyltoluene 0.008 ± 0.003 0.008 ± 0.003 0.003 ± 0.001 0.006 ± 0.002 0.004 ± 0.001 0.005 ± 0.002 0.007 ± 0.002 0.006 ± 0.002 0.005 ± 0.001 1.2 ± 0.5

1,2,4-Trimethylbenzene 0.007 ± 0.002 0.007 ± 0.002 0.004 ± 0.001 0.009 ± 0.003 0.006 ± 0.002 0.008 ± 0.003 0.011 ± 0.004 0.007 ± 0.002 0.009 ± 0.003 0.8 ± 0.3

1,2,3-Trimethylbenzene 0.003 ± 0.001 0.003 ± 0.001 0.002 ± 0.001 0.005 ± 0.002 0.006 ± 0.002 0.007 ± 0.002 0.010 ± 0.003 0.003 ± 0.001 0.007 ± 0.002 0.5 ± 0.2

m-Diethylbenzene 0.004 ± 0.001 0.004 ± 0.001 0.002 ± 0.001 0.004 ± 0.001 0.003 ± 0.001 0.004 ± 0.001 0.005 ± 0.002 0.003 ± 0.001 0.004 ± 0.001 0.8 ± 0.4

p-Diethylbenzene 0.002 ± 0.001 0.003 ± 0.001 0.001 ± 0.000 0.002 ± 0.001 0.001 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.000 1.1 ± 0.5

Indan 0.005 ± 0.002 0.005 ± 0.002 0.002 ± 0.001 0.004 ± 0.001 0.002 ± 0.001 0.002 ± 0.001 0.003 ± 0.001 0.004 ± 0.002 0.002 ± 0.001 1.6 ± 0.8

Total identified NMHC 1.053 ± 0.060 1.053 ± 0.057 1.058 ± 0.050 1.061 ± 0.037 1.079 ± 0.043 1.056 ± 0.164 1.056 ± 0.075 1.084 ± 0.081 1.063 ± 0.024 1.0 ± 0.1

Page 110: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-5

Figure 5-1. Concentration of NMHC groups normalized to sum of PAMS compounds. Error bars indicate the larger of standard deviation and uncertainty of average of multiple runs.

Figure 5-2. Averaged NMHC source profiles from CAT 797B-1 and CAT 797B-2 for species with abundance ≥1%: the height of each bar indicates the averaged fractional abundance for the indicated NMHC (normalized to the total of 55 PAMS compounds), while the dot shows the larger of standard deviation and uncertainty of average of multiple runs.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Alkanes &cycloalkanes Alkenes Acetylene Aromatics

Co

nce

ntr

atio

n N

orm

aliz

ed t

o S

um

of

PA

MS

NMHC Compound Group

CAT 797B-1

CAT 797B-2

Eth

ane

Pro

pan

e

n-B

uta

ne

n-P

enta

ne

n-H

exan

e

n-H

epta

ne

n-N

on

ane

n-D

ecan

e

n-U

nd

ecan

e

Eth

ene

Pro

pyl

ene

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pe

nte

ne

iso

bu

tyle

ne

1-h

epte

ne

Ace

tyle

ne

Ben

zen

e

To

luen

e

m/p

-Xyl

ene

m-E

thyl

tolu

ene

0.001

0.010

0.100

1.000

NM

HC

Ab

un

da

nc

e N

ora

lize

d t

o t

ota

l P

AM

S

NMHC Species

CAT 797B-1

Alkanes Alkenes AromaticsAlkyne

Eth

ane

Pro

pan

e

n-B

uta

ne

n-P

enta

ne

n-H

exan

e

n-H

epta

ne

n-N

on

ane

n-D

ecan

e

n-U

nd

ecan

e

Eth

ene

Pro

pyl

ene

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pen

ten

e

iso

bu

tyle

ne

1-h

epte

ne

Ace

tyle

ne

Ben

zen

e

To

luen

e

m/p

-Xyl

ene

m-E

thyl

tolu

ene

0.001

0.010

0.100

1.000

NM

HC

Ab

un

da

nce

No

rali

zed

to

to

tal P

AM

S

NMHC Species

CAT 797B-2

Alkanes Alkenes AromaticsAlkyne

Page 111: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-6

Table 5-2. Halocarbon source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds.

Compound

Run ID CAT 797B-1 Site A Average

S1 S2 S3 S4 A1 A2 A3 Average Average

dichloromethane 0.00086 ± 0.00017

0.00110 ± 0.00021

0.00039 ± 0.00007

0.00059 ± 0.00011

0.00014 ± 0.00003

0.00017 ± 0.00003

0.00021 ± 0.00004

0.00074 ± 0.00031

0.00017 ± 0.00003

chlorobenzene 0.00009 ± 0.00006

0.00009 ± 0.00006

0.00000 ± 0.00016

0.00000 ± 0.00024

0.00006 ± 0.00003

0.00005 ± 0.00004

0.00007 ± 0.00007

0.00004 ± 0.00007

0.00006 ± 0.00003

chloroform 0.00000 ± 0.00005

0.00000 ± 0.00005

0.00005 ± 0.00001

0.00006 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00003

0.00004 ± 0.00001

0.00003 ± 0.00003

0.00001 ± 0.00003

dichlorodifluoromethane (F-12) 0.00030 ± 0.00006

0.00030 ± 0.00006

0.00018 ± 0.00003

0.00027 ± 0.00005

0.00017 ± 0.00004

0.00021 ± 0.00004

0.00036 ± 0.00007

0.00026 ± 0.00005

0.00025 ± 0.00010

trichloroethylene 0.00008 ± 0.00002

0.00008 ± 0.00002

0.00005 ± 0.00001

0.00008 ± 0.00002

0.00000 ± 0.00005

0.00000 ± 0.00007

0.00000 ± 0.00011

0.00007 ± 0.00001

0.00000 ± 0.00005

1,3-dichlorobenzene 0.00721 ± 0.00167

0.00721 ± 0.00167

0.00421 ± 0.00096

0.00928 ± 0.00213

0.00886 ± 0.00226

0.01263 ± 0.00295

0.01951 ± 0.00458

0.00686 ± 0.00208

0.01366 ± 0.00540

o-dichlorobenzene 0.00000 ± 0.00027

0.00000 ± 0.00027

0.00000 ± 0.00016

0.00000 ± 0.00024

0.00000 ± 0.00016

0.00000 ± 0.00020

0.00000 ± 0.00033

0.00000 ± 0.00012

0.00000 ± 0.00014

p-dichlorobenzene 0.00018 ± 0.00006

0.00018 ± 0.00006

0.00009 ± 0.00003

0.00023 ± 0.00005

0.00017 ± 0.00004

0.00020 ± 0.00004

0.00034 ± 0.00007

0.00016 ± 0.00006

0.00023 ± 0.00009

tetrachloromethane 0.00004 ± 0.00001

0.00004 ± 0.00001

0.00002 ± 0.00001

0.00003 ± 0.00001

0.00002 ± 0.00001

0.00002 ± 0.00001

0.00004 ± 0.00001

0.00003 ± 0.00001

0.00003 ± 0.00001

bromodichloromethane 0.00004 ± 0.00001

0.00004 ± 0.00001

0.00004 ± 0.00001

0.00006 ± 0.00001

0.00003 ± 0.00001

0.00003 ± 0.00001

0.00005 ± 0.00001

0.00003 ± 0.00003

0.00004 ± 0.00001

tetrachloroethene 0.00013 ± 0.00004

0.00013 ± 0.00004

0.00005 ± 0.00001

0.00009 ± 0.00003

0.00008 ± 0.00002

0.00006 ± 0.00002

0.00010 ± 0.00003

0.00008 ± 0.00003

0.00008 ± 0.00002

1,1,2,2-tetrachloroethane 0.00157 ± 0.00116

0.00157 ± 0.00116

0.00047 ± 0.00035

0.00088 ± 0.00065

0.00000 ± 0.00005

0.00074 ± 0.00054

0.00130 ± 0.00096

0.00110 ± 0.00052

0.00068 ± 0.00065

1,2-dichlorotetrafluoroethane (F-114)

0.00000 ± 0.00009

0.00000 ± 0.00009

0.00000 ± 0.00005

0.00002 ± 0.00002

0.00001 ± 0.00001

0.00001 ± 0.00001

0.00002 ± 0.00002

0.00000 ± 0.00004

0.00001 ± 0.00001

1,1,2-trichloro-1,2,2-trifluoroethane

0.00004 ± 0.00002

0.00004 ± 0.00002

0.00003 ± 0.00001

0.00004 ± 0.00002

0.00003 ± 0.00001

0.00003 ± 0.00001

0.00006 ± 0.00002

0.00004 ± 0.00001

0.00004 ± 0.00002

Page 112: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-7

Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.

Chemical Species Run ID CAT 797B-1 CAT 797B-2 Ratio

S1 S2 S3 S4 S5 A1 A2 A3 Average Average S/A

Cl- 0.00 ± 0.19 0.00 ± 0.14 0.00 ± 0.06 0.00 ± 0.19 0.00 ± 0.12 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.20 0.00 ± 0.08 0.00 ± 0.07 0.00

NO2- 0.88 ± 0.16 0.10 ± 0.05 0.01 ± 0.02 0.33 ± 0.08 0.08 ± 0.04 0.01 ± 0.02 0.02 ± 0.02 0.11 ± 0.07 0.35 ± 0.37 0.05 ± 0.06 7.46

NO3- 0.70 ± 0.20 0.27 ± 0.14 0.47 ± 0.08 0.43 ± 0.19 0.31 ± 0.13 1.32 ± 0.13 0.96 ± 0.10 1.79 ± 0.26 0.43 ± 0.19 1.36 ± 0.42 0.31

PO4≡ 0.57 ± 0.20 0.48 ± 0.15 0.15 ± 0.06 0.33 ± 0.19 0.25 ± 0.12 1.05 ± 0.12 1.39 ± 0.15 2.61 ± 0.34 0.41 ± 0.15 1.68 ± 0.82 0.24

SO4= 0.49 ± 0.20 0.32 ± 0.14 0.09 ± 0.06 0.21 ± 0.19 0.15 ± 0.12 0.29 ± 0.05 0.25 ± 0.06 0.39 ± 0.20 0.30 ± 0.15 0.31 ± 0.07 0.94

NH4+ 0.47 ± 0.20 0.32 ± 0.14 0.12 ± 0.06 0.34 ± 0.19 0.22 ± 0.12 0.15 ± 0.05 0.11 ± 0.05 0.30 ± 0.20 0.34 ± 0.10 0.19 ± 0.10 1.79

Na+ 0.02 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.01 ± 0.01 0.05 ± 0.01 0.01 ± 0.00 0.00 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.42

Mg++ 0.01 ± 0.01 0.00 ± 0.01 0.01 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.36 ± 0.03 0.44 ± 0.03 0.74 ± 0.05 0.00 ± 0.00 0.51 ± 0.20 0.00

K+ 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.02 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00

Ca++ 0.31 ± 0.10 0.21 ± 0.07 0.09 ± 0.03 0.16 ± 0.09 0.14 ± 0.06 0.22 ± 0.03 0.27 ± 0.03 0.45 ± 0.11 0.21 ± 0.07 0.32 ± 0.12 0.65

OC1 12.57 ± 3.61 7.85 ± 2.31 2.40 ± 0.77 10.07 ± 3.00 3.70 ± 1.27 40.04 ± 9.88 18.48 ± 4.64 11.21 ± 3.31 8.55 ± 3.76 23.24 ± 15.00 0.37

OC2 9.56 ± 2.69 7.72 ± 2.06 2.77 ± 0.81 4.26 ± 1.86 5.71 ± 1.64 9.46 ± 1.98 5.67 ± 1.27 7.95 ± 2.46 6.81 ± 2.32 7.69 ± 1.91 0.89

OC3 4.85 ± 1.73 5.55 ± 1.52 2.84 ± 0.74 3.31 ± 1.52 3.69 ± 1.18 3.63 ± 0.80 3.32 ± 0.77 3.03 ± 1.55 4.35 ± 1.03 3.33 ± 0.64 1.31

OC4 1.36 ± 0.52 1.90 ± 0.47 0.45 ± 0.17 0.67 ± 0.46 1.47 ± 0.39 1.57 ± 0.29 1.24 ± 0.25 2.09 ± 0.61 1.35 ± 0.51 1.63 ± 0.43 0.83

OP 0.00 ± 0.28 0.00 ± 0.20 0.00 ± 0.09 0.00 ± 0.28 0.00 ± 0.18 0.00 ± 0.07 0.00 ± 0.08 0.00 ± 0.29 0.00 ± 0.12 0.00 ± 0.10 0.00

EC1 3.94 ± 1.27 3.59 ± 1.15 1.32 ± 0.42 2.90 ± 0.94 3.17 ± 1.01 21.62 ± 6.84 12.68 ± 4.01 24.62 ± 7.81 3.40 ± 0.55 19.64 ± 6.21 0.17

EC2 52.41 ± 17.34 65.15 ± 21.39 47.66 ± 15.58 69.06 ± 22.76 67.34 ± 22.08 15.21 ± 5.01 33.24 ± 10.88 38.48 ± 12.82 63.49 ± 10.50 28.97 ± 12.21 2.19

EC3 0.44 ± 0.13 0.04 ± 0.06 0.00 ± 0.03 0.24 ± 0.10 0.02 ± 0.06 0.00 ± 0.02 0.09 ± 0.03 0.16 ± 0.10 0.18 ± 0.20 0.08 ± 0.08 2.23

CO32- 0.04 ± 1.64 0.00 ± 1.17 0.02 ± 0.53 0.00 ± 1.60 0.00 ± 1.04 0.00 ± 0.40 0.00 ± 0.44 0.00 ± 1.70 0.01 ± 0.69 0.00 ± 0.60 11.03

OC 28.35 ± 5.08 23.01 ± 3.92 8.46 ± 1.56 18.30 ± 4.01 14.57 ± 2.86 54.71 ± 7.15 28.70 ± 3.90 24.28 ± 4.73 21.06 ± 5.96 35.89 ± 16.44 0.59

EC 56.69 ± 7.24 68.71 ± 8.69 48.95 ± 6.16 72.11 ± 9.21 70.46 ± 8.92 36.80 ± 4.63 45.98 ± 5.78 63.15 ± 8.08 66.99 ± 7.01 48.64 ± 13.37 1.38

TC 85.04 ± 11.96 91.72 ± 12.38 57.42 ± 7.59 90.41 ± 12.63 85.03 ± 11.46 91.51 ± 11.83 74.68 ± 9.72 87.42 ± 12.33 88.05 ± 6.06 84.54 ± 8.78 1.04

Page 113: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-8

Table 5-3. Continued

Chemical Species Run ID CAT 797B-1 CAT 797B-2 Ratio

S1 S2 S3 S4 S5 A1 A2 A3 Average Average S/A

Na 0.09 ± 1.30 0.00 ± 0.91 0.00 ± 0.44 0.00 ± 1.55 0.29 ± 1.09 0.20 ± 0.38 0.00 ± 0.43 0.00 ± 1.58 0.09 ± 0.62 0.07 ± 0.56 1.39

Mg 0.01 ± 0.76 0.00 ± 0.53 0.00 ± 0.26 0.03 ± 0.91 0.00 ± 0.63 0.26 ± 0.22 0.43 ± 0.26 0.35 ± 0.93 0.01 ± 0.36 0.35 ± 0.33 0.03

Al 0.17 ± 0.13 0.00 ± 0.09 0.00 ± 0.04 0.00 ± 0.15 0.09 ± 0.10 0.00 ± 0.04 0.00 ± 0.04 0.00 ± 0.15 0.06 ± 0.08 0.00 ± 0.05 0.00

Si 0.00 ± 0.14 0.21 ± 0.10 0.28 ± 0.05 0.57 ± 0.18 0.02 ± 0.12 0.06 ± 0.04 0.15 ± 0.05 0.23 ± 0.18 0.20 ± 0.26 0.15 ± 0.09 1.37

P 0.20 ± 0.12 0.20 ± 0.09 0.14 ± 0.04 0.12 ± 0.14 0.15 ± 0.10 0.32 ± 0.04 0.57 ± 0.06 0.76 ± 0.16 0.17 ± 0.06 0.55 ± 0.22 0.30

S 0.18 ± 0.12 0.16 ± 0.09 0.10 ± 0.04 0.06 ± 0.14 0.04 ± 0.10 0.18 ± 0.04 0.16 ± 0.04 0.19 ± 0.15 0.11 ± 0.07 0.17 ± 0.05 0.63

Cl 0.02 ± 0.07 0.02 ± 0.05 0.02 ± 0.02 0.06 ± 0.09 0.02 ± 0.06 0.51 ± 0.04 0.10 ± 0.03 0.23 ± 0.09 0.03 ± 0.03 0.28 ± 0.21 0.10

K 0.01 ± 0.05 0.00 ± 0.03 0.01 ± 0.02 0.02 ± 0.06 0.01 ± 0.04 0.01 ± 0.01 0.00 ± 0.02 0.01 ± 0.06 0.01 ± 0.02 0.00 ± 0.02 2.38

Ca 0.44 ± 0.12 0.37 ± 0.09 0.39 ± 0.05 0.74 ± 0.15 0.24 ± 0.10 0.48 ± 0.05 0.57 ± 0.06 0.77 ± 0.16 0.45 ± 0.21 0.60 ± 0.15 0.74

Sc 0.17 ± 0.54 0.00 ± 0.38 0.00 ± 0.18 0.13 ± 0.64 0.10 ± 0.45 0.02 ± 0.16 0.00 ± 0.18 0.00 ± 0.66 0.10 ± 0.26 0.01 ± 0.23 13.83

Ti 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.01 0.01 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 1.82

V 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00

Cr 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00

Mn 0.00 ± 0.11 0.00 ± 0.08 0.00 ± 0.04 0.00 ± 0.13 0.00 ± 0.09 0.00 ± 0.03 0.00 ± 0.04 0.00 ± 0.13 0.00 ± 0.05 0.00 ± 0.05 0.89

Fe 0.03 ± 0.12 0.01 ± 0.08 0.02 ± 0.04 0.02 ± 0.14 0.00 ± 0.10 0.02 ± 0.03 0.02 ± 0.04 0.02 ± 0.14 0.02 ± 0.06 0.02 ± 0.05 0.81

Co 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00

Ni 0.00 ± 0.05 0.00 ± 0.04 0.00 ± 0.02 0.00 ± 0.06 0.00 ± 0.04 0.00 ± 0.01 0.00 ± 0.02 0.00 ± 0.06 0.00 ± 0.02 0.00 ± 0.02 0.49

Cu 0.01 ± 0.12 0.06 ± 0.08 0.01 ± 0.04 0.01 ± 0.14 0.03 ± 0.10 0.01 ± 0.03 0.02 ± 0.04 0.03 ± 0.15 0.03 ± 0.06 0.02 ± 0.05 1.33

Zn 0.23 ± 0.12 0.21 ± 0.09 0.18 ± 0.04 0.23 ± 0.14 0.15 ± 0.10 0.43 ± 0.05 0.69 ± 0.06 1.06 ± 0.17 0.20 ± 0.06 0.73 ± 0.32 0.28

Ga 0.03 ± 0.11 0.01 ± 0.08 0.01 ± 0.04 0.03 ± 0.13 0.02 ± 0.09 0.00 ± 0.03 0.01 ± 0.04 0.01 ± 0.13 0.02 ± 0.05 0.01 ± 0.05 1.89

As 0.00 ± 0.12 0.00 ± 0.08 0.00 ± 0.04 0.00 ± 0.14 0.00 ± 0.10 0.00 ± 0.03 0.00 ± 0.04 0.00 ± 0.15 0.00 ± 0.06 0.00 ± 0.05 0.00

Se 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 0.00

Br 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.01 ± 0.02 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.02 0.01 ± 0.01 0.00 ± 0.01 12.56

Rb 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.32

Sr 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 1.36

Yt 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.19

Zr 0.01 ± 0.05 0.00 ± 0.03 0.00 ± 0.02 0.01 ± 0.06 0.00 ± 0.04 0.00 ± 0.01 0.00 ± 0.02 0.01 ± 0.06 0.01 ± 0.02 0.00 ± 0.02 2.26

Nb 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.01 0.01 ± 0.03 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.03 0.01 ± 0.01 0.00 ± 0.01 2.54

Mo 0.01 ± 0.03 0.01 ± 0.02 0.00 ± 0.01 0.01 ± 0.04 0.01 ± 0.03 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.04 0.01 ± 0.02 0.02 ± 0.01 0.36

Pd 0.00 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.04 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.04 0.00 ± 0.02 0.00 ± 0.01 0.00

Page 114: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-9

Table 5-3. Continued

Chemical Species Run ID CAT 797B-1 CAT 797B-2 Ratio

S1 S2 S3 S4 S5 A1 A2 A3 Average Average S/A

Ag 0.02 ± 0.04 0.00 ± 0.03 0.00 ± 0.01 0.02 ± 0.05 0.00 ± 0.04 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.05 0.01 ± 0.02 0.00 ± 0.02 4.52

Cd 0.00 ± 0.07 0.00 ± 0.05 0.00 ± 0.02 0.00 ± 0.09 0.00 ± 0.06 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.09 0.00 ± 0.03 0.00 ± 0.03 0.00

In 0.00 ± 0.06 0.00 ± 0.04 0.00 ± 0.02 0.00 ± 0.07 0.00 ± 0.05 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.07 0.00 ± 0.03 0.00 ± 0.03 0.00

Sn 0.01 ± 0.09 0.01 ± 0.06 0.01 ± 0.03 0.00 ± 0.10 0.01 ± 0.07 0.00 ± 0.03 0.00 ± 0.03 0.00 ± 0.11 0.01 ± 0.04 0.00 ± 0.04 2.87

Sb 0.02 ± 0.11 0.00 ± 0.08 0.01 ± 0.04 0.02 ± 0.13 0.02 ± 0.09 0.01 ± 0.03 0.01 ± 0.04 0.07 ± 0.13 0.02 ± 0.05 0.03 ± 0.05 0.56

Cs 0.00 ± 0.12 0.00 ± 0.08 0.00 ± 0.04 0.00 ± 0.14 0.00 ± 0.10 0.00 ± 0.03 0.00 ± 0.04 0.00 ± 0.15 0.00 ± 0.06 0.00 ± 0.05 0.00

Ba 0.03 ± 0.19 0.00 ± 0.13 0.02 ± 0.06 0.04 ± 0.22 0.01 ± 0.16 0.00 ± 0.05 0.01 ± 0.06 0.00 ± 0.23 0.02 ± 0.09 0.00 ± 0.08 4.65

La 0.00 ± 0.33 0.00 ± 0.23 0.01 ± 0.11 0.19 ± 0.39 0.00 ± 0.27 0.05 ± 0.10 0.00 ± 0.11 0.00 ± 0.40 0.05 ± 0.16 0.02 ± 0.14 2.64

Ce 0.04 ± 0.20 0.00 ± 0.14 0.03 ± 0.07 0.00 ± 0.24 0.04 ± 0.17 0.00 ± 0.06 0.00 ± 0.07 0.00 ± 0.25 0.02 ± 0.10 0.00 ± 0.09 58.73

Sm 0.05 ± 0.53 0.14 ± 0.37 0.00 ± 0.18 0.00 ± 0.63 0.00 ± 0.44 0.05 ± 0.15 0.00 ± 0.18 0.00 ± 0.65 0.05 ± 0.25 0.02 ± 0.23 2.72

Eu 0.00 ± 0.44 0.09 ± 0.31 0.03 ± 0.15 0.06 ± 0.52 0.00 ± 0.37 0.00 ± 0.13 0.00 ± 0.15 0.04 ± 0.54 0.04 ± 0.21 0.01 ± 0.19 2.59

Tb 0.00 ± 0.44 0.00 ± 0.31 0.00 ± 0.15 0.00 ± 0.53 0.00 ± 0.37 0.00 ± 0.13 0.00 ± 0.15 0.00 ± 0.54 0.00 ± 0.21 0.00 ± 0.19 0.00

Hf 0.00 ± 0.19 0.00 ± 0.14 0.00 ± 0.07 0.00 ± 0.23 0.00 ± 0.16 0.00 ± 0.06 0.00 ± 0.07 0.00 ± 0.24 0.00 ± 0.09 0.00 ± 0.08 0.00

Ta 0.00 ± 0.13 0.02 ± 0.09 0.00 ± 0.04 0.00 ± 0.16 0.02 ± 0.11 0.00 ± 0.04 0.00 ± 0.04 0.04 ± 0.16 0.01 ± 0.06 0.01 ± 0.06 0.76

Wo 0.00 ± 0.21 0.00 ± 0.15 0.00 ± 0.07 0.06 ± 0.25 0.04 ± 0.17 0.00 ± 0.06 0.00 ± 0.07 0.00 ± 0.25 0.02 ± 0.10 0.00 ± 0.09 0.00

Ir 0.02 ± 0.04 0.00 ± 0.03 0.00 ± 0.01 0.02 ± 0.05 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.05 0.01 ± 0.02 0.00 ± 0.02 31.35

Au 0.00 ± 0.04 0.00 ± 0.03 0.00 ± 0.01 0.01 ± 0.05 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.05 0.00 ± 0.02 0.00 ± 0.02 3.02

Hg 0.00 ± 0.12 0.00 ± 0.08 0.00 ± 0.04 0.00 ± 0.14 0.00 ± 0.10 0.00 ± 0.03 0.00 ± 0.04 0.00 ± 0.15 0.00 ± 0.06 0.00 ± 0.05 0.00

Tl 0.01 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 70.50

Pb 0.00 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.01 ± 0.03 0.00 ± 0.02 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.03 0.00 ± 0.01 0.00 ± 0.01 20.63

Ur 0.00 ± 0.03 0.01 ± 0.02 0.00 ± 0.01 0.00 ± 0.04 0.00 ± 0.03 0.01 ± 0.01 0.00 ± 0.01 0.03 ± 0.04 0.00 ± 0.02 0.01 ± 0.01 0.24

Sum of speciesa 89.5 ± 12.0 94.4 ± 12.4 59.3 ± 7.6 94.4 ± 12.7 86.9 ± 11.5 96.4 ± 11.8 79.5 ± 9.7 96.0 ± 12.4 91.29 ± 6.09 90.64 ± 9.66

a Including TC, Na+, Mg++, K, Cl, Ca, PO4

≡, and SO4=

Excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3=, K+, Cl- , and Ca++

Page 115: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-10

Table 5-4. Summary of the ICP/MS measured source profiles of Cs, Ba, rare earth elements, and Pb in PM2.5 for the eight tests conducted on the two CAT 797Bs. Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.

Elements Run ID CAT 797B-1

Average CAT 797B-2

Average Ratio: S/A S1 S2 S3 S4 S5 A1 A2 A3

Cs 0.00011 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00065 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00071

0.00015 ± 0.00028

0.00000 ± 0.00024

-

Ba 0.00800 ± 0.00168

0.00000 ± 0.00045

0.00000 ± 0.00013

0.00000 ± 0.00067

0.00040 ± 0.00000

0.00000 ± 0.00000

0.00309 ± 0.00000

0.00063 ± 0.00711

0.00168 ± 0.00354

0.00124 ± 0.00237

1.35

La 0.00003 ± 0.00005

0.00000 ± 0.00004

0.00000 ± 0.00003

0.00000 ± 0.00005

0.00001 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00006 ± 0.00026

0.00001 ± 0.00002

0.00002 ± 0.00009

0.33

Ce 0.00007 ± 0.00005

0.00000 ± 0.00006

0.00000 ± 0.00003

0.00000 ± 0.00011

0.00001 ± 0.00000

0.00000 ± 0.00000

0.00001 ± 0.00000

0.00012 ± 0.00034

0.00002 ± 0.00003

0.00004 ± 0.00011

0.38

Pr 0.00000 ± 0.00004

0.00000 ± 0.00003

0.00000 ± 0.00002

0.00000 ± 0.00005

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00016

0.00000 ± 0.00002

0.00000 ± 0.00005

-

Nd 0.00003 ± 0.00005

0.00000 ± 0.00006

0.00000 ± 0.00003

0.00001 ± 0.00015

0.00002 ± 0.00000

0.00000 ± 0.00000

0.00001 ± 0.00000

0.00002 ± 0.00040

0.00001 ± 0.00004

0.00001 ± 0.00013

1.21

Sm 0.00000 ± 0.00005

0.00000 ± 0.00006

0.00000 ± 0.00002

0.00000 ± 0.00004

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00001 ± 0.00021

0.00000 ± 0.00002

0.00000 ± 0.00007

0.71

Eu 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00013

0.00000 ± 0.00001

0.00000 ± 0.00004

-

Gd 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00019

0.00000 ± 0.00001

0.00000 ± 0.00006

-

Tb 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00023

0.00000 ± 0.00001

0.00000 ± 0.00008

-

Dy 0.00000 ± 0.00003

0.00000 ± 0.00004

0.00000 ± 0.00002

0.00000 ± 0.00004

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00016

0.00000 ± 0.00001

0.00000 ± 0.00005

0.90

Ho 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00020

0.00000 ± 0.00001

0.00000 ± 0.00007

-

Er 0.00001 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00023

0.00000 ± 0.00001

0.00000 ± 0.00008

-

Tm 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00013

0.00000 ± 0.00001

0.00000 ± 0.00004

-

Yb 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00013

0.00000 ± 0.00001

0.00000 ± 0.00004

-

Lu 0.00000 ± 0.00003

0.00000 ± 0.00003

0.00000 ± 0.00001

0.00000 ± 0.00003

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00000

0.00000 ± 0.00013

0.00000 ± 0.00001

0.00000 ± 0.00004

-

Pb 0.00023 ± 0.00012

0.00000 ± 0.00011

0.00000 ± 0.00196

0.00000 ± 0.00007

0.00016 ± 0.00000

0.00000 ± 0.00000

0.00051 ± 0.00000

0.00225 ± 0.00049

0.00008 ± 0.00011

0.00092 ± 0.00118

0.09

Page 116: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-11

Table 5-5. Carbohydrates, organic acids, and WSOC source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.

Compound MW

Run ID CAT 797B-1 Average

CAT 797B-2 Average S1 S2 S3 S4 S5 A1 A2 A3

Carbohydrates

Glycerol (C3H8O3 ) 92 0.030 ± 0.011

0.000 ± 0.013

0.017 ± 0.008

0.000 ± 0.034

0.000 ± 0.039

0.000 ± 0.016

0.000 ± 0.013

0.000 ± 0.048

0.009 ± 0.014 0.000 ± 0.017

Inositol (C6H12O6) 180 0.000 ± 0.011

0.000 ± 0.013

0.000 ± 0.008

0.000 ± 0.034

0.000 ± 0.039

0.000 ± 0.016

0.000 ± 0.013

0.372 ± 0.048

0.000 ± 0.011 0.124 ± 0.215

Erythritol (C4H10O4) 122 0.000 ± 0.016

0.000 ± 0.020

0.000 ± 0.012

0.000 ± 0.051

0.000 ± 0.059

0.000 ± 0.023

0.000 ± 0.020

0.000 ± 0.072

0.000 ± 0.017 0.000 ± 0.026

Xylitol (C5H12O5 ) 152 0.000 ± 0.011

0.000 ± 0.013

0.000 ± 0.008

0.000 ± 0.034

0.000 ± 0.039

0.000 ± 0.016

0.000 ± 0.013

0.424 ± 0.048

0.000 ± 0.011 0.141 ± 0.245

Levoglucosan (C6H10O5 ) 162 0.000 ± 0.022

0.000 ± 0.027

0.000 ± 0.016

0.000 ± 0.068

0.000 ± 0.079

0.000 ± 0.031

0.000 ± 0.027

0.000 ± 0.096

0.000 ± 0.022 0.000 ± 0.035

Sorbitol (C6H14O6 ) 182 0.000 ± 0.027

0.000 ± 0.033

0.000 ± 0.020

0.000 ± 0.084

0.000 ± 0.098

0.000 ± 0.039

0.000 ± 0.033

0.000 ± 0.120

0.000 ± 0.028 0.000 ± 0.044

Mannosan (C6H10O5 ) 162 0.000 ± 0.016

0.000 ± 0.020

0.000 ± 0.012

0.000 ± 0.051

0.000 ± 0.059

0.000 ± 0.023

0.000 ± 0.020

0.424 ± 0.072

0.000 ± 0.017 0.141 ± 0.245

Trehalose (C12H22O11 ) 342 0.000 ± 0.022

0.000 ± 0.027

0.000 ± 0.016

0.000 ± 0.068

0.000 ± 0.079

0.000 ± 0.031

0.000 ± 0.027

0.000 ± 0.096

0.000 ± 0.022 0.000 ± 0.035

Mannitol (C6H14O6 ) 182 0.000 ± 0.016

0.000 ± 0.020

0.000 ± 0.012

0.000 ± 0.051

0.000 ± 0.059

0.139 ± 0.023

0.000 ± 0.020

0.000 ± 0.072

0.000 ± 0.017 0.046 ± 0.080

Arabinose (C5H10O5) 150 0.000 ± 0.016

0.000 ± 0.020

0.000 ± 0.012

0.000 ± 0.051

0.000 ± 0.059

0.000 ± 0.023

0.000 ± 0.020

0.000 ± 0.072

0.000 ± 0.017 0.000 ± 0.026

Glucose (C6H12O6 ) 180 0.000 ± 0.011

0.000 ± 0.013

0.000 ± 0.008

0.000 ± 0.034

0.000 ± 0.039

0.000 ± 0.016

0.000 ± 0.013

0.942 ± 0.048

0.000 ± 0.011 0.314 ± 0.544

Galactose (C6H12O6 ) 180 0.000 ± 0.022

0.000 ± 0.027

0.000 ± 0.016

0.000 ± 0.068

0.000 ± 0.079

0.000 ± 0.031

0.000 ± 0.027

0.000 ± 0.096

0.000 ± 0.022 0.000 ± 0.035

Maltitol (C12H24O11) 344 0.000 ± 0.027

0.000 ± 0.033

0.000 ± 0.020

0.000 ± 0.084

0.000 ± 0.098

0.000 ± 0.039

0.000 ± 0.033

0.000 ± 0.120

0.000 ± 0.028 0.000 ± 0.044

Organic Acids

Lactic acid (C3H6O3) 90 0.009 ± 0.016

0.022 ± 0.020

0.001 ± 0.012

0.000 ± 0.051

0.000 ± 0.059

0.002 ± 0.023

0.014 ± 0.020

0.012 ± 0.072

0.006 ± 0.017 0.009 ± 0.026

Acetic acid (C2H4O2 ) 60 0.086 ± 0.032

0.052 ± 0.040

0.000 ± 0.024

0.000 ± 0.101

0.000 ± 0.118

0.000 ± 0.047

0.000 ± 0.040

0.000 ± 0.144

0.028 ± 0.040 0.000 ± 0.052

Formic acid (CH2O ) 46 0.000 ± 0.032

0.000 ± 0.040

0.000 ± 0.024

0.000 ± 0.101

0.000 ± 0.118

0.005 ± 0.047

0.000 ± 0.040

0.000 ± 0.144

0.000 ± 0.033 0.002 ± 0.052

Methanesulfonic acid (CH4SO3 )

96 0.000 ± 0.022

0.000 ± 0.027

0.000 ± 0.016

0.000 ± 0.068

0.000 ± 0.079

0.000 ± 0.031

0.000 ± 0.027

0.000 ± 0.096

0.000 ± 0.022 0.000 ± 0.035

Page 117: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-12

Table 5-5. Continued

Compound MW

Run ID CAT 797B-1 Average

CAT 797B-2 Average S1 S2 S3 S4 S5 A1 A2 A3

Glutaric acid (C5H8O4)

132 0.000 ± 0.027

0.000 ± 0.033

0.000 ± 0.020

0.000 ± 0.084

0.000 ± 0.098

0.000 ± 0.039

0.000 ± 0.033

0.000 ± 0.120

0.000 ± 0.028 0.000 ± 0.044

Succinic acid (C4H6O4 )

118 0.000 ± 0.022

0.000 ± 0.027

0.000 ± 0.016

0.000 ± 0.068

0.000 ± 0.079

0.000 ± 0.031

0.000 ± 0.027

0.000 ± 0.096

0.000 ± 0.022 0.000 ± 0.035

Malonic acid (C3H4O4)

104 0.000 ± 0.032

0.000 ± 0.040

0.000 ± 0.024

0.000 ± 0.101

0.000 ± 0.118

0.000 ± 0.047

0.000 ± 0.040

0.000 ± 0.144

0.000 ± 0.033 0.000 ± 0.052

Maleic acid (C4H4O4 ) 116 0.000 ± 0.027

0.000 ± 0.033

0.000 ± 0.020

0.000 ± 0.084

0.000 ± 0.098

0.000 ± 0.039

0.000 ± 0.033

0.000 ± 0.120

0.000 ± 0.028 0.000 ± 0.044

Oxalic acid (C2H2O4) 90 0.000 ± 0.022

0.000 ± 0.027

0.012 ± 0.016

0.000 ± 0.068

0.008 ± 0.079

0.020 ± 0.031

0.008 ± 0.027

0.010 ± 0.096

0.004 ± 0.022 0.012 ± 0.035

WSOC

Neutral compounds

1.593 ± 0.362

0.274 ± 0.200

0.135 ± 0.085

0.252 ± 0.251

0.243 ± 0.173

0.071 ± 0.067

0.096 ± 0.074

0.526 ± 0.288

0.499 ± 0.614 0.231 ± 0.256

Mono-/di- carboxylic acids

0.612 ± 0.544

0.030 ± 0.314

0.072 ± 0.144

0.000 ± 0.378

0.025 ± 0.271

0.005 ± 0.106

0.021 ± 0.118

0.000 ± 0.407

0.148 ± 0.261 0.009 ± 0.146

Polycarboxylic acids (including HULIS)

0.000 ± 0.674

0.000 ± 0.490

0.053 ± 0.209

0.375 ± 0.652

0.312 ± 0.441

0.014 ± 0.169

0.079 ± 0.186

0.000 ± 0.678

0.148 ± 0.233 0.031 ± 0.241

Sum of speciated WSOC

2.205 ± 0.941

0.303 ± 0.616

0.259 ± 0.268

0.627 ± 0.795

0.581 ± 0.546

0.090 ± 0.211

0.195 ± 0.232

0.526 ± 0.842

0.795 ± 0.805 0.270 ± 0.299

Total WSOC

3.199 ± 0.786

3.567 ± 0.632

0.266 ± 0.210

1.276 ± 0.663

0.562 ± 0.434

1.201 ± 0.245

1.143 ± 0.233

0.610 ± 0.685

1.774 ± 1.519 0.984 ± 0.326

Page 118: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-13

Figure 5-3. Averaged PM2.5 source profiles from the two CAT 797B mining trucks: the height of each bar indicates the average fractional abundance for the indicated chemical (normalized to PM2.5 mass concentration), while the dot shows the larger of standard deviation and uncertainty of average of multiple runs.

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+

Mg++

Ca++

OCEC

Al

SiP

S

Cl

K

Ca

Sc

Ti

Fe

Cu

Zn

Ga

Sr

ZrNb

Mo

Ag

Sn

Sb Ba

La

Ce

SmEu

Ir

Au PbUr

0.001

0.01

0.1

1

10

100C

hem

ical

Ab

un

dan

ce (

%)

Chemical Species

CAT 797B-1

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+

Mg++

K+

Ca++

OCEC

Si

P

SCl

K

Ca

Sc

Ti

Fe Cu

Zn

Ga

SrZr Nb

Mo

Ag

Sn

Sb

Ba

La Sm

Eu

Au

Ur

0.001

0.01

0.1

1

10

100

Ch

emic

al A

bu

nd

ance

(%

)

Chemical Species

CAT 797B-2

Page 119: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-14

Figure 5-4. PM2.5 source profiles for CAT 797B-1 and CAT 797B-2.

Figure 5-5. Abundance of carbon fractions (percentage of PM2.5).

OC21%

EC67%

Elements1%

Soluble ions2%

Unidentified9%

CAT 797B-1

OC36%

EC49%

Elements2%

Soluble ions4%

Unidentified9%

CAT 797B-2

0

10

20

30

40

50

60

70

OC1 OC2 OC3 OC4 EC1 EC2 EC3

Ab

un

dan

ce t

o P

M2.

5%

Carbon Fractions

CAT 797B-1

CAT 797B-2

Watson 1994

Page 120: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-15

Phoenix study (Watson et al., 1994), 67–74% for heavy duty diesel vehicles during NFRAQS (Watson et al., 1998), 60–96% for on-road diesel vehicles in the Gas/Diesel Split Study (Fujita et al., 2006; Fujita et al., 2007a; Fujita et al., 2007b), and 69–93% for military generators and vehicles in the SERDP study (Watson et al., 2008b). These data demonstrate that carbon abundances, especially the EC2 can serve as a source marker for diesel emissions. On average, the low temperature OC1 fraction (140 °C in 100% helium atmosphere) for CAT 797B-1 was only 37% of that for CAT 797B-2, while the EC2 fraction for CAT 797B-1 was twice of that for CAT 797B-2. The differences in engine, fuel, and operation pattern must have contributed to these differences.

Sample A1 had twofold higher OC1 abundances (40% in Run ID A1 compared to 2–18% in other runs), and unusually low EC2 (15% in Run ID A1 compared to 33–69% in other runs) abundances. The OC to EC ratio was 1.5 ± 0.3 in sample A1 as compared to 0.2–0.6 for other runs. Sample A1 had the highest EFs for CO, NOx, particle number, PM2.5, and BC among all runs (Table 4-2). This sample was the first taken after the truck was serviced. The truck only carried one load during this run, and was idling most of the time.

Trace element abundances are low (typically < 0.1%) with elevated abundances for Ca (0.5 ± 0.2%), Zn (0.4 ± 0.3%), P (0.3 ± 0.2%), and Si (0.2 ± 0.2%). The most abundant soluble anion constituents in PM2.5 are PO4

≡ (0.95 ± 0.84%), NO3- (0.83 ± 0.57%), and SO4

= (0.30 ± 0.11%), while the most abundant cations are NH4

+ (0.27 ± 0.12%) and Ca++ (0.25 ± 0.11%). Abundances of the stable lead isotopes are plotted in Figure 5-6, along with their natural abundances. The abundance in the engine exhaust is very close to the natural abundance.

Table 5-6 lists abundances for 113 non-polar organic compounds. Alkanes are the most abundant category, accounting for 0.1–0.3% of PM2.5. Particle-associated PAHs are mostly two- to four-ring semivolatile PAHs (e.g. phenanthrene, anthracene, fluoranthene, pyrene, and 9-fluorenone), consistent with the findings of Fujita et al. (2007b). Hopanes and steranes are a result of the decomposition of sterols and other biomass from oil (Rogge et al., 1993). These compounds are present in lube oil but not in the fuel, and are used as markers for vehicle emissions (Cheung et al., 2010; Herrington et al., 2012; Kleeman et al., 2008; Liu et al., 2010b; Lowenthal et al., 1994; McDonald et al., 2004c; Schauer et al., 2008; Zielinska et al., 2008).

Figure 5-7 shows the abundances of hopanes and steranes. There are higher amounts of low molecular weight hopanes (e.g. αβ-norhopane) than the high molecular weight hopanes and steranes, in agreement with Ning et al. (2008). Although the absolute abundances for hopanes and steranes are 16 and 6 times higher, respectively, from CAT 797B-2 than CAT 797B-1, the relative abundances of major species are similar for both facilities. Schauer (2003) found that hopanes and steranes, along with higher EC content, could be used to distinguish diesel engine emissions from other carbonaceous combustion sources, such as gasoline vehicle, wood smoke, cooking etc. Source profiles for the 113 non-polar organic compounds, carbohydrates, organic acids, and WSOC normalized to OC are listed in Appendix D.

Source profiles for NH3, SO2, and H2S measured from backup filters are listed in Table 5-7. Note that NH3 and H2S are below or near MDLs.

Page 121: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-16

Figure 5-6. Abundance of stable lead isotopes in the engine exhaust vs. natural abundance.

0%

10%

20%

30%

40%

50%

60%

204Pb 206Pb 207Pb 208Pb

Isotopes of lead

Ab

un

da

nc

eCAT 797B Exhaust

Natural Abundance

Page 122: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-17

Table 5-6. Source profile of non-polar organic compounds from PM2.5 filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Data are expressed as a percentage of the Teflon filter mass concentration. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.

Compound MW Run ID CAT 797B-1

Average CAT 797B-2

Average S1 S2 S3 S4 S5 A1 A2 A3

PAHs

acenaphthylene 152 0.00000 ± 0.00066

0.00016 ± 0.00008

0.00000 ± 0.00020

0.00000 ± 0.00062

0.00000 ± 0.00042

0.00014 ± 0.00003

0.00049 ± 0.00005

0.00000 ± 0.00067

0.00003 ± 0.00020

0.00021 ± 0.00025

acenaphthene 154 0.00000 ± 0.00286

0.00000 ± 0.00208

0.00000 ± 0.00087

0.00000 ± 0.00268

0.00000 ± 0.00180

0.00000 ± 0.00071

0.00000 ± 0.00077

0.00000 ± 0.00288

0.00000 ± 0.00097

0.00000 ± 0.00102

fluorene 166 0.00006 ± 0.00016

0.00024 ± 0.00012

0.00029 ± 0.00005

0.00026 ± 0.00015

0.00031 ± 0.00010

0.00007 ± 0.00004

0.00015 ± 0.00005

0.00017 ± 0.00016

0.00023 ± 0.00010

0.00013 ± 0.00006

phenanthrene 178 0.00226 ± 0.00017

0.00754 ± 0.00054

0.00453 ± 0.00032

0.00803 ± 0.00059

0.00833 ± 0.00060

0.00256 ± 0.00018

0.00668 ± 0.00047

0.00654 ± 0.00048

0.00614 ± 0.00265

0.00526 ± 0.00234

anthracene 178 0.00352 ± 0.00026

0.00982 ± 0.00070

0.00126 ± 0.00009

0.00772 ± 0.00057

0.00846 ± 0.00061

0.00350 ± 0.00025

0.00500 ± 0.00035

0.00710 ± 0.00052

0.00616 ± 0.00361

0.00520 ± 0.00181

fluoranthene 202 0.00286 ± 0.00021

0.00333 ± 0.00024

0.00129 ± 0.00009

0.00211 ± 0.00016

0.00183 ± 0.00013

0.00314 ± 0.00022

0.00137 ± 0.00010

0.00255 ± 0.00019

0.00228 ± 0.00081

0.00235 ± 0.00090

pyrene 202 0.00374 ± 0.00027

0.00389 ± 0.00028

0.00116 ± 0.00008

0.00366 ± 0.00027

0.00321 ± 0.00023

0.00300 ± 0.00021

0.00161 ± 0.00011

0.00311 ± 0.00023

0.00313 ± 0.00113

0.00257 ± 0.00083

benzo[a]anthracene 228 0.00061 ± 0.00005

0.00036 ± 0.00003

0.00005 ± 0.00001

0.00036 ± 0.00004

0.00014 ± 0.00002

0.00260 ± 0.00018

0.00056 ± 0.00004

0.00017 ± 0.00003

0.00030 ± 0.00022

0.00111 ± 0.00131

chrysene 228 0.00061 ± 0.00005

0.00044 ± 0.00004

0.00037 ± 0.00003

0.00057 ± 0.00005

0.00035 ± 0.00003

0.00288 ± 0.00020

0.00075 ± 0.00005

0.00033 ± 0.00003

0.00047 ± 0.00012

0.00132 ± 0.00136

benzo[b]fluoranthene 252 0.00017 ± 0.00004

0.00016 ± 0.00003

0.00010 ± 0.00001

0.00026 ± 0.00004

0.00000 ± 0.00123

0.00154 ± 0.00011

0.00140 ± 0.00010

0.00039 ± 0.00005

0.00014 ± 0.00025

0.00111 ± 0.00063

benzo[j+k]fluoranthene 252 0.00044 ± 0.00004

0.00020 ± 0.00002

0.00012 ± 0.00001

0.00026 ± 0.00003

0.00000 ± 0.00153

0.00114 ± 0.00008

0.00154 ± 0.00011

0.00044 ± 0.00004

0.00020 ± 0.00031

0.00104 ± 0.00055

benzo[a]fluoranthene 252 0.00011 ± 0.00006

0.00020 ± 0.00005

0.00013 ± 0.00002

0.00005 ± 0.00006

0.00000 ± 0.00123

0.00023 ± 0.00002

0.00040 ± 0.00003

0.00011 ± 0.00006

0.00010 ± 0.00025

0.00025 ± 0.00014

benzo[e]pyrene 252 0.00022 ± 0.00003

0.00028 ± 0.00002

0.00008 ± 0.00001

0.00026 ± 0.00003

0.00000 ± 0.00074

0.00155 ± 0.00011

0.00205 ± 0.00015

0.00044 ± 0.00004

0.00017 ± 0.00015

0.00135 ± 0.00082

benzo[a]pyrene 252 0.00039 ± 0.00004

0.00008 ± 0.00003

0.00002 ± 0.00001

0.00015 ± 0.00003

0.00000 ± 0.00092

0.00164 ± 0.00012

0.00202 ± 0.00014

0.00055 ± 0.00005

0.00013 ± 0.00018

0.00141 ± 0.00076

perylene 252 0.00022 ± 0.00008

0.00028 ± 0.00006

0.00005 ± 0.00002

0.00015 ± 0.00007

0.00000 ± 0.00050

0.00081 ± 0.00006

0.00103 ± 0.00008

0.00028 ± 0.00008

0.00014 ± 0.00012

0.00071 ± 0.00039

indeno[1,2,3-cd]pyrene 276 0.00022 ± 0.00004

0.00032 ± 0.00004

0.00000 ± 0.00043

0.00000 ± 0.00132

0.00000 ± 0.00088

0.00014 ± 0.00001

0.00044 ± 0.00003

0.00028 ± 0.00005

0.00011 ± 0.00033

0.00029 ± 0.00015

dibenzo[a,h]anthracene 278 0.00000 ± 0.00182

0.00004 ± 0.00039

0.00000 ± 0.00056

0.00000 ± 0.00171

0.00000 ± 0.00114

0.00000 ± 0.00045

0.00010 ± 0.00014

0.00000 ± 0.00184

0.00001 ± 0.00057

0.00003 ± 0.00063

benzo[ghi]perylene 276 0.00033 ± 0.00006

0.00036 ± 0.00005

0.00000 ± 0.00068

0.00010 ± 0.00006

0.00000 ± 0.00141

0.00037 ± 0.00003

0.00112 ± 0.00008

0.00067 ± 0.00008

0.00016 ± 0.00031

0.00072 ± 0.00038

coronene 300 0.00000 ± 0.00341

0.00000 ± 0.00248

0.00000 ± 0.00104

0.00000 ± 0.00319

0.00000 ± 0.00214

0.00000 ± 0.00085

0.00000 ± 0.00092

0.00000 ± 0.00344

0.00000 ± 0.00116

0.00000 ± 0.00122

dibenzo[a,e]pyrene 302 0.00000 ± 0.00908

0.00000 ± 0.00662

0.00000 ± 0.00277

0.00000 ± 0.00850

0.00000 ± 0.00570

0.00000 ± 0.00226

0.00146 ± 0.00011

0.00000 ± 0.00916

0.00000 ± 0.00309

0.00049 ± 0.00314

Page 123: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-18

Table 5-6. Continued.

Compound MW Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

PAHs

acenaphthylene 152 0.00000 ± 0.00066

0.00016 ± 0.00008

0.00000 ± 0.00020

0.00000 ± 0.00062

0.00000 ± 0.00042

0.00014 ± 0.00003

0.00049 ± 0.00005

0.00000 ± 0.00067

0.00003 ± 0.00020

0.00021 ± 0.00025

acenaphthene 154 0.00000 ± 0.00286

0.00000 ± 0.00208

0.00000 ± 0.00087

0.00000 ± 0.00268

0.00000 ± 0.00180

0.00000 ± 0.00071

0.00000 ± 0.00077

0.00000 ± 0.00288

0.00000 ± 0.00097

0.00000 ± 0.00102

fluorene 166 0.00006 ± 0.00016

0.00024 ± 0.00012

0.00029 ± 0.00005

0.00026 ± 0.00015

0.00031 ± 0.00010

0.00007 ± 0.00004

0.00015 ± 0.00005

0.00017 ± 0.00016

0.00023 ± 0.00010

0.00013 ± 0.00006

phenanthrene 178 0.00226 ± 0.00017

0.00754 ± 0.00054

0.00453 ± 0.00032

0.00803 ± 0.00059

0.00833 ± 0.00060

0.00256 ± 0.00018

0.00668 ± 0.00047

0.00654 ± 0.00048

0.00614 ± 0.00265

0.00526 ± 0.00234

anthracene 178 0.00352 ± 0.00026

0.00982 ± 0.00070

0.00126 ± 0.00009

0.00772 ± 0.00057

0.00846 ± 0.00061

0.00350 ± 0.00025

0.00500 ± 0.00035

0.00710 ± 0.00052

0.00616 ± 0.00361

0.00520 ± 0.00181

fluoranthene 202 0.00286 ± 0.00021

0.00333 ± 0.00024

0.00129 ± 0.00009

0.00211 ± 0.00016

0.00183 ± 0.00013

0.00314 ± 0.00022

0.00137 ± 0.00010

0.00255 ± 0.00019

0.00228 ± 0.00081

0.00235 ± 0.00090

pyrene 202 0.00374 ± 0.00027

0.00389 ± 0.00028

0.00116 ± 0.00008

0.00366 ± 0.00027

0.00321 ± 0.00023

0.00300 ± 0.00021

0.00161 ± 0.00011

0.00311 ± 0.00023

0.00313 ± 0.00113

0.00257 ± 0.00083

benzo[a]anthracene 228 0.00061 ± 0.00005

0.00036 ± 0.00003

0.00005 ± 0.00001

0.00036 ± 0.00004

0.00014 ± 0.00002

0.00260 ± 0.00018

0.00056 ± 0.00004

0.00017 ± 0.00003

0.00030 ± 0.00022

0.00111 ± 0.00131

chrysene 228 0.00061 ± 0.00005

0.00044 ± 0.00004

0.00037 ± 0.00003

0.00057 ± 0.00005

0.00035 ± 0.00003

0.00288 ± 0.00020

0.00075 ± 0.00005

0.00033 ± 0.00003

0.00047 ± 0.00012

0.00132 ± 0.00136

benzo[b]fluoranthene 252 0.00017 ± 0.00004

0.00016 ± 0.00003

0.00010 ± 0.00001

0.00026 ± 0.00004

0.00000 ± 0.00123

0.00154 ± 0.00011

0.00140 ± 0.00010

0.00039 ± 0.00005

0.00014 ± 0.00025

0.00111 ± 0.00063

benzo[j+k]fluoranthene 252 0.00044 ± 0.00004

0.00020 ± 0.00002

0.00012 ± 0.00001

0.00026 ± 0.00003

0.00000 ± 0.00153

0.00114 ± 0.00008

0.00154 ± 0.00011

0.00044 ± 0.00004

0.00020 ± 0.00031

0.00104 ± 0.00055

benzo[a]fluoranthene 252 0.00011 ± 0.00006

0.00020 ± 0.00005

0.00013 ± 0.00002

0.00005 ± 0.00006

0.00000 ± 0.00123

0.00023 ± 0.00002

0.00040 ± 0.00003

0.00011 ± 0.00006

0.00010 ± 0.00025

0.00025 ± 0.00014

benzo[e]pyrene 252 0.00022 ± 0.00003

0.00028 ± 0.00002

0.00008 ± 0.00001

0.00026 ± 0.00003

0.00000 ± 0.00074

0.00155 ± 0.00011

0.00205 ± 0.00015

0.00044 ± 0.00004

0.00017 ± 0.00015

0.00135 ± 0.00082

benzo[a]pyrene 252 0.00039 ± 0.00004

0.00008 ± 0.00003

0.00002 ± 0.00001

0.00015 ± 0.00003

0.00000 ± 0.00092

0.00164 ± 0.00012

0.00202 ± 0.00014

0.00055 ± 0.00005

0.00013 ± 0.00018

0.00141 ± 0.00076

perylene 252 0.00022 ± 0.00008

0.00028 ± 0.00006

0.00005 ± 0.00002

0.00015 ± 0.00007

0.00000 ± 0.00050

0.00081 ± 0.00006

0.00103 ± 0.00008

0.00028 ± 0.00008

0.00014 ± 0.00012

0.00071 ± 0.00039

indeno[1,2,3-cd]pyrene 276 0.00022 ± 0.00004

0.00032 ± 0.00004

0.00000 ± 0.00043

0.00000 ± 0.00132

0.00000 ± 0.00088

0.00014 ± 0.00001

0.00044 ± 0.00003

0.00028 ± 0.00005

0.00011 ± 0.00033

0.00029 ± 0.00015

dibenzo[a,h]anthracene 278 0.00000 ± 0.00182

0.00004 ± 0.00039

0.00000 ± 0.00056

0.00000 ± 0.00171

0.00000 ± 0.00114

0.00000 ± 0.00045

0.00010 ± 0.00014

0.00000 ± 0.00184

0.00001 ± 0.00057

0.00003 ± 0.00063

benzo[ghi]perylene 276 0.00033 ± 0.00006

0.00036 ± 0.00005

0.00000 ± 0.00068

0.00010 ± 0.00006

0.00000 ± 0.00141

0.00037 ± 0.00003

0.00112 ± 0.00008

0.00067 ± 0.00008

0.00016 ± 0.00031

0.00072 ± 0.00038

coronene 300 0.00000 ± 0.00341

0.00000 ± 0.00248

0.00000 ± 0.00104

0.00000 ± 0.00319

0.00000 ± 0.00214

0.00000 ± 0.00085

0.00000 ± 0.00092

0.00000 ± 0.00344

0.00000 ± 0.00116

0.00000 ± 0.00122

dibenzo[a,e]pyrene 302 0.00000 ± 0.00908

0.00000 ± 0.00662

0.00000 ± 0.00277

0.00000 ± 0.00850

0.00000 ± 0.00570

0.00000 ± 0.00226

0.00146 ± 0.00011

0.00000 ± 0.00916

0.00000 ± 0.00309

0.00049 ± 0.00314

Page 124: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-19

Table 5-6. Continued.

Compound MW Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

9-fluorenone 180 0.00154 ± 0.00013

0.00425 ± 0.00031

0.00275 ± 0.00020

0.00299 ± 0.00023

0.00280 ± 0.00020

0.00099 ± 0.00007

0.00327 ± 0.00023

0.00405 ± 0.00030

0.00287 ± 0.00096

0.00277 ± 0.00159

dibenzothiophene 184 0.00011 ± 0.00001

0.00032 ± 0.00002

0.00025 ± 0.00002

0.00026 ± 0.00002

0.00031 ± 0.00002

0.00004 ± 0.00000

0.00016 ± 0.00001

0.00022 ± 0.00002

0.00025 ± 0.00008

0.00014 ± 0.00009

1 methyl phenanthrene 192 0.00127 ± 0.00010

0.00269 ± 0.00019

0.00191 ± 0.00014

0.00360 ± 0.00026

0.00380 ± 0.00027

0.00071 ± 0.00005

0.00135 ± 0.00010

0.00200 ± 0.00015

0.00265 ± 0.00108

0.00135 ± 0.00064

2 methyl phenanthrene 192 0.00050 ± 0.00014

0.00120 ± 0.00013

0.00081 ± 0.00007

0.00144 ± 0.00017

0.00142 ± 0.00013

0.00033 ± 0.00004

0.00069 ± 0.00006

0.00094 ± 0.00016

0.00107 ± 0.00041

0.00066 ± 0.00031

3,6 dimethyl phenanthrene 206 0.00000 ± 0.00112

0.00000 ± 0.00081

0.00000 ± 0.00034

0.00088 ± 0.00010

0.00000 ± 0.00070

0.00025 ± 0.00003

0.00191 ± 0.00014

0.00116 ± 0.00012

0.00018 ± 0.00039

0.00111 ± 0.00083

methylfluoranthene 216 0.00022 ± 0.00011

0.00044 ± 0.00008

0.00076 ± 0.00006

0.00041 ± 0.00010

0.00000 ± 0.00091

0.00095 ± 0.00007

0.00069 ± 0.00006

0.00055 ± 0.00011

0.00037 ± 0.00028

0.00073 ± 0.00020

retene 219 0.00011 ± 0.00012

0.00052 ± 0.00009

0.00106 ± 0.00008

0.00036 ± 0.00011

0.00069 ± 0.00009

0.00074 ± 0.00006

0.00194 ± 0.00014

0.00050 ± 0.00012

0.00055 ± 0.00036

0.00106 ± 0.00077

benzo(ghi)fluoranthene 226 0.00083 ± 0.00007

0.00096 ± 0.00007

0.00070 ± 0.00005

0.00082 ± 0.00007

0.00062 ± 0.00005

0.00355 ± 0.00025

0.00109 ± 0.00008

0.00055 ± 0.00006

0.00079 ± 0.00013

0.00173 ± 0.00160

benzo(c)phenanthrene 228 0.00028 ± 0.00005

0.00028 ± 0.00004

0.00018 ± 0.00002

0.00015 ± 0.00005

0.00007 ± 0.00003

0.00148 ± 0.00011

0.00058 ± 0.00004

0.00017 ± 0.00005

0.00019 ± 0.00009

0.00074 ± 0.00067

benzo(b)naphtho[1,2-d]thiophene

234 0.00000 ± 0.00332

0.00016 ± 0.00005

0.00034 ± 0.00003

0.00000 ± 0.00311

0.00000 ± 0.00209

0.00000 ± 0.00083

0.00001 ± 0.00002

0.00006 ± 0.00007

0.00010 ± 0.00100

0.00002 ± 0.00028

cyclopenta[cd]pyrene 226 0.00231 ± 0.00030

0.00521 ± 0.00041

0.00324 ± 0.00024

0.00000 ± 0.00111

0.00000 ± 0.00074

0.00435 ± 0.00031

0.00046 ± 0.00007

0.00000 ± 0.00119

0.00215 ± 0.00223

0.00160 ± 0.00239

benz[a]anthracene-7,12-dione

258 0.00000 ± 0.00324

0.00000 ± 0.00236

0.00000 ± 0.00099

0.00000 ± 0.00304

0.00000 ± 0.00204

0.00003 ± 0.00003

0.00016 ± 0.00004

0.00000 ± 0.00327

0.00000 ± 0.00110

0.00006 ± 0.00109

methylchrysene 242 0.00000 ± 0.00114

0.00000 ± 0.00083

0.00000 ± 0.00035

0.00000 ± 0.00107

0.00000 ± 0.00072

0.00018 ± 0.00007

0.00007 ± 0.00007

0.00000 ± 0.00115

0.00000 ± 0.00039

0.00008 ± 0.00038

benzo(b)chrysene 278 0.00000 ± 0.00221

0.00008 ± 0.00010

0.00000 ± 0.00067

0.00000 ± 0.00207

0.00000 ± 0.00139

0.00000 ± 0.00055

0.00019 ± 0.00004

0.00000 ± 0.00222

0.00002 ± 0.00068

0.00006 ± 0.00076

picene 278 0.00000 ± 0.00294

0.00000 ± 0.00214

0.00000 ± 0.00090

0.00000 ± 0.00276

0.00000 ± 0.00185

0.00000 ± 0.00073

0.00024 ± 0.00004

0.00000 ± 0.00297

0.00000 ± 0.00100

0.00008 ± 0.00102

anthanthrene 276 0.00000 ± 0.00217

0.00000 ± 0.00158

0.00000 ± 0.00066

0.00000 ± 0.00203

0.00000 ± 0.00136

0.00000 ± 0.00054

0.00000 ± 0.00058

0.00000 ± 0.00219

0.00000 ± 0.00074

0.00000 ± 0.00078

Alkane/Alkene/Phthalate

n-alkane

n-pentadecane (n-C15) 212 0.00061 ± 0.00006

0.00116 ± 0.00009

0.00186 ± 0.00013

0.00257 ± 0.00019

0.00266 ± 0.00019

0.00048 ± 0.00004

0.00096 ± 0.00007

0.00189 ± 0.00014

0.00177 ± 0.00089

0.00111 ± 0.00071

n-hexadecane (n-C16) 226 0.00154 ± 0.00012

0.00120 ± 0.00009

0.00169 ± 0.00012

0.00474 ± 0.00035

0.00276 ± 0.00020

0.00115 ± 0.00008

0.00166 ± 0.00012

0.00349 ± 0.00026

0.00239 ± 0.00144

0.00210 ± 0.00123

n-heptadecane (n-C17) 240 0.00160 ± 0.00013

0.00140 ± 0.00011

0.00183 ± 0.00013

0.00546 ± 0.00040

0.00328 ± 0.00024

0.00365 ± 0.00026

0.00395 ± 0.00028

0.00444 ± 0.00033

0.00271 ± 0.00170

0.00401 ± 0.00040

n-octadecane (n-C18) 254 0.00165 ± 0.00012

0.00225 ± 0.00016

0.00235 ± 0.00017

0.00515 ± 0.00038

0.00411 ± 0.00030

0.00942 ± 0.00067

0.00918 ± 0.00065

0.00449 ± 0.00033

0.00310 ± 0.00147

0.00770 ± 0.00278

n-nonadecane (n-C19) 268 0.00264 ± 0.00020

0.00421 ± 0.00030

0.00443 ± 0.00031

0.01045 ± 0.00077

0.00864 ± 0.00062

0.02279 ± 0.00162

0.02015 ± 0.00143

0.00815 ± 0.00060

0.00607 ± 0.00331

0.01703 ± 0.00780

Page 125: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-20

Table 5-6. Continued.

Compound MW Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

n-icosane (n-C20) 282 0.00281 ± 0.00021

0.00441 ± 0.00032

0.00493 ± 0.00035

0.00875 ± 0.00064

0.00712 ± 0.00051

0.02972 ± 0.00211

0.02032 ± 0.00144

0.00871 ± 0.00064

0.00560 ± 0.00234

0.01958 ± 0.01052

n-heneicosane (n-C21) 296 0.00479 ± 0.00035

0.00629 ± 0.00045

0.00522 ± 0.00037

0.01076 ± 0.00079

0.00840 ± 0.00060

0.03272 ± 0.00232

0.02217 ± 0.00157

0.01459 ± 0.00107

0.00709 ± 0.00248

0.02316 ± 0.00911

n-docosane (n-C22) 310 0.00517 ± 0.00038

0.00429 ± 0.00031

0.00352 ± 0.00025

0.00984 ± 0.00072

0.00656 ± 0.00047

0.02410 ± 0.00171

0.01512 ± 0.00107

0.01231 ± 0.00090

0.00588 ± 0.00248

0.01718 ± 0.00616

n-tricosane (n-C23) 324 0.01034 ± 0.00075

0.00786 ± 0.00056

0.00344 ± 0.00024

0.00814 ± 0.00060

0.00484 ± 0.00035

0.01320 ± 0.00094

0.00132 ± 0.00009

0.01215 ± 0.00089

0.00692 ± 0.00276

0.00889 ± 0.00658

n-tetracosane (n-C24) 338 0.02058 ± 0.00149

0.01151 ± 0.00082

0.00475 ± 0.00034

0.01035 ± 0.00076

0.00525 ± 0.00038

0.01882 ± 0.00133

0.00061 ± 0.00004

0.01791 ± 0.00131

0.01049 ± 0.00639

0.01245 ± 0.01026

n-pentacosane (n-C25) 352 0.02773 ± 0.00201

0.01291 ± 0.00092

0.00639 ± 0.00045

0.01282 ± 0.00094

0.00843 ± 0.00061

0.02245 ± 0.00159

0.00330 ± 0.00023

0.02535 ± 0.00186

0.01366 ± 0.00836

0.01703 ± 0.01198

n-hexacosane (n-C26) 366 0.02256 ± 0.00163

0.01046 ± 0.00075

0.00490 ± 0.00035

0.01112 ± 0.00081

0.00739 ± 0.00053

0.02703 ± 0.00192

0.00358 ± 0.00025

0.02185 ± 0.00160

0.01129 ± 0.00678

0.01749 ± 0.01232

n-heptacosane (n-C27) 380 0.01887 ± 0.00137

0.00525 ± 0.00038

0.00376 ± 0.00027

0.00721 ± 0.00053

0.00487 ± 0.00035

0.02677 ± 0.00190

0.00649 ± 0.00046

0.01287 ± 0.00094

0.00799 ± 0.00621

0.01538 ± 0.01037

n-octacosane (n-C28) 394 0.03544 ± 0.00256

0.01074 ± 0.00077

0.00292 ± 0.00021

0.01195 ± 0.00087

0.00453 ± 0.00033

0.01480 ± 0.00105

0.00056 ± 0.00004

0.01642 ± 0.00120

0.01311 ± 0.01307

0.01059 ± 0.00873

n-nonacosane (n-C29) 408 0.02427 ± 0.00176

0.00818 ± 0.00059

0.00371 ± 0.00026

0.00870 ± 0.00064

0.00601 ± 0.00043

0.00598 ± 0.00042

0.00352 ± 0.00025

0.01359 ± 0.00100

0.01017 ± 0.00812

0.00769 ± 0.00525

n-triacontane (n-C30) 422 0.02025 ± 0.00147

0.00674 ± 0.00048

0.00240 ± 0.00017

0.00808 ± 0.00059

0.00352 ± 0.00025

0.00800 ± 0.00057

0.01168 ± 0.00083

0.01120 ± 0.00082

0.00820 ± 0.00712

0.01029 ± 0.00200

n-hentriacotane (n-C31) 436 0.01541 ± 0.00112

0.00481 ± 0.00035

0.00101 ± 0.00007

0.00463 ± 0.00034

0.00249 ± 0.00018

0.01016 ± 0.00072

0.00186 ± 0.00013

0.00776 ± 0.00057

0.00567 ± 0.00567

0.00659 ± 0.00427

n-dotriacontane (n-C32) 450 0.01084 ± 0.00079

0.00405 ± 0.00029

0.00065 ± 0.00005

0.00330 ± 0.00025

0.00200 ± 0.00015

0.00000 ± 0.00061

0.00044 ± 0.00004

0.00582 ± 0.00043

0.00417 ± 0.00395

0.00209 ± 0.00324

n-tritriactotane (n-C33) 464 0.01799 ± 0.00130

0.00549 ± 0.00040

0.00000 ± 0.00059

0.00520 ± 0.00038

0.00131 ± 0.00010

0.00000 ± 0.00048

0.00291 ± 0.00021

0.00338 ± 0.00025

0.00600 ± 0.00712

0.00210 ± 0.00183

n-tetratriactoane (n-C34) 478 0.01750 ± 0.00127

0.00746 ± 0.00053

0.00000 ± 0.00104

0.00489 ± 0.00036

0.00000 ± 0.00213

0.00000 ± 0.00085

0.00000 ± 0.00091

0.00538 ± 0.00040

0.00597 ± 0.00720

0.00179 ± 0.00311

n-pentatriacontane (n-C35)

492 0.03037 ± 0.00220

0.01199 ± 0.00086

0.00000 ± 0.00192

0.00494 ± 0.00036

0.00000 ± 0.00395

0.00000 ± 0.00157

0.00000 ± 0.00169

0.00810 ± 0.00059

0.00946 ± 0.01268

0.00270 ± 0.00468

n-hexatriacontane (n-C36)

506 0.00710 ± 0.00055

0.00000 ± 0.00328

0.00000 ± 0.00137

0.00000 ± 0.00421

0.00000 ± 0.00283

0.00000 ± 0.00112

0.00000 ± 0.00121

0.00316 ± 0.00031

0.00142 ± 0.00317

0.00105 ± 0.00183

n-heptatriacontane (n-C37)

521 0.01656 ± 0.00122

0.00000 ± 0.00502

0.00000 ± 0.00210

0.00000 ± 0.00645

0.00000 ± 0.00432

0.00000 ± 0.00172

0.00000 ± 0.00185

0.00976 ± 0.00075

0.00331 ± 0.00741

0.00325 ± 0.00564

n-octatriacontane (n-C38) 535 0.00000 ± 0.00748

0.00000 ± 0.00545

0.00000 ± 0.00228

0.00000 ± 0.00700

0.00000 ± 0.00470

0.00000 ± 0.00186

0.00000 ± 0.00201

0.00000 ± 0.00754

0.00000 ± 0.00255

0.00000 ± 0.00268

n-nonatriacontane (n-C39) 549 0.00000 ± 0.01133

0.00000 ± 0.00825

0.00000 ± 0.00345

0.00000 ± 0.01060

0.00000 ± 0.00711

0.00000 ± 0.00282

0.00000 ± 0.00304

0.00000 ± 0.01142

0.00000 ± 0.00385

0.00000 ± 0.00405

n-tetracontane (n-C40) 563 0.00000 ± 0.02751

0.00000 ± 0.02005

0.00000 ± 0.00839

0.00000 ± 0.02575

0.00000 ± 0.01727

0.00000 ± 0.00685

0.00000 ± 0.00739

0.00000 ± 0.02773

0.00000 ± 0.00936

0.00000 ± 0.00984

iso/anteiso-alkane

iso-nonacosane (iso-C29) 408 0.00319 ± 0.00233 ± 0.00107 ± 0.00098 ± 0.00114 ± 0.00620 ± 0.00371 ± 0.00166 ± 0.00174 ± 0.00386 ±

Page 126: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-21

Table 5-6. Continued.

Compound MW Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

0.00024 0.00017 0.00008 0.00009 0.00009 0.00044 0.00026 0.00014 0.00098 0.00227

anteiso-nonacosane (anteiso-C29)

408 0.00341 ± 0.00025

0.00220 ± 0.00016

0.00131 ± 0.00009

0.00185 ± 0.00014

0.00104 ± 0.00008

0.00603 ± 0.00043

0.00871 ± 0.00062

0.00394 ± 0.00029

0.00196 ± 0.00093

0.00622 ± 0.00239

iso-triacontane (iso-C30) 422 0.00303 ± 0.00022

0.00216 ± 0.00016

0.00050 ± 0.00004

0.00170 ± 0.00013

0.00117 ± 0.00009

0.00585 ± 0.00041

0.00470 ± 0.00033

0.00255 ± 0.00019

0.00171 ± 0.00096

0.00437 ± 0.00168

anteiso-triacontane (anteiso-C30)

422 0.00534 ± 0.00039

0.00249 ± 0.00018

0.00149 ± 0.00011

0.00221 ± 0.00016

0.00159 ± 0.00011

0.00310 ± 0.00022

0.00683 ± 0.00048

0.00460 ± 0.00034

0.00262 ± 0.00157

0.00484 ± 0.00188

iso-hentriacotane (iso-C31)

436 0.00303 ± 0.00023

0.00253 ± 0.00019

0.00032 ± 0.00003

0.00160 ± 0.00013

0.00090 ± 0.00007

0.00318 ± 0.00023

0.00241 ± 0.00017

0.00122 ± 0.00011

0.00167 ± 0.00112

0.00227 ± 0.00099

anteiso-hentriacotane (anteiso-C31)

436 0.00424 ± 0.00031

0.00277 ± 0.00020

0.00029 ± 0.00002

0.00139 ± 0.00011

0.00097 ± 0.00007

0.00511 ± 0.00036

0.00232 ± 0.00017

0.00189 ± 0.00014

0.00193 ± 0.00158

0.00311 ± 0.00175

iso-dotriacontane (iso-C32)

450 0.00385 ± 0.00028

0.00353 ± 0.00025

0.00042 ± 0.00003

0.00160 ± 0.00012

0.00097 ± 0.00007

0.00737 ± 0.00052

0.00773 ± 0.00055

0.00166 ± 0.00012

0.00207 ± 0.00154

0.00559 ± 0.00340

anteiso-dotriacontane (anteiso-C32)

450 0.00154 ± 0.00011

0.00192 ± 0.00014

0.00010 ± 0.00001

0.00180 ± 0.00013

0.00073 ± 0.00005

0.00243 ± 0.00017

0.00882 ± 0.00063

0.00100 ± 0.00007

0.00122 ± 0.00078

0.00408 ± 0.00417

iso-tritriactotane (iso-C33) 464 0.00292 ± 0.00022

0.00120 ± 0.00010

0.00022 ± 0.00002

0.00000 ± 0.00181

0.00017 ± 0.00004

0.00174 ± 0.00012

0.00022 ± 0.00002

0.00044 ± 0.00007

0.00090 ± 0.00122

0.00080 ± 0.00082

anteiso-tritriactotane (anteiso-C33)

464 0.00237 ± 0.00019

0.00056 ± 0.00007

0.00023 ± 0.00003

0.00000 ± 0.00181

0.00048 ± 0.00006

0.00211 ± 0.00015

0.00084 ± 0.00006

0.00083 ± 0.00009

0.00073 ± 0.00094

0.00126 ± 0.00074

hopane

22,29,30-trisnorneophopane (Ts)

370 0.00050 ± 0.00004

0.00044 ± 0.00004

0.00017 ± 0.00001

0.00036 ± 0.00003

0.00031 ± 0.00003

0.00552 ± 0.00039

0.00321 ± 0.00023

0.00222 ± 0.00016

0.00036 ± 0.00013

0.00365 ± 0.00170

22,29,30-trisnorphopane (Tm)

370 0.00017 ± 0.00007

0.00016 ± 0.00005

0.00008 ± 0.00002

0.00015 ± 0.00007

0.00010 ± 0.00004

0.00306 ± 0.00022

0.00031 ± 0.00003

0.00067 ± 0.00008

0.00013 ± 0.00004

0.00134 ± 0.00149

αβ-norhopane (C29αβ-hopane)

398 0.00099 ± 0.00008

0.00072 ± 0.00006

0.00030 ± 0.00002

0.00057 ± 0.00005

0.00052 ± 0.00004

0.01461 ± 0.00104

0.00754 ± 0.00053

0.00388 ± 0.00029

0.00062 ± 0.00026

0.00868 ± 0.00545

22,29,30-norhopane (29Ts)

398 0.00033 ± 0.00003

0.00016 ± 0.00001

0.00007 ± 0.00001

0.00031 ± 0.00003

0.00017 ± 0.00001

0.00067 ± 0.00005

0.00791 ± 0.00056

0.00078 ± 0.00006

0.00021 ± 0.00011

0.00312 ± 0.00415

αα- + βα-norhopane (C29αα- + βα -hopane)

398 0.00022 ± 0.00006

0.00008 ± 0.00004

0.00010 ± 0.00002

0.00031 ± 0.00006

0.00014 ± 0.00004

0.00323 ± 0.00023

0.00037 ± 0.00003

0.00078 ± 0.00008

0.00017 ± 0.00009

0.00146 ± 0.00155

αβ-hopane (C30αβ -hopane)

412 0.00077 ± 0.00006

0.00052 ± 0.00004

0.00020 ± 0.00002

0.00046 ± 0.00004

0.00028 ± 0.00002

0.01001 ± 0.00071

0.00009 ± 0.00001

0.00277 ± 0.00020

0.00045 ± 0.00022

0.00429 ± 0.00513

αα-hopane (30αα-hopane) 412 0.00011 ± 0.00007

0.00004 ± 0.00005

0.00002 ± 0.00002

0.00005 ± 0.00007

0.00007 ± 0.00005

0.00103 ± 0.00008

0.00027 ± 0.00003

0.00028 ± 0.00008

0.00006 ± 0.00003

0.00052 ± 0.00044

βα-hopane (C30βα -hopane)

412 0.00011 ± 0.00001

0.00012 ± 0.00001

0.00003 ± 0.00000

0.00010 ± 0.00001

0.00007 ± 0.00001

0.00066 ± 0.00005

0.00013 ± 0.00001

0.00033 ± 0.00003

0.00009 ± 0.00004

0.00037 ± 0.00026

αβS-homohopane (C31αβS-hopane)

426 0.00055 ± 0.00005

0.00036 ± 0.00003

0.00010 ± 0.00001

0.00036 ± 0.00004

0.00021 ± 0.00002

0.00565 ± 0.00040

0.00293 ± 0.00021

0.00172 ± 0.00013

0.00032 ± 0.00017

0.00343 ± 0.00201

αβR-homohopane (C31αβR-hopane)

426 0.00072 ± 0.00008

0.00044 ± 0.00005

0.00010 ± 0.00002

0.00031 ± 0.00006

0.00021 ± 0.00004

0.00755 ± 0.00054

0.00347 ± 0.00025

0.00172 ± 0.00014

0.00035 ± 0.00024

0.00425 ± 0.00299

αβS-bishomohopane (C32αβS-hopane)

440 0.00033 ± 0.00008

0.00024 ± 0.00006

0.00007 ± 0.00002

0.00000 ± 0.00029

0.00000 ± 0.00019

0.00336 ± 0.00024

0.00158 ± 0.00011

0.00089 ± 0.00010

0.00013 ± 0.00015

0.00194 ± 0.00127

αβR-bishomohopane (C32αβR-hopane)

440 0.00033 ± 0.00008

0.00024 ± 0.00006

0.00005 ± 0.00002

0.00000 ± 0.00033

0.00000 ± 0.00022

0.00281 ± 0.00020

0.00127 ± 0.00009

0.00067 ± 0.00009

0.00012 ± 0.00015

0.00158 ± 0.00111

Page 127: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-22

Table 5-6. Continued.

Compound MW Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

22S-trishomohopane (C33)

454 0.00028 ± 0.00005

0.00000 ± 0.00022

0.00000 ± 0.00009

0.00000 ± 0.00029

0.00000 ± 0.00019

0.00204 ± 0.00015

0.00095 ± 0.00007

0.00055 ± 0.00007

0.00006 ± 0.00012

0.00118 ± 0.00077

22R-trishomohopane (C33)

454 0.00039 ± 0.00004

0.00000 ± 0.00026

0.00000 ± 0.00011

0.00000 ± 0.00033

0.00000 ± 0.00022

0.00189 ± 0.00013

0.00069 ± 0.00005

0.00039 ± 0.00004

0.00008 ± 0.00017

0.00099 ± 0.00079

22S-tretrahomohopane (C34)

468 0.00000 ± 0.00031

0.00000 ± 0.00022

0.00000 ± 0.00009

0.00000 ± 0.00029

0.00000 ± 0.00019

0.00103 ± 0.00008

0.00047 ± 0.00004

0.00022 ± 0.00008

0.00000 ± 0.00010

0.00057 ± 0.00041

22R-tetrashomohopane (C34)

468 0.00000 ± 0.00036

0.00000 ± 0.00026

0.00000 ± 0.00011

0.00000 ± 0.00033

0.00000 ± 0.00022

0.00123 ± 0.00009

0.00031 ± 0.00003

0.00028 ± 0.00009

0.00000 ± 0.00012

0.00061 ± 0.00054

22S-pentashomohopane(C35)

482 0.00000 ± 0.00031

0.00000 ± 0.00022

0.00000 ± 0.00009

0.00000 ± 0.00029

0.00000 ± 0.00019

0.00182 ± 0.00013

0.00046 ± 0.00004

0.00028 ± 0.00009

0.00000 ± 0.00010

0.00085 ± 0.00085

22R-pentashomohopane(C35)

482 0.00000 ± 0.00036

0.00000 ± 0.00026

0.00000 ± 0.00011

0.00000 ± 0.00033

0.00000 ± 0.00022

0.00169 ± 0.00012

0.00025 ± 0.00003

0.00028 ± 0.00010

0.00000 ± 0.00012

0.00074 ± 0.00082

sterane

ααα 20S-Cholestane 372 0.00017 ± 0.00007

0.00012 ± 0.00005

0.00005 ± 0.00002

0.00000 ± 0.00069

0.00000 ± 0.00046

0.00095 ± 0.00007

0.00010 ± 0.00002

0.00083 ± 0.00009

0.00007 ± 0.00017

0.00063 ± 0.00046

αββ 20R-Cholestane 372 0.00028 ± 0.00019

0.00024 ± 0.00014

0.00007 ± 0.00006

0.00000 ± 0.00029

0.00000 ± 0.00020

0.00140 ± 0.00011

0.00015 ± 0.00005

0.00089 ± 0.00020

0.00012 ± 0.00013

0.00081 ± 0.00063

αββ 20s-Cholestane 372 0.00028 ± 0.00005

0.00020 ± 0.00004

0.00003 ± 0.00001

0.00000 ± 0.00034

0.00000 ± 0.00023

0.00191 ± 0.00014

0.00161 ± 0.00011

0.00061 ± 0.00006

0.00010 ± 0.00013

0.00138 ± 0.00068

ααα 20R-Cholestane 372 0.00017 ± 0.00011

0.00004 ± 0.00008

0.00002 ± 0.00003

0.00000 ± 0.00034

0.00000 ± 0.00023

0.00071 ± 0.00006

0.00000 ± 0.00010

0.00061 ± 0.00012

0.00004 ± 0.00009

0.00044 ± 0.00039

ααα 20S 24S-Methylcholestane

386 0.00017 ± 0.00006

0.00016 ± 0.00004

0.00007 ± 0.00002

0.00000 ± 0.00039

0.00000 ± 0.00026

0.00280 ± 0.00020

0.00220 ± 0.00016

0.00089 ± 0.00009

0.00008 ± 0.00010

0.00196 ± 0.00098

αββ 20R 24S-Methylcholestane

386 0.00028 ± 0.00019

0.00012 ± 0.00014

0.00007 ± 0.00006

0.00000 ± 0.00039

0.00000 ± 0.00026

0.00089 ± 0.00008

0.00040 ± 0.00006

0.00028 ± 0.00019

0.00009 ± 0.00011

0.00052 ± 0.00032

αββ 20S 24S-Methylcholestane

386 0.00011 ± 0.00019

0.00004 ± 0.00014

0.00005 ± 0.00006

0.00000 ± 0.00039

0.00000 ± 0.00026

0.00141 ± 0.00011

0.00064 ± 0.00007

0.00033 ± 0.00020

0.00004 ± 0.00011

0.00079 ± 0.00056

ααα 20R 24R-Methylcholestane

386 0.00000 ± 0.00049

0.00000 ± 0.00036

0.00000 ± 0.00015

0.00000 ± 0.00046

0.00000 ± 0.00031

0.00014 ± 0.00003

0.00007 ± 0.00003

0.00006 ± 0.00012

0.00000 ± 0.00017

0.00009 ± 0.00004

ααα 20S 24R/S-Ethylcholestane

386 0.00017 ± 0.00010

0.00012 ± 0.00008

0.00002 ± 0.00003

0.00000 ± 0.00038

0.00000 ± 0.00025

0.00075 ± 0.00006

0.00086 ± 0.00007

0.00033 ± 0.00011

0.00006 ± 0.00009

0.00065 ± 0.00028

αββ 20R 24R-Ethylcholestane

400 0.00000 ± 0.00033

0.00000 ± 0.00024

0.00000 ± 0.00010

0.00000 ± 0.00031

0.00000 ± 0.00021

0.00004 ± 0.00003

0.00001 ± 0.00004

0.00006 ± 0.00013

0.00000 ± 0.00011

0.00004 ± 0.00005

αββ 20S 24R-Ethylcholestane

400 0.00000 ± 0.00033

0.00000 ± 0.00024

0.00000 ± 0.00010

0.00000 ± 0.00031

0.00000 ± 0.00021

0.00010 ± 0.00003

0.00009 ± 0.00004

0.00000 ± 0.00033

0.00000 ± 0.00011

0.00006 ± 0.00011

ααα 20R 24R-Ethylcholestane

400 0.00000 ± 0.00086

0.00000 ± 0.00063

0.00000 ± 0.00026

0.00000 ± 0.00081

0.00000 ± 0.00054

0.00023 ± 0.00003

0.00006 ± 0.00003

0.00006 ± 0.00012

0.00000 ± 0.00029

0.00012 ± 0.00010

methyl-alkane

2-methylnonadecane 282 0.00039 ± 0.00005

0.00052 ± 0.00005

0.00040 ± 0.00003

0.00057 ± 0.00006

0.00059 ± 0.00005

0.00371 ± 0.00026

0.00223 ± 0.00016

0.00078 ± 0.00007

0.00049 ± 0.00009

0.00224 ± 0.00147

3-methylnonadecane 282 0.00022 ± 0.00009

0.00024 ± 0.00007

0.00018 ± 0.00003

0.00041 ± 0.00009

0.00045 ± 0.00006

0.00110 ± 0.00008

0.00393 ± 0.00028

0.00067 ± 0.00010

0.00030 ± 0.00012

0.00190 ± 0.00177

branched-alkane

Page 128: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-23

Table 5-6. Continued.

Compound MW Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

pristane 268 0.00044 ± 0.00006

0.00060 ± 0.00006

0.00082 ± 0.00006

0.00154 ± 0.00012

0.00124 ± 0.00009

0.00103 ± 0.00007

0.00269 ± 0.00019

0.00155 ± 0.00012

0.00093 ± 0.00046

0.00176 ± 0.00085

phytane 282 0.00072 ± 0.00006

0.00060 ± 0.00005

0.00055 ± 0.00004

0.00129 ± 0.00010

0.00086 ± 0.00006

0.00297 ± 0.00021

0.00168 ± 0.00012

0.00089 ± 0.00007

0.00080 ± 0.00030

0.00185 ± 0.00105

squalane 422 0.00116 ± 0.00018

0.00393 ± 0.00030

0.00049 ± 0.00006

0.00067 ± 0.00016

0.00010 ± 0.00010

0.00052 ± 0.00005

0.00395 ± 0.00028

0.00205 ± 0.00022

0.00127 ± 0.00153

0.00217 ± 0.00172

cycloalkane

octylcyclohexane 196 0.00017 ± 0.00010

0.00024 ± 0.00008

0.00005 ± 0.00003

0.00010 ± 0.00010

0.00035 ± 0.00007

0.00007 ± 0.00003

0.00004 ± 0.00003

0.00017 ± 0.00010

0.00018 ± 0.00012

0.00009 ± 0.00006

decylcyclohexane 224 0.00006 ± 0.00008

0.00028 ± 0.00006

0.00005 ± 0.00003

0.00072 ± 0.00009

0.00041 ± 0.00006

0.00021 ± 0.00002

0.00015 ± 0.00002

0.00022 ± 0.00008

0.00030 ± 0.00028

0.00019 ± 0.00004

tridecylcyclohexane 266 0.00017 ± 0.00010

0.00004 ± 0.00007

0.00017 ± 0.00003

0.00005 ± 0.00009

0.00024 ± 0.00006

0.00082 ± 0.00006

0.00103 ± 0.00008

0.00022 ± 0.00010

0.00013 ± 0.00009

0.00069 ± 0.00042

n-heptadecylcyclohexane 322 0.00044 ± 0.00008

0.00020 ± 0.00005

0.00008 ± 0.00002

0.00021 ± 0.00007

0.00021 ± 0.00005

0.00977 ± 0.00069

0.00708 ± 0.00050

0.00416 ± 0.00031

0.00023 ± 0.00013

0.00700 ± 0.00281

nonadecylcyclohexane 350 0.00088 ± 0.00007

0.00060 ± 0.00004

0.00025 ± 0.00002

0.00057 ± 0.00004

0.00035 ± 0.00003

0.00411 ± 0.00029

0.00053 ± 0.00004

0.00233 ± 0.00017

0.00053 ± 0.00025

0.00232 ± 0.00179

alkene

1-octadecene 252 0.00017 ± 0.00006

0.00040 ± 0.00005

0.00077 ± 0.00006

0.00082 ± 0.00008

0.00142 ± 0.00011

0.00079 ± 0.00006

0.00046 ± 0.00004

0.00128 ± 0.00011

0.00072 ± 0.00048

0.00084 ± 0.00041

Grand total

0.38456 ± 0.11426

0.21040 ± 0.03073

0.09267 ± 0.01408

0.21699 ± 0.03116

0.14397 ± 0.01386

0.45754 ± 0.20992

0.27925 ± 0.08696

0.32384 ± 0.03891

0.20972 ± 0.11028

0.35354 ± 0.09278

Page 129: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-24

Table 5-7. Source profile of NH3, SO2, and H2S measured from backup filters. Data are expressed as a percentage of the Teflon filter mass concentration.

Species Run ID CAT 797B-1

Average CAT 797B-2

Average Ratio: S/A

S1 S2 S3 S4 S5 A1 A2 A3

NH3 0.02 ± 1.03 0.02 ± 0.72 0.00 ± 0.35 0.00 ± 1.23 0.00 ± 0.86 0.00 ± 0.30 0.07 ± 0.34 0.00 ± 1.26 0.01 ± 0.49 0.02 ± 0.45 0.37

SO2 0.45 ± 0.30 0.44 ± 0.21 0.27 ± 0.10 0.68 ± 0.29 0.44 ± 0.19 0.16 ± 0.07 0.35 ± 0.08 3.66 ± 0.42 0.50 ± 0.13 1.39 ± 1.97 0.36

H2S 0.04 ± 0.15 0.03 ± 0.11 0.00 ± 0.05 0.00 ± 0.14 0.00 ± 0.09 0.00 ± 0.04 0.01 ± 0.04 0.00 ± 0.15 0.02 ± 0.06 0.00 ± 0.05 4.80

Page 130: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

5-25

Figure 5-7. Relative abundance (normalized to total hopanes or steranes at each facility) of hopanes and steranes on CAT 797B-1 and CAT 797B-2.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Site S Site A

Site

Ho

pan

es R

elat

ive

Ab

ud

ance

22R-pentashomohopane(C35)

22S-pentashomohopane(C35)

22R-tetrashomohopane (C34)

22S-tretrahomohopane (C34)

22R-trishomohopane (C33)

22S-trishomohopane (C33)

αβR-bishomohopane (C32αβR-hopane)

αβS-bishomohopane (C32αβS-hopane)

αβR-homohopane (C31αβR-hopane)

αβS-homohopane (C31αβS-hopane)

βα-hopane (C30βα -hopane)

αα-hopane (30αα-hopane)

αβ-hopane (C30αβ -hopane)

αα- + βα-norhopane (C29αα- + βα -hopane)

22,29,30-norhopane (29Ts)

αβ-norhopane (C29αβ-hopane)

22,29,30-trisnorphopane (Tm)

22,29,30-trisnorneophopane (Ts)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Site S Site A

Site

Ste

ran

e R

elat

ive

Ab

ud

ance

ααα 20R 24R-Ethylcholestane

αββ 20S 24R-Ethylcholestane

αββ 20R 24R-Ethylcholestane

ααα 20S 24R/S-Ethylcholestane

ααα 20R 24R-Methylcholestane

αββ 20S 24S-Methylcholestane

αββ 20R 24S-Methylcholestane

ααα 20S 24S-Methylcholestane

ααα 20R-Cholestane

αββ 20s-Cholestane

αββ 20R-Cholestane

ααα 20S-Cholestane

Page 131: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

6-1

6. Summary, Conclusion and Recommendations 6.1. Summary of Key Findings

An on-board portable emission measurement system was assembled and deployed to the AOSR to measure emissions from two Caterpillar 797B mining trucks in two facilities during September, 2009. Gases (CO, CO2, NO, NO2, and SO2), particle number, PM2.5 mass, and BC concentrations were measured in real time. Integrated canister samples were taken to quantify speciated VOCs and halocarbons. NH3, H2S, SO2, PM2.5 mass, light transmission (babs), elements, isotopes, ions, carbon fractions, total water-soluble organic carbon (WSOC) and its three classes, carbohydrates, organic acids, and speciated organic compounds were taken on gas- and particle-absorbing filters. The feasibility of sampling and analysis of diesel exhaust chemistry from large mining trucks was established. Fuel-based emission factors and chemical source profiles were derived from these measurements. The key findings are summarized as follows:

The NMHC EFs and source profiles were dominated by alkanes, cycloalkanes and alkenes, with EFs in the range of 103‒ 669 mg/kg fuel. Most NMHC species listed as MSATs by U.S. EPA had EFs > 1 mg/kg fuel. NMHC EFs were 40% higher from CAT 797B-2 than from CAT 797B-1. The benzene EF from CAT 797B-2 was about three times higher, while the n-heptane EF was ~14 times higher.

As expected CO2, CO and NOx were the major gaseous species emissions along with NMHC. EFs for NMHC, NOx, CO, and PM2.5 were less than the U.S. EPA Tier 1 limits. CO and PM2.5 were also below the Environment Canada and U.S. EPA Tier 2 limits. NMHC+NOx were within the Tier 1 limit, but they exceeded the Tier 2 limit. EFs for H2S and NH3 were low, usually less than detection limits.

Particle number EFs were in the range of 5.11014 ‒ 5.41015 particle/kg fuel, a similar level observed from broader diesel engine sampling.

The majority of the particles sampled were either OC or EC. TC accounted for 88.1±6.1% and 84.5±8.8% of the total PM2.5 from CAT 797B-1 and CAT 797B-2, respectively. OC contributed 21.1 ± 6.0% and 35.9 ± 16.4%, to PM2.5 mass from CAT 797B-1 and CAT 797B-2, respectively, while EC contributed 67.0±7.0% and 48.6±13.4%, respectively. High temperature EC2 is the most abundant carbon fraction.

Abundances for inorganic species, including water soluble inorganics and elemental components were much smaller. The profiles determined for particle composition were generally similar to those reported elsewhere in the literature, and were associated with fuel and lubrication oil properties (Ca, P, S, and Zn).

Identified non-polar particulate organic compounds were dominated by alkanes. Particle-associated PAHs are mostly two- to four- ring semi-volatile PAH. Hopanes and steranes are detected in appreciable amount. Most carbohydrates and organic acids were below detection limits. WSOC accounted for 8.1% and 2.9% of the OC from CAT 797B-1 and CAT 797B-2, respectively.

Fuel-based EFs varied with mining truck operations. EFs for particle number and NOx were elevated while idling. EFs for BC and PM2.5 were elevated during the lower engine load or downhill segments of operations.

Page 132: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

6-2

CO2 correlated to engine speed, load, and temperature, as well as with NO; CO correlated with BC and PM2.5.

Key PM2.5 components as markers for diesel exhaust from mining trucks were OC, EC, particularly EC2 from thermal analysis, the OC/EC ratio, some metals like Ca, P, S, and Zn, as well as hopanes and steranes.

This study quantified a variety of potentially toxic gases and particle components of interest for environmental protection such as benzene toluene xylene, particle-bound PAHs, and DPM. Exhaust components of ecological concern include the acid gases and trace metals. Species identified in the organic fraction of gases and particles have unclear toxicity to ecosystems.

Real-world emission measurement from mining trucks is a part of WBEA’s larger program to provide improved estimates for emissions database in the region. The real-world emission rates and chemical compositions of pollutants that can be used for multiple purposes that include: 1) improving emission inventories that allow implementing cost-effective and multi-pollutant control strategies; 2) modeling air quality transport and dispersion to estimate current and future ambient concentrations, deposition, and ecosystem effects; 3) verifying source contributions using chemical fingerprints of different emission sources; and 4) evaluating the effects of emission reduction measures.

Emission factors and diesel exhaust composition vary with operational parameters, such as speed, load, age, fuel composition and consumption, ambient air temperature and humidity. For example, vehicle deterioration-caused malfunctions such as retarded timing, fuel injector malfunctions, smoke limiting mechanism deterioration, clogged air filters, worn turbochargers, clogged intercoolers, engine wear, excessive oil consumption, and electronics may reduce or increase emissions. CO, NMHC, and PM2.5 are products of incomplete combustion, while NOx form from oxidation of nitrogen (N2) at high temperatures. Typically, lower ambient temperatures lead to lower combustion temperatures and less complete combustion, resulting in higher CO, NMHC, and PM emissions but lower NOx emissions. Lower ambient temperatures also favor the condensation of semi-volatile organic compounds onto PM2.5, resulting in higher PM emissions. Higher relative humidity can reduce the oxygen content in intake air and lower combustion temperatures, thereby reducing NOx emissions (Pekula et al., 2003; Yanowitz et al., 2000b). This study measured emissions from two trucks with specific wear stage and operation conditions during a short period of fall 2009. Additional measurements are needed to evaluate emissions change as a function of truck wear conditions, fuel, and ambient air temperature and humidity.

Page 133: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-3

7. References Abdul-Khalek, I.S.; Kittelson, D.B.; Brear, F. (2003). The influence of dilution conditions on diesel exhaust particle

size distribution measurements (SAE 982599). 11 March 999Society of Automotive Engineers: Warrendale, PA, pp. 1-9.

Abolhasani, S.; Frey, H.C.; Kim, K.; Rasdorf, W.; Lewis, P.; Pang, S.H. (2008). Real-world in-use activity, fuel use, and emissions for nonroad construction vehicles: A case study for excavators. J. Air Waste Manage. Assoc., 58(8):1033-1046.

Ajtay, D.; Weilenmann, M.; Onder, C. (2008). Application and quality assessment of an instantaneous vehicle emission model at fleet level. Environ. Mon. Assess., 13(3):393-399.

Arnold, F.; Pirjola, L.; Aufmhoff, H.; Schuck, T.; Lähde, T.; Hämeri, K. (2006). First gaseous sulfuric acid measurements in automobile exhaust: Implications for volatile nanoparticle formation. Atmos. Environ., 40(37):7097-7105.

Bachmann, J.D. (2007). Will the circle be unbroken: A history of the US national ambient air quality standards-2007 Critical Review. J. Air Waste Manage. Assoc., 57(6):652-697. http://pubs.awma.org/gsearch/journal/2007/6/10.3155-1047-3289.57.6.652.pdf.

Bai, S.; Chiu, Y.C.E.; Niemeier, D.A. (2007). A comparative analysis of using trip-based versus link-based traffic data for regional mobile source emissions estimation. Atmos. Environ., 41:7512-7523.

Ballesteros, R.; Hernandez, J.J.; Lyons, L.L. (2009). Determination of PAHs in diesel particulate matter using thermal extraction and solid phase micro-extraction. Atmos. Environ., 43(3):655-662.

Ban-Weiss, G.A.; Lunden, M.M.; Kirchstetter, T.W.; Harley, R.A. (2009). Measurement of black carbon and particle number emission factors from individual heavy-duty trucks. Environ. Sci. Technol., 43(5):1419-1424.

Ban-Weiss, G.A.; Lunden, M.M.; Kirchstetter, T.W.; Harley, R.A. (2010). Size-resolved particle number and volume emission factors for on-road gasoline and diesel motor vehicles. J. Aerosol Sci., 41(1):5-12.

Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Kean, A.J.; Grosjean, E.; Grosjean, D. (2008a). Carbonyl and nitrogen dioxide emissions from gasoline- and diesel-powered motor vehicles. Environ. Sci. Technol., 42(11):3944-3950.

Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; Kean, A.J.; Strawa, A.W.; Stevenson, E.D.; Kendall, G.R. (2008b). Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles. Atmos. Environ., 42(2):220-232.

Bar-Ilan, A.; Johnson, J.R.; DenBleyker, A.; Chan, L.M.; Yarwood, G.; Hitchcock, D.; Pinto, J.P. (2010). Potential ozone impacts of excess NO2 emissions from diesel particulate filters for on- and off-road diesel engines. J. Air Waste Manage. Assoc., 60(8):977-992.

Barber, P.W.; Moosmüller, H.; Keislar, R.E.; Kuhns, H.D.; Mazzoleni, C.; Watson, J.G. (2004). On-road measurement of automotive particle emissions by ultraviolet lidar and transmissometer: Theory. Meas. Sci. Technol., 15:2295-2302.

Barone, T.L.; Storey, J.M.E.; Domingo, N. (2010). An analysis of field-aged diesel particulate filter performance: Particle emissions before, during, and after regeneration. J. Air Waste Manage. Assoc., 60(8):968-976.

Bishop, G.A.; Stedman, D.H. (2008). A decade of on-road emissions measurements. Environ. Sci. Technol., 42(5):1651-1656.

Bishop, G.A.; Stadtmuller, R.; Stedman, D.H.; Ray, J.D. (2009). Portable emission measurements of Yellowstone Park snowcoaches and snowmobiles. J. Air Waste Manage. Assoc., 59(8):936-942.

Bishop, G.A.; Schuchmann, B.G.; Stedman, D.H.; Lawson, D.R. (2012). Multispecies remote sensing measurements of vehicle emissions on Sherman Way in Van Nuys, California. J. Air Waste Manage. Assoc., 62(10):1127-1133.

Borras, E.; Tortajada-Genaro, L.A.; Vazquez, M.; Zielinska, B. (2009). Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions. Atmos. Environ., 43(37):5944-5952.

Boughedaoui, M.; Kerbachi, R.; Joumard, R. (2008). On-board emission measurement of high-loaded light-duty vehicles in Algeria. J. Air Waste Manage. Assoc., 58:45-54.

Brandenberger, S.; Mohr, M.; Grob, K.; Neukomb, H.P. (2005). Contribution of unburned lubricating oil and diesel fuel to particulate emission from passenger cars. Atmos. Environ., 39(37):6985-6994.

Brown, J.E.; Clayton, M.J.; Harris, D.B.; King, F.G., Jr. (2000). Comparison of particle size distribution of heavy duty diesel exhaust using a dilution tailpipe sampler and an in-plume sampler during on-road operations. J. Air Waste Manage. Assoc., 50(8):1407-1416.

Page 134: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-4

Brunet, J.; Pauly, A.; Varenne, C.; Lauron, B. (2008). On-board phthalocyanine gas sensor microsystem dedicated to the monitoring of oxidizing gases level in passenger compartments. Sensors and Actuators B-Chemical, 130(2):908-916.

Burgard, D.A.; Provinsal, M.N. (2009). On-road, in-use gaseous emission measurements by remote sensing of school buses equipped with diesel oxidation catalysts and diesel particulate filters. J. Air Waste Manage. Assoc., 59(12):1468-1473.

Burgard, D.A.; Bishop, G.A.; Stedman, D.H. (2006a). Remote sensing of ammonia and sulfur dioxide from on-road light duty vehicles. Environ. Sci. Technol., 40(22):7018-7022.

Burgard, D.A.; Bishop, G.A.; Stedman, D.H.; Gessner, V.H.; Daeschlein, C. (2006b). Remote sensing of in-use heavy-duty diesel trucks. Environ. Sci. Technol., 40(22):6938-6942.

Burke, W.A.; Glover, N.J. (2000). Multiple Air Toxics Exposure Study in the South Coast Air Basin (MATES-II). for South Coast Air Quality Management District, Diamond Bar, CA.

Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 36(7):896-932.

Canagaratna, M.R.; Jayne, J.T.; Ghertner, D.A.; Herndon, S.; Shi, Q.; Jimenez, J.L.; Silva, P.J.; Williams, P.; Lanni, T.; Drewnick, F.; Demerjian, K.L.; Kolb, C.E.; Worsnop, D.R. (2004). Chase studies of particulate emissions from in-use New York City vehicles. Aerosol Sci. Technol., 38(6):555-573.

Capitan-Vallvey, L.F.; Palma, A.J. (2011). Recent developments in handheld and portable optosensingÇöA review. Anal. Chim. Acta., 696:27-46. http://www.sciencedirect.com/science/article/pii/S0003267011005277.

Caravaggio, G.A.; Charland, J.P.; MacDonald, P.; Graham, L. (2007). n-Alkane profiles of engine lubricating oil and particulate matter by molecular sieve extraction. Environ. Sci. Technol., 41(10):3697-3701.

CARB (2007). EMFAC2007, version 2.3. Calculating emission inventories for vehicles in California. prepared by California Air Resources Board, Sacramento, CA, http://www.arb.ca.gov/msei/onroad/latest_version.htm.

Casanova, J.; Fonseca, N. (2012). Environmental assessment of low speed policies for motor vehicle mobility in city centres. Global Nest Journal, 14(2):192-201.

Caterpillar Inc. (2003). Caterpillar 797B Mining Truck Product Brochure AEHQ5511. http://www.webcitation.org/5kqmQ4sYK.

Chan, T.L.; Ning, Z. (2005). On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong. Atmos. Environ., 39(36):6843-6856.

Chan, T.L.; Ning, Z.; Wang, J.S.; Cheung, C.S.; Leung, C.W.; Hung, W.T. (2007). Gaseous and particle emission factors from the selected on-road petrol/gasoline, diesel, and liquefied petroleum gas vehicles. Energy & Fuels, 21(5):2710-2718.

Chang, M.-C.O.; Chow, J.C.; Watson, J.G.; Hopke, P.K.; Yi, S.M.; England, G.C. (2004). Measurement of ultrafine particle size distributions from coal-, oil-, and gas-fired stationary combustion sources. J. Air Waste Manage. Assoc., 54(12):1494-1505. http://pubs.awma.org/gsearch/journal/2004/12/chang.PDF.

Chen, C.H.; Huang, C.; Jing, Q.G.; Wang, H.K.; Pan, H.S.; Li, L.; Zhao, J.; Dai, Y.; Huang, H.Y.; Schipper, L.; Streets, D.G. (2007a). On-road emission characteristics of heavy-duty diesel vehicles in Shanghai. Atmos. Environ., 41(26):5334-5344.

Chen, L.-W.A.; Chow, J.C.; Watson, J.G.; Schichtel, B.A. (2012). Consistency of long-term elemental carbon trends from thermal and optical measurements in the IMPROVE network. Atmos. Meas. Tech., 5:2329-2338. http://www.atmos-meas-tech.net/5/2329/2012/amt-5-2329-2012.pdf.

Chen, Y.; Ho, K.F.; Ho, S.S.H.; Ho, W.K.; Lee, S.C.; Yu, J.Z.; Sit, E.H.L. (2007b). Gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) emissions from commercial restaurants in Hong Kong. J. Environ. Monit., 9(12):1402-1409.

Chen, Y.Z.; Shah, N.; Braun, A.; Huggins, F.E.; Huffman, G.P. (2005). Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy & Fuels, 19(4):1644-1651.

Cheng, Y.; Li, S.M.; Leithead, A.; Brickell, P.C.; Leaitch, W.R. (2004). Characterizations of cis-pinonic acid and n-fatty acids on fine aerosols in the Lower Fraser Valley during Pacific 2001 Air Quality Study. Atmos. Environ., 38(34):5789-5800.

Cheung, K.L.; Ntziachristos, L.; Tzamkiozis, T.; Schauer, J.J.; Samaras, Z.; Moore, K.F.; Sioutas, C. (2010). Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci. Technol., 44(7):500-513.

Chow, J.C. (2001). 2001 Critical review discussion - Diesel engines: Environmental impact and control. J. Air Waste Manage. Assoc., 51(9):1258-1270. http://pubs.awma.org/gsearch/journal/2001/9/CriticalReview.pdf.

Chow, J.C.; Watson, J.G. (2011). Air quality management of multiple pollutants and multiple effects. Air Quality and Climate Change Journal, 45(3):26-32.

Page 135: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-5

https://www.researchgate.net/publication/234903062_Air_quality_management_of_multiple_pollutants_and_multiple_effects?ev=prf_pub.

Chow, J.C.; Watson, J.G. (2012). Chemical analyses of particle filter deposits. In Aerosols Handbook : Measurement, Dosimetry, and Health Effects, 2; Ruzer, L., Harley, N. H., Eds.; CRC Press/Taylor & Francis: New York, NY, 179-204.

Chow, J.C.; Watson, J.G.; Green, M.C.; Frank, N.H. (2010). Filter light attenuation as a surrogate for elemental carbon. J. Air Waste Manage. Assoc., 60(11):1365-1375. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.60.11.1365.

Chow, J.C.; Watson, J.G.; Doraiswamy, P.; Chen, L.-W.A.; Tropp, R.J. (2006a). PM measurements, modeling regulatory status, and health effects. In Il Particolato Fine in Atmosfera: 60th Corso di aggiornamento in Ingegneria Sanitaria-Ambientale, Giugliano, M., Cernuschi, S., Eds.; Politecnico di Milano: Milan, Italy, 8-1-8-17.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Lowenthal, D.H.; Motallebi, N. (2011a). PM2.5 source profiles for black and organic carbon emission inventories. Atmos. Environ., 45(31):5407-5414.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Arnott, W.P.; Moosmüller, H.; Fung, K.K. (2004). Equivalence of elemental carbon by Thermal/Optical Reflectance and Transmittance with different temperature protocols. Environ. Sci. Technol., 38(16):4414-4422.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.L.; Kohl, S.D. (2007a). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc., 57(9):1014-1023. http://pubs.awma.org/gsearch/journal/2007/9/10.3155-1047-3289.57.9.1014.pdf.

Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Zielinska, B.; Mazzoleni, L.R.; Magliano, K.L. (2007b). Evaluation of organic markers for chemical mass balance source apportionment at the Fresno supersite. Atmos. Chem. Phys., 7(7):1741-1754. http://www.atmos-chem-phys.net/7/1741/2007/acp-7-1741-2007.pdf.

Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.H.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. (2007c). The application of thermal methods for determining chemical composition of carbonaceous aerosols: A Review. Journal of Environmental Science and Health-Part A, 42(11):1521-1541.

Chow, J.C.; Watson, J.G.; Robles, J.; Wang, X.L.; Chen, L.-W.A.; Trimble, D.L.; Kohl, S.D.; Tropp, R.J.; Fung, K.K. (2011b). Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Anal. Bioanal. Chem., 401(10):3141-3152. DOI 10.1007/s00216-011-5103-3.

Chow, J.C.; Watson, J.G.; Feldman, H.J.; Nolan, J.; Wallerstein, B.R.; Hidy, G.M.; Lioy, P.J.; McKee, H.C.; Mobley, J.D.; Bauges, K.; Bachmann, J.D. (2007d). 2007 Critical review discussion - Will the circle be unbroken: A history of the U.S. National Ambient Air Quality Standards. J. Air Waste Manage. Assoc., 57(10):1151-1163. http://pubs.awma.org/gsearch/journal/2007/10/10.3155-1047-3289.57.10.1151.pdf.

Chow, J.C.; Watson, J.G.; Mauderly, J.L.; Costa, D.L.; Wyzga, R.E.; Vedal, S.; Hidy, G.M.; Altshuler, S.L.; Marrack, D.; Heuss, J.M.; Wolff, G.T.; Pope, C.A., III; Dockery, D.W. (2006b). 2006 critical review discussion - Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc., 56(10):1368-1380. http://pubs.awma.org/gsearch/journal/2006/10/2006criticalreviewdiscussion.pdf.

Chung, A.; Lall, A.A.; Paulson, S.E. (2008). Particulate emissions by a small non-road diesel engine: Biodiesel and diesel characterization and mass measurements using the extended idealized aggregates theory. Atmos. Environ., 42(9):2129-2140.

Cocker, D.R.; Shah, S.D.; Johnson, K.; Miller, J.W.; Norbeck, J.M. (2004a). Development and application of a mobile laboratory for measuring emissions from diesel engines 1. Regulated gaseous emissions. Environ. Sci. Technol., 38(7):2182-2189.

Cocker, D.R.; Shah, S.D.; Johnson, K.C.; Zhu, X.N.; Miller, J.W.; Norbeck, J.M. (2004b). Development and application of a mobile laboratory for measuring emissions from diesel engines. 2. Sampling for toxics and particulate matter. Environ. Sci. Technol., 38(24):6809-6816.

Code of Federal Regulations (2013). Subpart N-Emission regulations for new Otto-cycle and diesel heavy-duty engines; Gaseous and particulate exhaust test procedures. prepared by U.S. Government Printing Office, Washington, DC, http://www.ecfr.gov/cgi-bin/retrieveECFR?gp=&SID=a9b3b69f0031e290ed7b076ec975e757&r=PART&n=40y20.0.1.1.1#40:20.0.1.1.1.8.

Coffman, D.J.; Hegg, D.A. (1995). A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res., 100(D4):7147-7160.

Collins, J.F.; Shepherd, P.; Durbin, T.D.; Lents, J.; Norbeck, J.; Barth, M. (2007). Measurements of in-use emissions from modern vehicles using an on-board measurement system. Environ. Sci. Technol., 41(18):6554-6561.

Page 136: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-6

Corro, G. (2002). Sulfur impact on diesel emission control - A review. Reaction Kinetics and Catalysis Letters, 75(1):89-106.

Corsmeier, U.; Imhof, D.; Kohler, M.; Kuhlwein, J.; Kurtenbach, R.; Petrea, M.; Rosenbohm, E.; Vogel, B.; Vogt, U. (2005). Comparison of measured and model-calculated real-world traffic emissions. Atmos. Environ., 39(31):5760-5775.

Dhammapala, R.; Claiborn, C.; Jimenez, J.; Corkill, J.; Gullett, B.; Simpson, C.; Paulsen, M. (2007). Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns. Atmos. Environ., 41(12):2660-2669.

DieselNet (2013a). Emission test cycles: Summary of worldwide engine and vehicle test cycles. prepared by Ecopoint, Inc., Mississauga, ON, Canada, http://www.dieselnet.com/standards/cycles/.

DieselNet (2013b). Emission standards: Summary of worldwide diesel emission standards. prepared by DieselNet, http://www.dieselnet.com/standards/#na.

Dreher, D.B.; Harley, R.A. (1998). A fuel-based inventory for heavy-duty diesel truck emissions. J. Air Waste Manage. Assoc., 48(4):352-358.

Du, H.; Yu, F. (2008). Nanoparticle formation in the exhaust of vehicles running on ultra-low sulfur fuel. Atmos. Chem. Phys., 8(16):4729-4739.

Durbin, T.D.; Johnson, K.; Miller, J.W.; Maldonado, H.; Chernich, D. (2008). Emissions from heavy-duty vehicles under actual on-road driving conditions. Atmos. Environ., 42(20):4812-4821.

Durbin, T.D.; Cocker, D.R.; Sawant, A.A.; Johnson, K.; Miller, J.W.; Holden, B.B.; Helgeson, N.L.; Jack, J.A. (2007a). Regulated emissions from biodiesel fuels from on/off-road applications. Atmos. Environ., 41(27):5647-5658.

Durbin, T.D.; Johnson, K.; Cocker, D.R.; Miller, J.W.; Maldonado, H.; Shah, A.; Ensfield, C.; Weaver, C.; Akard, M.; Harvey, N.; Symon, J.; Lanni, T.; Bachalo, W.D.; Payne, G.; Smallwood, G.; Linke, M. (2007b). Evaluation and comparison of portable emissions measurement systems and federal reference methods for emissions from a back-up generator and a diesel truck operated on a chassis dynamometer. Environ. Sci. Technol., 41(17):6199-6204.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.-C.O.; Loos, K.R.; Hidy, G.M. (2007a). Dilution-based emissions sampling from stationary sources: Part 1. Compact sampler, methodology and performance. J. Air Waste Manage. Assoc., 57(1):65-78. http://pubs.awma.org/gsearch/journal/2007/1/england.pdf.

England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.-C.O.; Loos, K.R.; Hidy, G.M. (2007b). Dilution-based emissions sampling from stationary sources: Part 2. Gas-fired combustors compared with other fuel-fired systems. J. Air Waste Manage. Assoc., 57(1):79-93. http://pubs.awma.org/gsearch/journal/2007/1/england2.pdf.

Environment Canada (1999). Canadian Environmental Protection Act (CEPA). prepared by Environment Canada, Ottawa, ON, Canada, https://www.ec.gc.ca/lcpe-cepa/26A03BFA-C67E-4322-AFCA-2C40015E741C/lcpe-cepa99_0307_bil.pdf.

Environment Canada (2005). Off-road compression-ignition engine emission regulations. Canada Gazette Part II, 139(4):214-238. http://canadagazette.gc.ca/archives/p2/2005/2005-02-23/pdf/g2-13904.pdf#page=78.

Environment Canada (2011). Regulations Amending the Off-Road Compression-Ignition Engine Emission Regulations (SOR/2011-261). Canada Gazette Part II, 145(25):2454-2489. http://www.gazette.gc.ca/rp-pr/p2/2011/2011-12-07/pdf/g2-14525.pdf#page=52.

Environment Canada (2012a). Canada-United States Air Quality Agreement Progress Report 2012. Report Number En85-1/2012E-PDF; prepared by Environment Canada, Ottawa, ON, Canada, http://www.ec.gc.ca/Publications/D9D6380B-4834-41C4-9D36-B6E3348F1A39/CanadaUnitedStatesAirQualityAgreementProgressReport2012.pdf.

Environment Canada (2012b). SOR/2002-254: Sulphur in Diesel Fuel Regulations. Canada Gazette Part II, 136(16)http://laws-lois.justice.gc.ca/PDF/SOR-2002-254.pdf.

Farzaneh, M.; Zietsman, J.; Lee, D.W. (2009). Evaluation of in-use emissions from refuse trucks. Transportation Research Record, (2123):38-45.

Fine, P.M.; Cass, G.R.; Simoneit, B.R.T. (2004). Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering Science, 21(3):387-409.

Fontaras, G.; Martini, G.; Manfredi, U.; Marotta, A.; Krasenbrink, A.; Maffioletti, F.; Terenghi, R.; Colombo, M. (2012). Assessment of on-road emissions of four Euro V diesel and CNG waste collection trucks for supporting air-quality improvement initiatives in the city of Milan. Sci. Total Environ., 426:65-72.

Frey, H.C.; Zhang, K.; Rouphail, N.M. (2010). Vehicle specific emissions modeling based upon on-road measurements. Environ. Sci. Technol., 44(9):3594-3600.

Page 137: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-7

Frey, H.C.; Unal, A.; Rouphail, N.M.; Colyar, J.D. (2003). On-road measurement of vehicle tailpipe emissions using a portable instrument. J. Air Waste Manage. Assoc., 53(8):992-1002.

Frey, H.C.; Kim, K.; Pang, S.H.; Rasdorf, W.J.; Lewis, P. (2008a). Characterization of real-world activity, fuel use, and emissions for selected motor graders fueled with petroleum diesel and B20 biodiesel. J. Air Waste Manage. Assoc., 58(10):1274-1287.

Frey, H.C.; Rasdorf, W.; Kim, K.; Pang, G.H.; Lewis, P. (2008b). Comparison of real-world emissions of B20 biodiesel versus petroleum diesel for selected nonroad vehicles and engine tiers. Transportation Research Record, (2058):33-42.

Fujita, E.M.; Campbell, D.E.; Arnott, W.P.; Chow, J.C.; Zielinska, B. (2007a). Evaluations of the chemical mass balance method for determining contributions of gasoline and diesel exhaust to ambient carbonaceous aerosols. J. Air Waste Manage. Assoc., 57(6):721-740.

Fujita, E.M.; Zielinska, B.; Arnott, W.P.; Campbell, D.E.; Reinhart, L.; Sagebiel, J.C.; Chow, J.C. (2006). Gasoline/Diesel PM Split Study: Source and ambient sampling, chemical analysis, and apportionment phase, final report. Report Number NREL Subcontract Nos. ACL-1-31046-01 and ACL-1-31046-02; prepared by Desert Research Institute, Reno, NV, for National Renewable Energy Laboratory, Golden, CO.

Fujita, E.M.; Campbell, D.E.; Zielinska, B.; Chow, J.C.; Lindhjem, C.E.; DenBleyker, A.; Bishop, G.A.; Schuchmann, B.G.; Stedman, D.H.; Lawson, D.R. (2012). Comparison of the MOVES2010a, MOBILE6.2 and EMFAC2007 mobile source emissions models with on-road traffic tunnel and remote sensing measurements. J. Air Waste Manage. Assoc., 62(10):1134-1149. http://www.tandfonline.com/doi/pdf/10.1080/10962247.2012.699016.

Fujita, E.M.; Zielinska, B.; Campbell, D.E.; Arnott, W.P.; Sagebiel, J.C.; Mazzoleni, L.R.; Chow, J.C.; Gabele, P.A.; Crews, W.; Snow, R.; Clark, N.N.; Wayne, W.S.; Lawson, D.R. (2007b). Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin. J. Air Waste Manage. Assoc., 57(6):705-720. http://pubs.awma.org/gsearch/journal/2007/6/10.3155-1047-3289.57.6.705.pdf.

Fujitani, Y.; Saitoh, K.; Fushimi, A.; Takahashi, K.; Hasegawa, S.; Tanabe, K.; Kobayashi, S.; Furuyama, A.; Hirano, S.; Takami, A. (2012). Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust. Atmos. Environ., 59:389-397.

Gamble, J. (2010). Lung cancer and diesel exhaust: A critical review of the occupational epidemiology literature. Critical Reviews in Toxicology, 40(3):189-244.

Gamble, J.F.; Nicolich, M.J.; Boffetta, P. (2012). Lung cancer and diesel exhaust: An updated critical review of the occupational epidemiology literature. Critical Reviews in Toxicology, 42(7):549-598.

Gangwar, J.N.; Gupta, T.; Agarwal, A.K. (2012). Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine. Atmos. Environ., 46:472-481.

Gautam, M.; Thompson, G.J.; Carder, D.K.; Clark, N.N.; Shade, B.C.; Riddle, W.C.; Lyons, D.W. (2001). Measurement of in-use, on-board emissions from heavy-duty diesel vehicles: mobile emissions measurement system (paper no. SAE 2001-01-3643). Warrendale, PA, Society of Automotive Engineers.

Ghio, A.J.; Smith, C.B.; Madden, M.C. (2012). Diesel exhaust particles and airway inflammation. Current Opinion in Pulmonary Medicine, 18(2):144-150.

Gill, S.S.; Turner, D.; Tsolakis, A.; York, A.P.E. (2012). Controlling soot formation with filtered EGR for diesel and biodiesel fuelled engines. Environ. Sci. Technol., 46(7):4215-4222.

Goncalves, C.; Alves, C.; Fernandes, A.P.; Monteiro, C.; Tarelho, L.; Evtyugina, M.; Pio, C. (2011). Organic compounds in PM(2.5) emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos. Environ., 45(27):4533-4545.

Gordon, M.; Staebler, R.M.; Liggio, J.; Li, S.M.; Wentzell, J.; Lu, G.; Lee, P.; Brook, J.R. (2012). Measured and modeled variation in pollutant concentration near roadways. Atmos. Environ., 57:138-145.

Gouriou, F.; Morin, J.P.; Weill, M.E. (2004). On-road measurements of particle number concentrations and size distributions in urban and tunnel environments. Atmos. Environ., 38(18):2831-2840.

Grieshop, A.P.; Miracolo, M.A.; Donahue, N.M.; Robinson, A.L. (2009). Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements. Environ. Sci. Technol., 43(13):4750-4756.

Guo, H.; Zhang, Q.Y.; Shi, Y.; Wang, D.H. (2007). On-road remote sensing measurements and fuel-based motor vehicle emission inventory in Hangzhou, China. Atmos. Environ., 41(14):3095-3107.

Hallmark, S.; Qiu, Y. (2012). Comparison of on-road emissions for B-0, B-10, and B-20 in transit buses. J. Air Waste Manage. Assoc., 62(4):443-450.

Hansen, A.D.A.; Mocnik, G. (2010). The "Micro" Aethalometer(R) - An enabling technology for new applications in the measurement of aerosol black carbon. In Proceedings, Leapfrogging Opportunities for Air Quality

Page 138: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-8

Improvement, Chow, J. C., Watson, J. G., Cao, J. J., Eds.; Air & Waste Management Association: Pittsburgh, PA, 984-989.

Hays, M.D.; Gullett, B.; King, C.; Robinson, J.; Preston, W.; Touati, A. (2011). Characterization of carbonaceous aerosols emitted from outdoor wood boilers. Energy & Fuels, 25(12):5632-5638.

Herndon, S.C.; Shorter, J.H.; Zahniser, M.S.; Wormhoudt, J.; Nelson, D.D.; Demerjian, K.L.; Kolb, C.E. (2005). Real-time measurements of SO2, H2CO, and CH4 emissions from in-use curbside passenger buses in New York City using a chase vehicle. Environ. Sci. Technol., 39(20):7984-7990.

Herrington, J.S.; Hays, M.D.; George, B.J.; Baldauf, R.W. (2012). The effects of operating conditions on semivolatile organic compounds emitted from light-duty, gasoline-powered motor vehicles. Atmos. Environ., 54:53-59.

Hesterberg, T.W.; Long, C.M.; Bunn, W.B.; Lapin, C.A.; McClellan, R.O.; Valberg, P.A. (2012). Health effects research and regulation of diesel exhaust: An historical overview focused on lung cancer risk. Inhal. Toxicol., 24:1-45.

Hesterberg, T.W.; Long, C.M.; Sax, S.N.; Lapin, C.A.; McClellan, R.O.; Bunn, W.B.; Valberg, P.A. (2011). Particulate matter in New Technology Diesel Exhaust (NTDE) is quantitatively and qualitatively very different from that found in Traditional Diesel Exhaust (TDE). J. Air Waste Manage. Assoc., 61(9):894-913.

Hsieh, L.T.; Wu, E.M.Y.; Wang, L.C.; Chang-Chien, G.P.; Yeh, Y.F. (2011). Reduction of toxic pollutants emitted from heavy-duty diesel vehicles by deploying diesel particulate filters. AAQR, 11(6):709-715.

Hu, J.N.; Wu, Y.; Wang, Z.S.; Li, Z.H.; Zhou, Y.; Wang, H.T.; Bao, X.F.; Hao, J.M. (2012). Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions. Journal of Environmental Sciences-China, 24(5):865-874.

Hung, W.T.; Tong, H.Y.; Lee, C.P.; Ha, K.; Pao, L.Y. (2007). Development of a practical driving cycle construction methodology: A case study in Hong Kong. Transportation Research Part D-Transport and Environment, 12:115-128.

Inoue, K.; Takano, H. (2011). Biology of diesel exhaust effects on allergic pulmonary inflammation. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, 131(3):367-371.

International Programme on Chemical Safety (1996). Environmental Health Criteria 171: Diesel Fuel and Exhaust Emissions. Report Number EHC171; prepared by World Health Organization, Geneva, Switzerland, http://www.inchem.org/documents/ehc/ehc/ehc171.htm.

Jazcilevich, A.D.; Garcia-Fragoso, A.; Reynoso, A.G.; Grutter, M.; ego-Ayala, U.; Lents, J.; Davis, N. (2007). A vehicle emissions system using a car simulator and a geographical information system: Part 1- System description and testing. J. Air Waste Manage. Assoc., 57(10):1234-1240.

Jiang, M.; Marr, L.C.; Dunlea, E.J.; Herndon, S.C.; Jayne, J.T.; Kolb, C.E.; Knighton, W.B.; Rogers, T.M.; Zavala, M.; Molina, L.T.; Molina, M.J. (2005). Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City. Atmos. Chem. Phys., 5:3377-3387.

Johnson, J.P.; Kittelson, D.B.; Watts, W.F. (2005). Source apportionment of diesel and spark ignition exhaust aerosol using on-road data from the Minneapolis metropolitan area. Atmos. Environ., 39(11):2111-2121.

Johnson, K.C.; Durbin, T.D.; Jung, H.J.; Cocker, D.R.; Bishnu, D.; Giannelli, R. (2011). Quantifying in-use PM measurements for heavy duty diesel vehicles. Environ. Sci. Technol., 45(14):6073-6079.

Johnson, K.C.; Durbin, T.D.; Cocker, D.R.; Miller, W.J.; Bishnu, D.K.; Maldonado, H.; Moynahan, N.; Ensfield, C.; Laroo, C.A. (2009). On-road comparison of a portable emission measurement system with a mobile reference laboratory for a heavy-duty diesel vehicle. Atmos. Environ., 43(18):2877-2883.

Johnson, T.V. (2009). Review of diesel emissions and control. International Journal of Engine Research, 10(5):275-285.

Joumard, R.; Andre, M.; Vidon, R.; Tassel, P. (2003). Characterizing real unit emissions for light duty goods vehicles. Atmos. Environ., 37(37):5217-5225.

Kameda, T.; Nakao, T.; Stavarache, C.; Maeda, Y.; Hien, T.T.; Takenaka, N.; Okitsu, K.; Bandow, H. (2007). Determination of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic compounds in diesel-engine exhaust particles from combustion process of biodiesel fuel. Bunseki Kagaku, 56(4):241-248.

Kayes, D.; Hochgreb, S. (1999a). Mechanisms of particulate matter formation in spark-ignition engines 3. Model of PM formation. Environ. Sci. Technol., 33(22):3978-3992.

Kayes, D.; Hochgreb, S. (1999b). Mechanisms of particulate matter formation in spark-ignition engines 2. Effect of fuel, oil, and catalyst parameters. Environ. Sci. Technol., 33(22):3968-3977.

Kayes, D.; Hochgreb, S. (1999c). Mechanisms of particulate matter formation in spark-ignition engines 1. Effect of engine operating conditions. Environ. Sci. Technol., 33(22):3957-3967.

Page 139: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-9

Kean, A.J.; Sawyer, R.F.; Harley, R.A. (2000). A fuel-based assessment of off-road diesel engine emissions. J. Air Waste Manage. Assoc., 50(11):1929-1939.

Kean, A.J.; Harley, R.A.; Kendall, G.R. (2003). Effects of vehicle speed and engine load on motor vehicle emissions. Environ. Sci. Technol., 37(17):3739-3746.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M.M. (2009). Trends in on-road vehicle emissions of ammonia. Atmos. Environ., 43(8):1565-1570.

Kelly, K.E.; Wagner, D.A.; Lighty, J.S.; Sarofim, A.F.; Rogers, C.F.; Sagebiel, J.C.; Zielinska, B.; Arnott, W.P.; Palmer, G. (2003). Characterization of exhaust particles from military vehicles fueled with diesel, gasoline, and JP-8. J. Air Waste Manage. Assoc., 53(3):273-282.

Ketzel, M.; Omstedt, G.; Johansson, C.; During, I.; Pohjolar, M.; Oettl, D.; Gidhagen, L.; Wahlin, P.; Lohmeyer, A.; Haakana, M.; Berkowicz, R. (2007). Estimation and validation of PM2.5/PM10 exhaust and non-exhaust emission factors for practical street pollution modelling

KETZEL2007. Atmos. Environ., 41(40):9370-9385. Khan, M.Y.; Johnson, K.C.; Durbin, T.D.; Jung, H.; Cocker, D.R.; Bishnu, D.; Giannelli, R. (2012).

Characterization of PM-PEMS for in-use measurements conducted during validation testing for the PM-PEMS measurement allowance program. Atmos. Environ., 55:311-318.

Kirchstetter, T.W.; Harley, R.A.; Kreisberg, N.M.; Stolzenburg, M.R.; Hering, S.V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmos. Environ., 33(18):2955-2968.

Kittelson, D.B. (1998). Engines and nanoparticles: A review. J. Aerosol Sci., 29(5/6):575-588. Kittelson, D.B.; Watts, W.F.; Johnson, J.P. (2006a). On-road and laboratory evaluation of combustion aerosols - Part

1: Summary of diesel engine results. J. Aerosol Sci., 37(8):913-930. Kittelson, D.B.; Watts, W.F.; Johnson, J.P.; Remerowki, M.L.; Ische, E.E.; Oberdörster, G.; Gelein, R.A.; Elder, A.;

Hopke, P.K.; Kim, E.; Zhao, W.; Zhou, L.; Jeong, C.H. (2004). On-road exposure to highway aerosols. 1. Aerosol and gas measurements. Inhal. Toxicol., 16(Suppl. 1):31-39.

Kittelson, D.B.; Watts, W.F.; Johnson, J.P.; Rowntree, C.; Payne, M.; Goodier, S.; Warrens, C.; Preston, H.; Zink, U.; Ortiz, M.; Goersmann, C.; Twigg, M.V.; Walker, A.P.; Caldow, R. (2006b). On-road evaluation of two diesel exhaust aftertreatment devices. J. Aerosol Sci., 37(9):1140-1151.

Kittelson, D.B.; Watts, W.F.; Johnson, J.P.; Thorne, C.; Higham, C.; Payne, M.; Goodier, S.; Warrens, C.; Preston, H.; Zink, U.; Pickles, D.; Goersmann, C.; Twigg, M.V.; Walker, A.P.; Boddy, R. (2008). Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas continuously regenerating trap. Environ. Sci. Technol., 42(24):9276-9282.

Kleeman, M.J.; Riddle, S.G.; Robert, M.A.; Jakober, C.A. (2008). Lubricating oil and fuel contributions to particulate matter emissions from light-duty gasoline and heavy-duty diesel vehicles. Environ. Sci. Technol., 42(1):235-242.

Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Bonnel, P.; Samaras, Z.; Dilara, P. (2013). Use of portable emissions measurement system (PEMS) for the development and validation of passenger car emission factors. Atmos. Environ., 64:329-338.

Kozawa, K.H.; Fruin, S.A.; Winer, A.M. (2009). Near-road air pollution impacts of goods movement in communities adjacent to the Ports of Los Angeles and Long Beach. Atmos. Environ., 43(18):2960-2970.

Krahl, J.; Seidel, H.; Jeberien, H.E.; Rückert, M.; Bahadir, M. (1998). Pilot study: PAH fingerprints of aircraft exhaust in comparison with diesel engine exhaust. Fresenius Z. Anal. Chem., 360:693-696.

Krishnamurthy, M.; Gautam, M. (2006). Modal analysis of in-use emissions from heavy-duty diesel engines: on-board measurement. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 220(D5):611-625.

Krishnamurthy, M.; Carder, D.K.; Thompson, G.; Gautam, M. (2007). Cost of lower NOx emissions: Increased CO2 emissions from heavy-duty diesel engines. Atmos. Environ., 41(3):666-675.

Kuhns, H.D.; Mazzoleni, C.; Moosmüller, H.; Nikolic, D.; Keislar, R.E.; Barber, P.W.; Li, Z.; Etyemezian, V.; Watson, J.G. (2004). Remote sensing of PM, NO, CO, and HC emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. Sci. Total Environ., 322:123-137.

Labban, R.; Veranth, J.M.; Watson, J.G.; Chow, J.C. (2006). Feasibility of soil dust source apportionment by the pyrolysis-gas chromatography/mass spectrometry method. J. Air Waste Manage. Assoc., 56(9):1230-1242. http://pubs.awma.org/gsearch/journal/2006/9/labban.pdf.

Lara, A.S.; Feng, L.J. (2006). Selected ion chromatograms and tandem mass spectrometry for detection of trace polycyclic aromatic hydrocarbons in diesel exhaust. J. Air Waste Manage. Assoc., 56(6):859-868.

Page 140: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-10

Lenaers, G. (1996). On-board real life emission measurements on a 3 way catalyst gasoline car in motor way-, rural- and city traffic and on two Euro-1 diesel city buses. Sci. Total Environ., 190:139-147.

Lenaers, G.; DeVlieger, I. (1997). On-board emission measurements on petrol-driven cars and diesel city buses. Int. J. Vehicle Des., 18(3-4):368-378.

Lenaers, G.; Pelkmans, L.; Debal, P. (2003). The realisation of an on-board emission measuring system serving as a R&D tool for ultra low emitting vehicles. Int. J. Vehicle Des., 31(3):253-268.

Lin, Y.C.; Lee, W.J.; Hou, H.C. (2006). PAH emissions and energy efficiency of palm-biodiesel blends fueled on diesel generator. Atmos. Environ., 40(21):3930-3940.

Lindgren, M.; Arrhenius, K.; Larsson, G.; Bafver, L.; Arvidsson, H.; Wetterberg, C.; Hansson, P.A.; Rosell, L. (2011). Analysis of unregulated emissions from an off-road diesel engine during realistic work operations. Atmos. Environ., 45(30):5394-5398.

Lipsky, E.M.; Robinson, A.L. (2006). Effects of dilution on fine particle mass and partitioning of semivolatile organics in diesel exhaust and wood smoke. Environ. Sci. Technol., 40(1):155-162.

Liu, G.; Gao, P.X. (2011). Catalysis Science & Technology 1(4):552-568. Liu, H.; He, K.B.; Lents, J.M.; Wang, Q.D.; Tolvett, S. (2009). Characteristics of diesel truck emission in China

based on portable emissions measurement systems. Environ. Sci. Technol., 43(24):9507-9511. Liu, H.A.; Barth, M.; Scora, G.; Davis, N.; Lents, J. (2010a). Using portable emission measurement systems for

transportation emissions studies Comparison with laboratory methods. Transportation Research Record, (2158):54-60.

Liu, Z.F.; Lu, M.M.; Birch, M.E.; Keener, T.C.; Khang, S.J.; Liang, F.Y. (2005). Variations of the particulate carbon distribution from a nonroad diesel generator. Environ. Sci. Technol., 39(20):7840-7844.

Liu, Z.G.; Berg, D.R.; Vasys, V.N.; Dettmann, M.E.; Zielinska, B.; Schauer, J.J. (2010b). Analysis of C-1, C-2, and C-10 through C-33 particle-phase and semi-volatile organic compound emissions from heavy-duty diesel engines. Atmos. Environ., 44(8):1108-1115.

Lizarraga, L.; Souentie, S.; Boreave, A.; George, C.; D'Anna, B.; Vernoux, P. (2011). Effect of diesel oxidation catalysts on the diesel particulate filter regeneration process. Environ. Sci. Technol., 45(24):10591-10597.

Lloyd, A.C.; Cackette, T.A. (2001). Critical review - Diesel engines: Environmental impact and control. J. Air Waste Manage. Assoc., 51(6):809-847. http://www.tandfonline.com/doi/pdf/10.1080/10473289.2001.10464315.

Lombaert, K.; Morel, S.; Le Moyne, L.; Adam, P.; de Maleissye, J.T.; Amouroux, J. (2004). Nondestructive analysis of metallic elements in diesel soot collected on filter: Benefits of laser induced breakdown spectroscopy. Plasma Chemistry and Plasma Processing, 24(1):41-56. ISI:000186731700004.

Lowenthal, D.H.; Zielinska, B.; Chow, J.C.; Watson, J.G.; Gautam, M.; Ferguson, D.H.; Neuroth, G.R.; Stevens, K.D. (1994). Characterization of heavy-duty diesel vehicle emissions. Atmos. Environ., 28(4):731-743.

Ma, X.L.; Lei, W.; Andreasson, I.; Chen, H. (2012). An evaluation of microscopic emission models for traffic pollution simulation using on-board measurement. Environmental Modeling & Assessment, 17(4):375-387.

Maik, B.; Kirchner, U.; Vogt, R.; Benter, T. (2009). On-road and laboratory investigation of low-level PM emissions of a modern diesel particulate filter equipped diesel passenger car. Atmos. Environ., 43(11):1908-1916.

Marc, M.; Zabiegala, B.; Namiesnik, J. (2012). Mobile systems (portable, handheld, transportable) for monitoring air pollution. Critical Reviews in Analytical Chemistry, 42(1):2-15.

Maricq, M.M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 38(11):1079-1118.

Maricq, M.M.; Chase, R.E.; Xu, N.; Podsiadlik, D.H. (2003). A constant-volume rapid exhaust dilution system for motor vehicle particulate matter number and mass measurements. J. Air Waste Manage. Assoc., 53(10):1196-1203.

Martins, L.D.; Andrade, M.F.; Freitas, D.; Pretto, A.; Gatti, L.V.; Albuquerque, E.L.; Tomaz, E.; Guardani, M.L.; Martins, M.H.R.B.; Junior, O.M.A. (2006). Emission factors for gas-powered vehicles traveling through road tunnels in Sao Paulo, Brazil. Environ. Sci. Technol., 40(21):6722-6729.

Mathis, U.; Mohr, M.; Kaegi, R.; Bertola, A.; Boulouchos, K. (2005). Influence of diesel engine combustion parameters on primary soot particle diameter. Environ. Sci. Technol., 39(6):1887-1892.

Mauderly, J.L.; Chow, J.C. (2008). Health effects of organic aerosols. Inhal. Toxicol., 20(3):257-288. DOI: 10.1080/08958370701866008.

Mazzoleni, C.; Kuhns, H.D.; Moosmüller, H. (2010). Monitoring automotive particulate matter Emissions with LiDAR: A review. Remote Sensing, 2(4):1077-1119. http://www.mdpi.com/2072-4292/2/4/1077.

Mazzoleni, C.; Kuhns, H.D.; Moosmüller, H.; Keislar, R.E.; Barber, P.W.; Robinson, N.F.; Watson, J.G. (2004a). On-road vehicle particulate matter and gaseous emission distributions in Las Vegas, Nevada, compared with

Page 141: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-11

other areas. J. Air Waste Manage. Assoc., 54(6):711-726. http://pubs.awma.org/gsearch/journal/2004/6/mazzoleni.PDF.

Mazzoleni, C.; Moosmüller, H.; Kuhns, H.D.; Keislar, R.E.; Barber, P.W.; Nikolic, D.; Nussbaum, N.J.; Watson, J.G. (2004b). Correlation between automotive CO, HC, NO, and PM emission factors from on-road remote sensing: Implications for inspection and maintenance programs. Transport. Res., D9:477-496.

McCarthy, M.C.; Eisinger, D.S.; Hafner, H.R.; Chinkin, L.R.; Roberts, P.T.; Black, K.N.; Clark, N.N.; McMurry, P.H.; Winer, A.M. (2006). Particulate matter: A strategic vision for transportation-related research. Environ. Sci. Technol., 40(18):5593-5599.

McDonald, J.D.; Barr, E.B.; White, R.K. (2004a). Design, characterization, and evaluation of a small-scale diesel exhaust exposure system. Aerosol Sci. Technol., 38(1):62-78.

McDonald, J.D.; Zielinska, B.; Fujita, E.M.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G. (2000). Fine particle and gaseous emission rates from residential wood combustion. Environ. Sci. Technol., 34(11):2080-2091.

McDonald, J.D.; Zielinska, B.; Fujita, E.M.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G. (2003). Emissions from charbroiling and grilling of chicken and beef. J. Air Waste Manage. Assoc., 53(2):185-194. http://pubs.awma.org/gsearch/journal/2003/2/mcdonald.PDF.

McDonald, J.D.; Barr, E.B.; White, R.K.; Chow, J.C.; Schauer, J.J.; Zielinska, B.; Grosjean, E. (2004b). Generation and characterization of four dilutions of diesel engine exhaust for a subchronic inhalation study. Environ. Sci. Technol., 38(9):2513-2522.

McDonald, J.D.; Eide, I.; Seagrave, J.; Zielinska, B.; Whitney, K.; Lawson, D.R.; Mauderly, J.L. (2004c). Relationship between composition and toxicity of motor vehicle emission samples. Environ. Health Perspect., 112(15):1527-1538.

Moosmüller, H.; Mazzoleni, C.; Barber, P.W.; Kuhns, H.D.; Keislar, R.E.; Watson, J.G. (2003). On-road measurement of automotive particle emissions by ultraviolet lidar and transmissometer: Instrument. Environ. Sci. Technol., 37(21):4971-4978.

Moosmüller, H.; Arnott, W.P.; Rogers, C.F.; Bowen, J.L.; Gillies, J.A.; Pierson, W.R.; Collins, J.F.; Durbin, T.D.; Norbeck, J.M. (2001). Time resolved characterization of diesel particulate emissions 2. Instruments for elemental and organic carbon measurements. Environ. Sci. Technol., 35(10):1935-1942.

Morawska, L.; Ristovski, Z.D.; Johnson, G.R.; Jayaratne, E.R.; Mengersen, K. (2007). Novel method for on-road emission factor measurements using a plume capture trailer. Environ. Sci. Technol., 41(2):574-579.

Murphy, D.M.; Chow, J.C.; Leibensperger, E.M.; Malm, W.C.; Pitchford, M.L.; Schichtel, B.A.; Watson, J.G.; White, W.H. (2011). Decreases in elemental carbon and fine particle mass in the United States. Atmos. Chem. Phys., 11:4679-4686. http://www.atmos-chem-phys.net/11/4679/2011/acp-11-4679-2011.pdf.

Nakamura, H.; Kihara, N.; Adachi, M.; Nakamura, S.; Ishida, K. (2003). Development of hydrocarbon analyzer using heated-NDIR method and its application to on-board mass emission measurement system. JSAE Review, 24(2):127-133.

Ning, Z.; Wubulihairen, M.; Yang, F.H. (2012). PM, NOx and butane emissions from on-road vehicle fleets in Hong Kong and their implications on emission control policy. Atmos. Environ., 61:265-274.

Ning, Z.; Polidori, A.; Schauer, J.J.; Sioutas, C. (2008). Emission factors of PM species based on freeway measurements and comparison with tunnel and dynamometer studies. Atmos. Environ., 42(13):3099-3114.

Nussbaum, N.J.; Zhu, D.; Kuhns, H.D.; Mazzoleni, C.; Chang, M.-C.O.; Moosmüller, H.; Watson, J.G. (2009). The In-Plume Emissions Test-Stand: A novel instrument platform for the real-time characterization of combustion emissions. J. Air Waste Manage. Assoc., 59(12):1437-1445. http://pubs.awma.org/gsearch/journal/2009/12/10.3155-1047-3289.59.12.1437.pdf.

Ohira, S.I.; Toda, K. (2008). Micro gas analyzers for environmental and medical applications. Anal. Chim. Acta., 619(2):143-156.

Otto, A.; Gondokusumo, R.; Simpson, M.J. (2006). Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Appl. Geochem., 21(1):166-183.

Park, S.S.; Kozawa, K.; Fruin, S.; Mara, S.; Hsu, Y.K.; Jakober, C.; Winer, A.; Herner, J. (2011). Emission factors for high-emitting vehicles based on on-road measurements of individual vehicle exhaust with a mobile measurement platform. J. Air Waste Manage. Assoc., 61(10):1046-1056.

Payri, F.; Bermudez, V.R.; Tormos, B.; Linares, W.G. (2009). Hydrocarbon emissions speciation in diesel and biodiesel exhausts. Atmos. Environ., 43(6):1273-1279.

Phuleria, H.C.; Geller, M.D.; Fine, P.M.; Sioutas, C. (2006). Size-resolved emissions of organic tracers from light-and heavy-duty vehicles measured in a California roadway tunnel. Environ. Sci. Technol., 40(13):4109-4118.

Page 142: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-12

Phuleria, H.C.; Sheesley, R.J.; Schauer, J.J.; Fine, P.M.; Sioutas, C. (2007). Roadside measurements of size-segregated particulate organic compounds near gasoline and diesel-dominated freeways in Los Angeles, CA. Atmos. Environ., 41(22):4653-4671.

Pierson, W.R.; Gertler, A.W.; Robinson, N.F.; Sagebiel, J.C.; Zielinska, B.; Bishop, G.A.; Stedman, D.H.; Zweidinger, R.B.; Ray, W.D. (1996). Real-world automotive emissions - Summary of studies in the Fort McHenry and Tuscarora Mountain tunnels. Atmos. Environ., 30(12):2233-2256.

Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hameri, K.; Aaalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T.A.; Makela, T.; Hillamo, R.E. (2004). "Sniffer" - a novel tool for chasing vehicles and measuring traffic pollutants. Atmos. Environ., 38(22):3625-3635.

Pollack, A.K.; Dunker, A.M.; Fieber, J.K.; Heiken, J.G.; Cohen, J.P.; Shepard, S.B.; Schleyer, C.H.; Yarwood, G. (1998). Revision of light-duty vehicle emission inventories using real-world measurements - Auto/oil program, Phase II. J. Air Waste Manage. Assoc., 48(4):291-305.

Poola, R.B.; Sekar, R. (2003). Reduction of NOx and particulate emissions by using oxygen-enriched combustion air in a locomotive diesel engine. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 125(2):524-533.

Pope, C.A., III; Dockery, D.W. (2006). Critical Review: Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc., 56(6):709-742.

Rasdorf, W.; Frey, C.; Lewis, P.; Kim, K.; Pang, S.H.; Abolhassani, S. (2010). Field procedures for real-world measurements of emissions from diesel construction vehicles. Journal of Infrastructure Systems, 16(3):216-225.

Riddle, S.G.; Robert, M.A.; Jakober, C.A.; Hannigan, M.P.; Kleeman, M.J. (2007). Size distribution of trace organic species emitted from heavy-duty diesel vehicles. Environ. Sci. Technol., 41(6):1962-1969.

Ris, C. (2007). US EPA health assessment for diesel engine exhaust: A review. Inhal. Toxicol., 19(Suppl. 1):229-239.

Risher, J.F.; Rhodes, S.W. (1995). Toxicological profile for fuel oils. Agency for Toxic Substances and Disease Registry, Atlanta, Ga .

Rogak, S.N.; Pott, U.; Campbell, I.; Nejedly, Z. (1997). Fine particle emissions from heavy-duty vehicles in Vancouver, BC. In Proceedings, 90th Annual Meeting of the Air & Waste Management Association, Air & Waste Management Association: Pittsburgh, PA.

Rogers, C.F.; Sagebiel, J.C.; Zielinska, B.; Arnott, W.P.; Fujita, E.M.; McDonald, J.D.; Griffin, J.B.; Kelly, K.; Overacker, D.; Wagner, D.; Lighty, J.S.; Sarofim, A.; Palmer, G. (2003). Characterization of submicron exhaust particles from engines operating without load on diesel and JP-8 fuels. Aerosol Sci. Technol., 37:355-368.

Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. (1993). Sources of fine organic aerosol - 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol., 27(4):636-651.

Ronkko, T.; Virtanen, A.; Vaaraslahti, K.; Keskinen, J.; Pirjola, L.; Lappi, M. (2006). Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust: Laboratory and on-road study. Atmos. Environ., 40(16):2893-2901.

Saathoff, H.; Naumann, K.H.; Schnaiter, M.; Schöck, W.; Möhler, O.; Schurath, U.; Weingartner, E.; Gysel, M.; Baltensperger, U. (2003). Coating of soot and (NH4)2SO4 particles by ozonolysis products of -pinene. J. Aerosol Sci., 34(10):1297-1321.

Saiyasitpanich, P.; Lu, M.; Keener, T.C.; Liang, F.; Khang, S.J. (2005). The effect of diesel fuel sulfur content on particulate matter emissions for a nonroad diesel generator. J. Air Waste Manage. Assoc., 55(7):993-998. http://pubs.awma.org/gsearch/journal/2005/7/lu.pdf.

Sakurai, H.; Park, K.; McMurry, P.H.; Zarling, D.D.; Kittelson, D.B.; Ziemann, P.J. (2003a). Size-dependent mixing characteristics of volatile and nonvolatile components in diesel exhaust aerosols. Environ. Sci. Technol., 37(24):5487-5495.

Sakurai, H.; Tobias, H.J.; Park, K.; Zarling, D.; Docherty, K.S.; Kittelson, D.B.; McMurry, P.H.; Ziemann, P.J. (2003b). On-line measurements of diesel nanoparticle composition and volatility. Atmos. Environ., 37(9-10):1199-1210.

Sawant, A.A.; Nigam, A.; Miller, J.W.; Johnson, K.C.; Cocker, D.R. (2007a). Regulated and non-regulated emissions from in-use diesel-electric switching locomotives. Environ. Sci. Technol., 41(17):6074-6083.

Sawant, A.A.; Shah, S.D.; Zhu, X.N.; Miller, J.W.; Cocker, D.R. (2007b). Real-world emissions of carbonyl compounds from in-use heavy-duty diesel trucks and diesel Back-Up Generators (BUGS). Atmos. Environ., 41(21):4535-4547.

Sawyer, R.F.; Harley, R.A.; Cadle, S.H.; Norbeck, J.M.; Slott, R.S.; Bravo, H.A. (2000). Mobile sources critical review: 1998 NARSTO assessment. Atmos. Environ., 34(12-14):2161-2181.

Page 143: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-13

SCAQMD (2010). Multiple Air Toxics Exposure Study in the South Coast Air Basin MATES III. prepared by South Coast Air Quality Management District, Diamond Bar, CA, http://www.aqmd.gov/prdas/matesIII/MATESIIDraftFinalReportJuly2008.html.

Schauer, J.J. (2003). Evaluation of elemental carbon as a marker for diesel particulate matter. J. Expo. Anal. Environ. Epidemiol., 13(6):443-453. ISI:000186454100004.

Schauer, J.J.; Christensen, C.G.; Kittelson, D.B.; Johnson, J.P.; Watts, W.F. (2008). Impact of ambient temperatures and driving conditions on the chemical composition of particulate matter emissions from non-smoking gasoline-powered motor vehicles. Aerosol Sci. Technol., 42(3):210-223.

Schifter, I.; Diaz, L.; Rodriguez, R.; Duran, J.; Chavez, O. (2008). Trends in exhaust emissions from in-use Mexico City vehicles, 2000-2006. A remote sensing study. Environ. Mon. Assess., 137(1-3):459-470.

Schnaiter, M.; Horvath, H.; Mohler, O.; Naumann, K.H.; Saathoff, H.; Schock, O.W. (2003). UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci., 34(10):1421-1444. doi: 10.1016/S0021-8502(03)00361-6.

Schneider, J.; Hock, N.; Weimer, S.; Borrmann, S.; Kirchner, U.; Vogt, R.; Scheer, V. (2005). Nucleation particles in diesel exhaust: Composition inferred from in situ mass spectrometric analysis. Environ. Sci. Technol., 39(16):6153-6161.

Schuetzle, D.; Perez, J.M. (1983). Factors influencing the emissions of nitrated-polynuclear aromatic hydrocarbons (nitro-PAH) from diesel engines. J. Air Poll. Control Assoc., 33(8):751-755.

Schuetzle, D.; Lee, F.S.C.; Prater, T.J.; Tejada, S.B. (1981). The identification of polynuclear aromatic hydrocarbon (PAH) derivatives in mutagenic fractions of diesel particulate extracts. Int. J. Environ. Anal. Chem., 9:93-144.

Shah, S.D.; Cocker, D.R.; Miller, J.W.; Norbeck, J.M. (2004). Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines. Environ. Sci. Technol., 38(9):2544-2550.

Shah, S.D.; Ogunyoku, T.A.; Miller, J.W.; Cocker, D.R. (2005). On-road emission rates of PAH and n-alkane compounds from heavy-duty diesel vehicles. Environ. Sci. Technol., 39(14):5276-5284.

Shah, S.D.; Johnson, K.C.; Miller, J.W.; Cocker, D.R. (2006a). Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles. Atmos. Environ., 40(1):147-153.

Shah, S.D.; Cocker, D.R.; Johnson, K.C.; Lee, J.M.; Soriano, B.L.; Miller, J.W. (2006b). Emissions of regulated pollutants from in-use diesel back-up generators. Atmos. Environ., 40(22):4199-4209.

Shi, J.P.; Harrison, R.M. (1999). Investigation of ultrafine particle formation during diesel exhaust dilution. Environ. Sci. Technol., 33(21):3730-3736.

Shorter, J.H.; Herndon, S.; Zahniser, M.S.; Nelson, D.D.; Wormhoudt, J.; Demerjian, K.L.; Kolb, C.E. (2005). Real-time measurements of nitrogen oxide emissions from in-use New York City transit buses using a chase vehicle. Environ. Sci. Technol., 39(20):7991-8000.

Simoneit, B.R.T.; Elias, V.O.; Kobayashi, M.; Kawamura, K.; Rushdi, A.I.; Medeiros, P.M.; Rogge, W.F.; Didyk, B.M. (2004). Sugars - Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol., 38(22):5939-5949. ISI:000225272100018.

Singer, B.C.; Harley, R.A. (1996). A fuel-based motor vehicle emission inventory. J. Air Waste Manage. Assoc., 46(6):581-593.

Smit, R.; Brown, A.L.; Chan, Y.C. (2008). Do air pollution emissions and fuel consumption models for roadways include the effects of congestion in the roadway traffic flow? Environ. Modelling & Software, 23(10-11):1262-1270.

St.Denis, M.J.; Cicero-Fernández, P.; Winer, A.M.; Butler, J.W.; Jesion, G. (1994). Effects of in-use driving conditions and vehicle/engine operating parameters on "off-cycle" events: Comparison with federal test procedure conditions. J. Air Waste Manage. Assoc., 44(1):31-38.

Supnithadnaporn, A.; Noonan, D.S.; Samoylov, A.; Rodgers, M.O. (2011). Estimated validity and reliability of on-board diagnostics for older vehicles: Comparison with remote sensing observations. J. Air Waste Manage. Assoc., 61(10):996-1004.

Tang, S.; Frank, B.P.; Lanni, T.; Rideout, G.; Meyer, N.; Beregszaszy, C. (2007). Unregulated emissions from a heavy-duty diesel engine with various fuels and emission control systems. Environ. Sci. Technol., 41(14):5037-5043.

Tang, U.W.; Wang, Z. (2006). Determining gaseous emission factors and driver's particle exposures during traffic congestion by vehicle-following measurement techniques. J. Air Waste Manage. Assoc., 56(11):1532-1539.

Tente, H.; Gomes, P.; Ferreira, F.; Amorim, J.H.; Cascao, P.; Miranda, A.I.; Nogueira, L.; Sousa, S. (2011). Evaluating the efficiency of Diesel Particulate Filters in high-duty vehicles: Field operational testing in Portugal. Atmos. Environ., 45(16):2623-2629.

Page 144: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-14

Thoma, E.D.; Shores, R.C.; Isakov, V.; Baldauf, R.W. (2008). Characterization of near-road pollutant gradients using path-integrated optical remote sensing. J. Air Waste Manage. Assoc., 58(7):879-890.

Thomson, W. (1871). On the equilibrium of vapour at a curved surface of liquid. Philosophical Magazine, 42(282):448-452. http://books.google.com/books?id=ZeYXAAAAYAAJ&pg=PA448#v=onepage&q&f=false.

Tobias, H.J.; Beving, D.E.; Ziemann, P.J.; Sakurai, H.; Zuk, M.; McMurry, P.H.; Zarling, D.; Waytulonis, R.; Kittelson, D.B. (2001). Chemical analysis of diesel engine nanoparticles using a nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer. Environ. Sci. Technol., 35(11):2233-2243.

Toner, S.M.; Sodeman, D.A.; Prather, K.A. (2006). Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry. Environ. Sci. Technol., 40(12):3912-3921.

Tritthart, P.; ruhri, F.; Cartellieri, W. (1992). The contribution of the lube oil to particulate emissions from heavy duty diesel vehicles. Mechanical Engineering, 80:535-552.

Tsai, Y.I.; Yang, H.H.; Wang, L.C.; Huan, J.L.; Young, L.H.; Cheng, M.T.; Chiang, P.C. (2011). The influences of diesel particulate filter installation on air pollutant emissions for used vehicles. AAQR, 11(5):578-583.

U.S.EPA (1978). Selection of transient cycles for heavy duty vehicles. Report Number NTIS PB-294 221; prepared by U.S. Government Printing Office, Washington, DC.

U.S.EPA (1995). Draft user's guide to PART5: A program for calculating particle emissions from motor vehicles. Report Number EPA-AA-AQAB-94-2; prepared by US EPA, Office of Mobile Sources, Ann Arbor, MI, http://www.epa.gov/oms/models/part5/part5ug.pdf.

U.S.EPA (1996). 40 CFR part 86: Final regulations for revisions to the Federal Test Procedure for emissions from motor vehicles. Federal Register, 61(205):54852-54906. http://www.gpo.gov/fdsys/pkg/FR-1996-10-22/pdf/96-24485.pdf.

U.S.EPA (2000a). Health assessment document for diesel exhaust - SAB review draft. Report Number EPA/600/8-90/057E; prepared by U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington, DC, http://www.epa.gov/ncea/pdfs/diesel/frmatterfinal.pdf.

U.S.EPA (2000b). Canada-U.S. Air Quality Agreement - Ozone Annex (2000): Amending The "Agreement between the government of Canada and the government of the United Sates of America on Air Quality". prepared by U.S. Environmental Protection Agency, Washington, DC, http://www.ec.gc.ca/air/default.asp?lang=En&n=FA26FE79-1.

U.S.EPA (2001). 40 CFR Parts 69, 80, and 86: Control of air pollution from new motor vehicles: Heavy-duty engine and vehicle standards and highway diesel fuel sulfur control requirements - final rule. Federal Register, 66(12):5001-5193.

U.S.EPA (2004a). Test procedures for highway and nonroad engines and omnibus technical amendments. Report Number EPA420-D-04-004; prepared by U.S. Environmental Protection Agency, Ann Arbor, MI, http://www.epa.gov/oms/regs/techamendments/420d04004.pdf.

U.S.EPA (2004b). Control of emissions of air pollution from nonroad diesel engines and fuel: Final rule. Federal Register, 69(124):38958-39273. http://epa.gov/nonroad-diesel/2004fr.htm.

U.S.EPA (2008a). MOBILE6 Vehicle Emission Modeling Software. prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, http://www.epa.gov/oms/m6.htm.

U.S.EPA (2008b). NONROAD model (nonroad engines, equipment, and vehicles). prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, http://www.epa.gov/omswww/nonrdmdl.htm.

U.S.EPA (2008c). AMTIC PAMS information. prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC, http://www.epa.gov/ttn/amtic/pamsmain.html.

U.S.EPA (2013). MOVES (Motor Vehicle Emission Simulator). prepared by U.S. Environmental Protection Agency, Ann Arbor, MI, http://www.epa.gov/otaq/models/moves/index.htm.

Uhrner, U.; von Lowis, S.; Vehkamaki, H.; Wehner, B.; Brasel, S.; Hermann, M.; Stratmann, F.; Kulmala, M.; Wiedensohler, A. (2007). Dilution and aerosol dynamics within a diesel car exhaust plume - CFD simulations of on-road measurement conditions. Atmos. Environ., 41:7440-7461.

Unal, A.; Frey, H.C.; Rouphail, N.M. (2004). Quantification of highway vehicle emissions hot spots based upon on-board measurements. J. Air Waste Manage. Assoc., 54(2):130-140.

Virkkula, A.; Makela, T.; Hillamo, R.; Yli-Tuomi, T. (2007). A simple procedure for correcting loading effects of aethalometer data. J. Air Waste Manage. Assoc., 57(10):1214-1222.

Vlieger, I.D. (1997). On-board emission and fuel consumption measurement campaign on petrol-driven passenger cars. Atmos. Environ., 31(22):3753-3761.

Vogt, R.; Scheer, V.; Casati, R.; Benter, T. (2003). On-road measurement of particle emission in the exhaust plume of a diesel passenger car. Environ. Sci. Technol., 37(18):4070-4076.

Page 145: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-15

Vouitsis, E.; Ntziachristos, L.; Samaras, Z. (2005). Modelling of diesel exhaust aerosol during laboratory sampling. Atmos. Environ., 39(7):1335-1345.

Wallace, H.W.; Jobson, B.T.; Erickson, M.H.; McCoskey, J.K.; VanReken, T.M.; Lamb, B.K.; Vaughan, J.K.; Hardy, R.J.; Cole, J.L.; Strachan, S.M.; Zhang, W. (2012). Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories. Atmos. Environ., 63:289-297.

Wang, G.H.; Kawamura, K.; Xie, M.J.; Hu, S.Y.; Cao, J.J.; An, Z.S.; Watson, J.G.; Chow, J.C. (2009a). Organic molecular compositions and size distributions of Chinese summer and autumn aerosols from Nanjing: Characteristic haze event caused by wheat straw burning. Environ. Sci. Technol., 43(17):6493-6499.

Wang, H.K.; Fu, L.X. (2010). Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 1-Modeling fuel consumption and emissions based on speed and vehicle-specific power. J. Air Waste Manage. Assoc., 60(12):1463-1470.

Wang, M.; Zhu, T.; Zheng, J.; Zhang, R.Y.; Zhang, S.Q.; Xie, X.X.; Han, Y.Q.; Li, Y. (2009b). Use of a mobile laboratory to evaluate changes in on-road air pollutants during the Beijing 2008 Summer Olympics. Atmos. Chem. Phys., 9(21):8247-8263.

Wang, X.L.; Watson, J.G.; Chow, J.C.; Gronstal, S.; Kohl, S.D. (2012a). An efficient multipollutant system for measuring real-world emissions from stationary and mobile sources. AAQR, 12(1):145-160. http://aaqr.org/VOL12_No2_April2012/1_AAQR-11-11-OA-0187_145-160.pdf.

Wang, X.L.; Robbins, C.; Hoekman, S.K.; Chow, J.C.; Watson, J.G.; Schuetzle, D. (2011). Dilution sampling and analysis of particulate matter in biomass-derived syngas. Frontiers of Environmental Science and Engineering in China, 5(3):320-330.

Wang, X.L.; Chancellor, G.; Evenstad, J.; Farnsworth, J.E.; Hase, A.; Olson, G.M.; Sreenath, A.; Agarwal, J.K. (2009c). A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Sci. Technol., 43:939-950.

Wang, X.L.; Watson, J.G.; Chow, J.C.; Kohl, S.D.; Chen, L.-W.A.; Sodeman, D.A.; Legge, A.H.; Percy, K.E. (2012b). Measurement of real-world stack emissions with a dilution sampling system. In Alberta Oil Sands: Energy, Industry, and the Environment, Percy, K. E., Ed.; Elsevier Press: Amsterdam, The Netherlands, 171-192.

Watson, J.G.; Chow, J.C.; Fujita, E.M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ., 35(9):1567-1584.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Kohl, S.D. (2010). Emission characterization plans for the Athabasca Oil Sands Region. In Proceedings, 103rd Annual Meeting of the Air & Waste Management Association, Tropp, R. J., Legge, A. H., Eds.; Air & Waste Management Association: Pittsburgh, PA, 1-6.

Watson, J.G.; Chow, J.C.; Pritchett, L.C.; Houck, J.E.; Ragazzi, R.A. (1990). Chemical source profiles for particulate motor vehicle exhaust under cold and high altitude operating conditions. Sci. Total Environ., 93(Apr.):183-190.

Watson, J.G.; Chen, L.-W.A.; Chow, J.C.; Lowenthal, D.H.; Doraiswamy, P. (2008a). Source apportionment: Findings from the U.S. Supersite Program. J. Air Waste Manage. Assoc., 58(2):265-288. http://pubs.awma.org/gsearch/journal/2008/2/10.3155-1047-3289.58.2.265.pdf.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Kohl, S.D.; Sodeman, D.A. (2013a). Measurement of real-world stack emissions in the Athabasca Oil Sands Region with a dilution sampling system during August, 2008. prepared by Desert Research Institute, Reno, NV USA.

Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.P.; Fujita, E.M.; Wilson, W.E. (2002). Receptor modeling application framework for particle source apportionment. Chemosphere, 49(9):1093-1136.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Kohl, S.D.; Chen, L.-W.A.; Etyemezian, V. (2012). Overview of real-world emission characterization methods. In Alberta Oil Sands: Energy, Industry, and the Environment, Percy, K. E., Ed.; Elsevier Press: Amsterdam, The Netherlands, 145-170.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Kohl, S.D.; Gronstal, S.; Zielinska, B. (2013b). Measurement of real-world stack emissions in the Athabasca Oil Sands Region with a dilution sampling system during March, 2011. prepared by Desert Research Institute, Reno, NV USA.

Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; Robbins, R. (1994). Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles. Atmos. Environ., 28(15):2493-2505.

Watson, J.G.; Fujita, E.M.; Chow, J.C.; Zielinska, B.; Richards, L.W.; Neff, W.D.; Dietrich, D. (1998). Northern Front Range Air Quality Study. Final report. prepared by Desert Research Institute, Reno, NV, for Colorado State University, Fort Collins, CO.

Page 146: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-16

Watson, J.G.; Barber, P.W.; Chang, M.-C.O.; Chow, J.C.; Etyemezian, V.; Green, M.C.; Keislar, R.E.; Kuhns, H.D.; Mazzoleni, C.; Moosmüller, H.; Nicolic, D.; Whitaker, C.E. (2007). Southern Nevada Air Quality Study - Final Report. Report Number FTA-NV-26-7003-2006.01; prepared by Desert Research Institute, Reno, NV, for Federal Transit Administration, Washington DC.

Watson, J.G.; Miller, J.W.; Moosmüller, H.; Kuhns, H.D.; Chow, J.C.; Chang, O.M.C.; Nussbaum, N.J.; Mazzoleni, C.; Zhu, D.; Barber, P.W.; Kemme, M.R.; Cocker, D.R. (2008b). Characterization of off-road diesel emissions of criteria pollutants. Report Number WP-1336; prepared by Desert Research Institute, Reno, NV and CE-CERT, University of California, Riverside, CA, Reno, NV, for Strategic Environmental Research and Development Program, http://www.serdp.org/Program-Areas/Weapons-Systems-and-Platforms/Noise-and-Emissions/Air-Emissions/WP-1336/WP-1336/(language)/eng-US.

Weaver, C.S.; Balam-Almanza, M.V. (2001). Development of the 'RAVEM' Ride-Along Vehicle Emission Measurement system for gaseous and particulate emissions (paper no. 2001-01-3644). Warrendale, PA, Society of Automotive Engineers. 2001.

Weingartner, E.; Saathoff, H.; Schnaiter, M.; Streit, N.; Bitnar, B.; Baltensperger, U. (2003). Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci., 34(10):1445-1463.

Weiss, M.; Bonnel, P.; Hummel, R.; Provenza, A.; Manfredi, U. (2011). On-road emissions of light-duty vehicles in Europe. Environ. Sci. Technol., 45(19):8575-8581.

Weiss, M.; Bonnel, P.; Kuhlwein, J.; Provenza, A.; Lambrecht, U.; Alessandrini, S.; Carriero, M.; Colombo, R.; Forni, F.; Lanappe, G.; Le Lijour, P.; Manfredi, U.; Montigny, F.; Sculati, M. (2012). Will Euro 6 reduce the NOx emissions of new diesel cars? - Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos. Environ., 62:657-665.

Weitkamp, E.A.; Hartz, K.E.H.; Sage, A.M.; Donahue, N.M.; Robinson, A.L. (2008). Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for meat cooking emissions. Environ. Sci. Technol., 42(14):5177-5182.

Whitby, K.T.; Liu, B.Y.H.; Husar, R.B.; Barsic, N.J. (1972). The Minnesota aerosol-analyzing system used in the Los Angeles smog project. In Aerosols and Atmospheric Chemistry, Hidy, G. M., Ed.; Academic Press: New York, 189-217.

Wu, Y.; Zhang, S.J.; Li, M.L.; Ge, Y.S.; Shu, J.W.; Zhou, Y.; Xu, Y.Y.; Hu, J.N.; Liu, H.; Fu, L.X.; He, K.B.; Hao, J.M. (2012). The challenge to NOx emission control for heavy-duty diesel vehicles in China. Atmos. Chem. Phys., 12(19):9365-9379.

Yadav, V.K.; Prasad, S.; Patel, D.K.; Khan, A.H.; Tripathi, M.; Shukla, Y. (2010). Identification of polycyclic aromatic hydrocarbons in unleaded petrol and diesel exhaust emission. Environ. Mon. Assess., 168(1-4):173-178.

Yanowitz, J. (2003). Particulate matter emissions during transient locomotive operation: Preliminary study. J. Air Waste Manage. Assoc., 53(10):1241-1247.

Yanowitz, J.; McCormick, R.L.; Graboski, M.S. (2000). In-use emissions from heavy-duty diesel vehicles. Environ. Sci. Technol., 34(5):729-740.

Yao, Z.L.; Wang, Q.D.; He, K.B.; Huo, H.; Ma, Y.L.; Zhang, Q. (2007). Characteristics of real-world vehicular emissions in Chinese cities. J. Air Waste Manage. Assoc., 57(11):1379-1386.

Yli-Tuomi, T.; Aarnio, P.; Pirjola, L.; Makela, T.; Hillamo, R.; Jantunen, M. (2005). Emissions of fine particles, NOx, and CO from on-road vehicles in Finland. Atmos. Environ., 39(35):6696-6706.

Yu, F.Q. (2006). Effect of ammonia on new particle formation: A kinetic H2SO4-H2O-NH3 nucleation model constrained by laboratory measurements. Journal of Geophysical Research-Atmospheres, 111(D1)

Yuan, C.S.; Lin, H.Y.; Lee, W.J.; Lin, Y.C.; Wu, T.S.; Chen, K.F. (2007). A new alternative fuel for reduction of polycyclic aromatic hydrocarbon and particulate matter emissions from diesel engines. J. Air Waste Manage. Assoc., 57(4):465-471.

Zavala, M.; Herndon, S.C.; Wood, E.C.; Onasch, T.B.; Knighton, W.B.; Marr, L.C.; Kolb, C.E.; Molina, L.T. (2009a). Evaluation of mobile emissions contributions to Mexico City's emissions inventory using on-road and cross-road emission measurements and ambient data. Atmos. Chem. Phys., 9(17):6305-6317.

Zavala, M.; Herndon, S.C.; Slott, R.S.; Dunlea, E.J.; Marr, L.C.; Shorter, J.H.; Zahniser, M.; Knighton, W.B.; Rogers, T.M.; Kolb, C.E.; Molina, L.T.; Molina, M.J. (2006). Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign. Atmos. Chem. Phys., 6:5129-5142.

Zavala, M.; Herndon, S.C.; Wood, E.C.; Jayne, J.T.; Nelson, D.D.; Trimborn, A.M.; Dunlea, E.; Knighton, W.B.; Mendoza, A.; Allen, D.T.; Kolb, C.E.; Molina, M.J.; Molina, L.T. (2009b). Comparison of emissions from on-

Page 147: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

7-17

road sources using a mobile laboratory under various driving and operational sampling modes. Atmos. Chem. Phys., 9(1):1-14.

Zhai, H.B.; Frey, H.C.; Rouphail, N.M.; Goncalves, G.A.; Farias, T.L. (2009). Comparison of flexible fuel vehicle and life-cycle fuel consumption and emissions of selected pollutants and greenhouse gases for ethanol 85 versus gasoline. J. Air Waste Manage. Assoc., 59(8):912-924.

Zhang, K.; Frey, C. (2008). Evaluation of response time of a portable system for in-use vehicle tailpipe emissions measurement. Environ. Sci. Technol., 42(1):221-227.

Zhang, K.M.; Wexler, A.S. (2002). A hypothesis for growth of fresh atmospheric nuclei. J. Geophys. Res., 107(D21):AAC 15-1-AAC 15-6. DOI:10.1029/2002JD002180.

Zhang, K.M.; Wexler, A.S. (2004). Evolution of particle number distribution near roadways Part I: Analysis of aerosol dynamics and its implications for engine emission measurement. Atmos. Environ., 38(38):6643-6653.

Zhang, K.M.; Wexler, A.S.; Zhu, Y.F.; Hinds, W.C.; Sioutas, C. (2004). Evolution of particle number distribution near roadways Part II: The 'road-to-ambient' process. Atmos. Environ., 38(38):6655-6665.

Zhang, K.M.; Wexler, A.S.; Niemeier, D.A.; Zhu, Y.F.; Hinds, W.C.; Sioutas, C. (2005). Evolution of particle number distribution near roadways. Part III: Traffic analysis and on-road size resolved particulate emission factors. Atmos. Environ., 39(22):4155-4166.

Zhang, K.S.; Frey, H.C. (2006). Road grade estimation for on-road vehicle emissions modeling using light detection and ranging data. J. Air Waste Manage. Assoc., 56(6):777-788. ISI:000238176000007.

Zhang, Y.; Bishop, G.A.; Stedman, D.H. (1994). Automobile emissions are statistically -distributed. Environ. Sci. Technol., 28(7):1370-1374.

Zhu, D.Z.; Nusssbaum, N.J.; Kuhns, H.D.; Chang, M.-C.O.; Sodeman, D.A.; Moosmüller, H.; Watson, J.G. (2011). Real-world PM, NOx, CO, and ultrafine particle emission factors for military non-road heavy duty diesel vehicles. Atmos. Environ., 45:2603-2609.

Zhu, D.Z.; Nussbaum, N.J.; Kuhns, H.D.; Chang, M.C.O.; Sodeman, D.; Uppapalli, S.; Moosmüller, H.; Chow, J.C.; Watson, J.G. (2009). In-Plume Emission Test Stand 2: Emission factors for 10-to 100-kW US military generators. J. Air Waste Manage. Assoc., 59(12):1446-1457. http://pubs.awma.org/gsearch/journal/2009/12/10.3155-1047-3289.59.12.1446.pdf.

Zielinska, B.; Fujita, E.M. (1994). Organic gas sampling. In Environmental Sampling for Trace Analysis, Markert, B., Ed.; VCH Publishers: New York, NY, 163-184.

Zielinska, B.; Sagebiel, J.C.; Whitney, K.; Lawson, D.R. (2004). Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J. Air Waste Manage. Assoc., 54(9):1138-1150.

Zielinska, B.; Campbell, D.E.; Lawson, D.R.; Ireson, R.G.; Weaver, C.S.; Hesterberg, T.W.; Larson, T.; Davey, M.; Liu, L.J.S. (2008). Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics. Environ. Sci. Technol., 42(15):5661-5666.

Page 148: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-1

A. Appendix A:Daily and Annual Emission Rates Tables A-1 through A-7 estimate emission rates for the measured species for 24-hour

operation of a heavy hauler for one day and one year.

Page 149: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-2

Table A-1. Daily and annual emission rates(ER) for major gaseous and particulate pollutants.

Species Daily ER (kg/day) Annual ER (tonnes/year) CAT 797B-1 CAT 797B-2 Grand Average CAT 797B-1 CAT 797B-2 Grand Average

GH

G CO2 14759 ± 27 14782 ± 26 14767 ± 28 5387 ± 10 5395 ± 10 5390 ± 10

CH4 8.3 ± 2.4 6.8 ± 3.1 7.6 ± 2.6 3.0 ± 0.9 2.5 ± 1.1 2.8 ± 0.9

Oth

er g

ases

CO 45.1 ± 17.4 30.7 ± 16.8 39.7 ± 17.6 16.5 ± 6.4 11.2 ± 6.1 14.5 ± 6.4 NO 141.7 ± 7.6 148.1 ± 32.8 145.5 ± 23.7 51.7 ± 2.8 54.0 ± 12.0 53.1 ± 8.7 NO2 13.8 ± 6.5 18.7 ± 5.0 16.8 ± 5.5 5.1 ± 2.4 6.8 ± 1.8 6.1 ± 2.0 NOx 155.6 ± 14.1 166.8 ± 37.7 162.3 ± 28.3 56.8 ± 5.1 60.9 ± 13.8 59.2 ± 10.3 SO2 1.8E-02 ± 1.6E-02 3.7E-02 ± 4.7E-02 2.5E-02 ± 2.9E-02 6.5E-03 ± 5.7E-03 1.4E-02 ± 1.7E-02 9.2E-03 ± 1.1E-02 H2S 2.6E-04 ± 3.6E-04 1.1E-04 ± 1.9E-04 2.0E-04 ± 3.0E-04 9.4E-05 ± 1.3E-04 4.0E-05 ± 6.9E-05 7.4E-05 ± 1.1E-04 NH3 1.2E-04 ± 1.7E-04 6.9E-04 ± 1.2E-03 3.4E-04 ± 7.1E-04 4.6E-05 ± 6.3E-05 2.5E-04 ± 4.4E-04 1.2E-04 ± 2.6E-04 NMHC 3.19 ± 1.54 4.46 ± 1.36 3.73 ± 1.51 1.16 ± 0.56 1.63 ± 0.50 1.36 ± 0.55

PM

Number 2.4E+15 ± 6.7E+14 2.5E+16 ± 1.5E+16 1.1E+16 ± 1.4E+16 8.8E+14 ± 2.5E+14 9.3E+15 ± 5.3E+15 4.0E+15 ± 5.2E+15 PM2.5 2.42 ± 0.66 3.76 ± 1.66 2.92 ± 1.24 0.88 ± 0.24 1.37 ± 0.61 1.07 ± 0.45 BC 2.32 ± 0.54 2.31 ± 0.60 2.32 ± 0.51 0.85 ± 0.20 0.84 ± 0.22 0.85 ± 0.19

Page 150: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-3

Table A-2. Daily and annual emission rates of identified non-methane hydrocarbon (NMHC). Species with the highest emission factors species are highlighted in green, and the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow.

Compound Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand Average CAT 797B-1 CAT 797B-2 Grand Average

PAMS Compound Acetylene 150.8 ± 22.6 204.1 ± 132.1 173.7 ± 83.0 55.1 ± 8.2 74.5 ± 48.2 63.4 ± 30.3 Ethylene 834.4 ± 397.0 890.6 ± 154.2 858.5 ± 296.0 304.6 ± 144.9 325.1 ± 56.3 313.3 ± 108.0 Ethane 219.8 ± 275.2 160.8 ± 120.3 194.5 ± 209.0 80.2 ± 100.5 58.7 ± 43.9 71.0 ± 76.3 Propylene 342.3 ± 168.9 324.4 ± 17.1 334.7 ± 120.2 124.9 ± 61.7 118.4 ± 6.2 122.1 ± 43.9 Propane 57.4 ± 67.8 40.9 ± 23.5 50.3 ± 50.6 20.9 ± 24.7 14.9 ± 8.6 18.4 ± 18.5 1-Butene 226.3 ± 196.9 177.3 ± 74.6 205.3 ± 148.1 82.6 ± 71.9 64.7 ± 27.2 74.9 ± 54.0 cis-2-Butene 12.6 ± 8.2 14.7 ± 4.7 13.5 ± 6.5 4.6 ± 3.0 5.4 ± 1.7 4.9 ± 2.4 trans-2-Butene 22.4 ± 18.0 24.3 ± 11.5 23.2 ± 14.4 8.2 ± 6.6 8.9 ± 4.2 8.5 ± 5.2 n-Butane 85.1 ± 94.8 57.9 ± 40.3 73.5 ± 72.4 31.1 ± 34.6 21.1 ± 14.7 26.8 ± 26.4 Isobutane 9.5 ± 2.3 6.0 ± 2.7 8.0 ± 3.0 3.5 ± 0.9 2.2 ± 1.0 2.9 ± 1.1 Isopentane 10.0 ± 5.2 9.0 ± 3.8 9.6 ± 4.3 3.7 ± 1.9 3.3 ± 1.4 3.5 ± 1.6 1-Pentene 81.8 ± 56.5 67.2 ± 25.0 75.5 ± 43.2 29.8 ± 20.6 24.5 ± 9.1 27.6 ± 15.8 n-Pentane 49.8 ± 38.5 33.6 ± 18.2 42.9 ± 30.4 18.2 ± 14.1 12.3 ± 6.6 15.6 ± 11.1 Isoprene 0.6 ± 0.1 0.9 ± 0.5 1.4 ± 0.0 0.2 ± 0.0 0.3 ± 0.2 0.5 ± 0.0 trans-2-Pentene 19.2 ± 15.7 17.3 ± 8.1 18.4 ± 12.1 7.0 ± 5.7 6.3 ± 2.9 6.7 ± 4.4 cis-2-Pentene 6.9 ± 4.6 6.6 ± 2.4 6.8 ± 3.5 2.5 ± 1.7 2.4 ± 0.9 2.5 ± 1.3 2,2-Dimethylbutane 1.7 ± 0.6 2.9 ± 2.3 2.2 ± 1.5 0.6 ± 0.2 1.1 ± 0.8 0.8 ± 0.6 Cyclopentane 1.2 ± 0.8 1.7 ± 0.7 1.4 ± 0.8 0.4 ± 0.3 0.6 ± 0.3 0.5 ± 0.3 2,3-Dimethylbutane 19.5 ± 10.0 41.4 ± 12.7 28.9 ± 15.5 7.1 ± 3.6 15.1 ± 4.6 10.5 ± 5.7 2-Methylpentane 1.9 ± 1.0 2.4 ± 1.7 2.1 ± 1.3 0.7 ± 0.4 0.9 ± 0.6 0.8 ± 0.5 3-Methylpentane 15.0 ± 10.8 12.3 ± 6.0 13.8 ± 8.5 5.5 ± 3.9 4.5 ± 2.2 5.0 ± 3.1 2-Methyl-1-Pentene 60.6 ± 38.4 49.9 ± 21.6 56.0 ± 30.4 22.1 ± 14.0 18.2 ± 7.9 20.4 ± 11.1 n-Hexane 56.7 ± 35.1 37.9 ± 19.0 48.7 ± 28.9 20.7 ± 12.8 13.8 ± 6.9 17.8 ± 10.6 Methylcyclopentane 6.4 ± 3.6 4.3 ± 1.7 5.5 ± 2.9 2.3 ± 1.3 1.6 ± 0.6 2.0 ± 1.1 2,4-Dimethylpentane 7.5 ± 4.0 8.9 ± 3.2 8.1 ± 3.5 2.8 ± 1.5 3.3 ± 1.2 3.0 ± 1.3 Benzene 29.6 ± 11.5 94.1 ± 32.1 57.2 ± 40.0 10.8 ± 4.2 34.3 ± 11.7 20.9 ± 14.6

Page 151: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-4

Table A-2 (continued)

Compound Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand Average CAT 797B-1 CAT 797B-2 Grand Average

PAMS Compound Cyclohexane 4.3 ± 2.0 3.1 ± 1.2 3.8 ± 1.7 1.6 ± 0.7 1.1 ± 0.4 1.4 ± 0.6

2-Methylhexane 25.7 ± 5.8 37.6 ± 17.4 30.8 ± 12.6 9.4 ± 2.1 13.7 ± 6.4 11.2 ± 4.6

2,3-Dimethylpentane 29.2 ± 12.6 34.9 ± 15.9 31.6 ± 13.2 10.7 ± 4.6 12.7 ± 5.8 11.5 ± 4.8 3-Methylhexane 1.8 ± 0.6 4.0 ± 2.8 2.5 ± 1.8 0.7 ± 0.2 1.5 ± 1.0 0.9 ± 0.6 2,2,4-Trimethylpentane 12.4 ± 2.7 10.6 ± 4.2 11.6 ± 3.2 4.5 ± 1.0 3.9 ± 1.5 4.2 ± 1.2 n-Heptane 77.3 ± 35.1 1058.5 ± 854.0 497.9 ± 720.3 28.2 ± 12.8 386.4 ± 311.7 181.7 ± 262.9 Methylcyclohexane 6.9 ± 2.5 26.8 ± 16.3 15.4 ± 14.3 2.5 ± 0.9 9.8 ± 6.0 5.6 ± 5.2 2,3,4-Trimethylpentane 9.1 ± 3.5 7.4 ± 3.7 8.4 ± 3.4 3.3 ± 1.3 2.7 ± 1.4 3.1 ± 1.2 Toluene 97.5 ± 25.7 126.4 ± 39.4 109.9 ± 32.9 35.6 ± 9.4 46.1 ± 14.4 40.1 ± 12.0 2-Methylheptane 4.2 ± 1.3 13.8 ± 7.5 8.3 ± 6.8 1.5 ± 0.5 5.1 ± 2.7 3.0 ± 2.5 3-Methylheptane 5.0 ± 2.9 12.7 ± 4.9 8.3 ± 5.4 1.8 ± 1.1 4.6 ± 1.8 3.0 ± 2.0 n-Octane 20.8 ± 7.1 41.1 ± 15.8 29.5 ± 15.1 7.6 ± 2.6 15.0 ± 5.8 10.8 ± 5.5 Ethylbenzene 9.7 ± 2.4 17.5 ± 6.3 13.0 ± 5.8 3.5 ± 0.9 6.4 ± 2.3 4.8 ± 2.1 m/p-Xylene 34.1 ± 5.9 51.5 ± 15.7 41.6 ± 13.7 12.4 ± 2.2 18.8 ± 5.7 15.2 ± 5.0 Styrene 1.8 ± 0.8 4.1 ± 2.8 2.9 ± 2.2 0.7 ± 0.3 1.5 ± 1.0 1.1 ± 0.8 o-Xylene 20.8 ± 1.9 26.4 ± 8.4 23.2 ± 5.9 7.6 ± 0.7 9.6 ± 3.1 8.5 ± 2.1 n-Nonane 57.5 ± 32.1 61.1 ± 23.9 59.1 ± 26.6 21.0 ± 11.7 22.3 ± 8.7 21.6 ± 9.7 Isopropylbenzene 3.2 ± 1.5 5.1 ± 1.7 4.0 ± 1.8 1.2 ± 0.5 1.9 ± 0.6 1.5 ± 0.6 n-Propylbenzene 11.9 ± 3.9 15.6 ± 4.3 13.5 ± 4.2 4.4 ± 1.4 5.7 ± 1.6 4.9 ± 1.5 m-Ethyltoluene 31.5 ± 8.5 38.4 ± 9.5 34.5 ± 8.9 11.5 ± 3.1 14.0 ± 3.5 12.6 ± 3.3 p-Ethyltoluene 11.4 ± 2.6 15.1 ± 4.3 13.0 ± 3.7 4.2 ± 1.0 5.5 ± 1.6 4.7 ± 1.3 1,3,5-Trimethylbenzene 9.3 ± 1.2 11.4 ± 3.3 10.2 ± 2.3 3.4 ± 0.4 4.1 ± 1.2 3.7 ± 0.9 o-Ethyltoluene 15.8 ± 2.1 21.0 ± 6.7 18.0 ± 5.0 5.8 ± 0.8 7.7 ± 2.4 6.6 ± 1.8 1,2,4-Trimethylbenzene 17.6 ± 7.3 33.2 ± 11.3 24.3 ± 11.8 6.4 ± 2.7 12.1 ± 4.1 8.9 ± 4.3 n-Decane 90.9 ± 26.4 98.5 ± 28.2 94.1 ± 25.1 33.2 ± 9.7 36.0 ± 10.3 34.4 ± 9.2 1,2,3-Trimethylbenzene 9.6 ± 4.9 29.4 ± 10.5 18.1 ± 12.7 3.5 ± 1.8 10.7 ± 3.8 6.6 ± 4.6

Page 152: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-5

Table A-2 (continued)

Compound Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand Average CAT 797B-1 CAT 797B-2 Grand Average

PAMS Compound m-Diethylbenzene 8.9 ± 2.7 16.0 ± 5.4 12.0 ± 5.3 3.3 ± 1.0 5.8 ± 2.0 4.4 ± 1.9 p-Diethylbenzene 4.9 ± 1.0 6.9 ± 2.0 5.8 ± 1.7 1.8 ± 0.4 2.5 ± 0.7 2.1 ± 0.6 n-Undecane 34.8 ± 17.7 71.5 ± 22.5 50.5 ± 26.7 12.7 ± 6.5 26.1 ± 8.2 18.4 ± 9.7 Other identified HC 1,3-Butadiene 6.5 ± 4.0 14.4 ± 16.0 9.9 ± 10.6 2.4 ± 1.5 5.3 ± 5.8 3.6 ± 3.9 Isobutylene 55.6 ± 33.8 69.5 ± 28.9 61.5 ± 30.0 20.3 ± 12.3 25.4 ± 10.5 22.5 ± 11.0 1,2-Butadiene 15.3 ± 1.6 20.3 ± 9.4 17.4 ± 6.1 5.6 ± 0.6 7.4 ± 3.4 6.4 ± 2.2 2-Methyl-1-Butene 28.4 ± 15.2 33.9 ± 12.2 30.7 ± 13.2 10.4 ± 5.6 12.4 ± 4.4 11.2 ± 4.8 2-Methyl-2-Butene 2.3 ± 1.1 2.8 ± 1.2 2.5 ± 1.1 0.9 ± 0.4 1.0 ± 0.4 0.9 ± 0.4 Cyclopentene 10.1 ± 5.1 9.9 ± 3.7 10.0 ± 4.2 3.7 ± 1.8 3.6 ± 1.3 3.6 ± 1.5 t-2-Hexene 6.7 ± 4.9 6.5 ± 3.4 6.6 ± 3.9 2.5 ± 1.8 2.4 ± 1.2 2.4 ± 1.4 c-2-Hexene 2.4 ± 1.3 2.2 ± 1.1 2.3 ± 1.1 0.9 ± 0.5 0.8 ± 0.4 0.8 ± 0.4 1,3-Hexadiene 2.3 ± 2.8 3.7 ± 5.5 5.6 ± 5.0 0.8 ± 1.0 1.4 ± 2.0 2.0 ± 1.8 Cyclohexene 6.1 ± 3.6 5.4 ± 2.2 5.8 ± 2.9 2.2 ± 1.3 2.0 ± 0.8 2.1 ± 1.1 1,3-Dimethylcyclopentane 1.1 ± 0.2 1.6 ± 0.7 1.3 ± 0.5 0.4 ± 0.1 0.6 ± 0.3 0.5 ± 0.2 1-Heptene 35.3 ± 21.4 36.2 ± 16.3 35.7 ± 17.8 12.9 ± 7.8 13.2 ± 5.9 13.0 ± 6.5 2,3-Dimethyl-2-Pentene 1.2 ± 0.7 1.7 ± 1.3 1.8 ± 1.1 0.4 ± 0.3 0.6 ± 0.5 0.7 ± 0.4 4-Methylheptane 9.4 ± 8.3 30.5 ± 16.0 18.4 ± 15.7 3.4 ± 3.0 11.1 ± 5.9 6.7 ± 5.7 alpha-Pinene 2.8 ± 3.3 27.3 ± 34.9 22.3 ± 30.2 1.0 ± 1.2 10.0 ± 12.7 8.1 ± 11.0 Indan 9.6 ± 1.0 9.6 ± 3.4 9.6 ± 2.1 3.5 ± 0.4 3.5 ± 1.2 3.5 ± 0.8 Sum of species Sum of Alkanes &cycloalkanes 931 ± 545 1931 ± 948 1359 ± 857 340 ± 199 705 ± 346 496 ± 313 Sum of Alkenes 1780 ± 993 1805 ± 230 1791 ± 715 650 ± 362 659 ± 84 654 ± 261 Sum of Acetylene 151 ± 23 204 ± 132 174 ± 83 55 ± 8 74 ± 48 63 ± 30 Sum of Aromatics 327 ± 53 522 ± 162 410 ± 145 119 ± 19 190 ± 59 150 ± 53 Sum of PAMS 2996 ± 1446 4190 ± 1284 3507 ± 1415 1093 ± 528 1529 ± 469 1280 ± 516 Sum of Identified NMHC 3188 ± 1541 4462 ± 1358 3734 ± 1505 1164 ± 562 1629 ± 496 1363 ± 549

Page 153: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-6

Table A-3. Daily and annual emission rate (ER) of halocarbons.

Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand Average CAT 797B-1 CAT 797B-2 Grand Average

dichloromethane 11.5 ± 1.0 4.3 ± 1.2 8.4 ± 4.0 4.2 ± 0.4 1.6 ± 0.4 3.1 ± 1.5 chlorobenzene <0.6 ± 0.5 0.4 ± 0.2 <0.5 ± 0.1 <0.2 ± 0.2 0.1 ± 0.1 <0.2 ± 0.0 chloroform <1.3 ± 0.7 <1.2 ± 0.4 <1.3 ± 0.4 <0.5 ± 0.3 <0.4 ± 0.1 <0.5 ± 0.1 dichlorodifluoromethane (F-12) 6.1 ± 1.6 8.8 ± 3.9 7.3 ± 2.9 2.2 ± 0.6 3.2 ± 1.4 2.7 ± 1.1 trichloroethylene 0.9 ± 0.3 <1.5 ± 0.7 <1.2 ± 0.3 0.3 ± 0.1 <0.5 ± 0.2 <0.4 ± 0.1

1,3-dichlorobenzene 33.8 ± 13.7 97.3 ± 41.4 61.0 ± 42.6 12.3 ± 5.0 35.5 ± 15.1 22.3 ± 15.6 o-dichlorobenzene <1.1 ± 0.3 <1.7 ± 0.7 <1.4 ± 0.5 <0.4 ± 0.1 <0.6 ± 0.3 <0.5 ± 0.2 p-dichlorobenzene 0.8 ± 0.4 1.7 ± 0.7 1.2 ± 0.7 0.3 ± 0.1 0.6 ± 0.3 0.4 ± 0.3 tetrachloromethane 1.0 ± 0.3 1.3 ± 0.6 1.1 ± 0.4 0.4 ± 0.1 0.5 ± 0.2 0.4 ± 0.2 bromodichloromethane <1.8 ± 0.8 1.9 ± 0.7 1.8 ± 0.7 <0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 tetrachloroethene 1.3 ± 0.4 2.0 ± 0.9 1.6 ± 0.7 0.5 ± 0.1 0.7 ± 0.3 0.6 ± 0.2

1,1,2,2-tetrachloroethane 16.4 ± 1.9 <22.8 ± 14.1 <16.1 ± 7.3 6.0 ± 0.7 <8.3 ± 5.2 <5.9 ± 2.7 1,2-dichlorotetrafluoroethane (F-114) <1.0 ± 0.5 0.4 ± 0.1 <0.7 ± 0.1 <0.4 ± 0.2 0.1 ± 0.1 <0.3 ± 0.0 1,1,2-trichloro-1,2,2-trifluoroethane 0.7 ± 0.3 1.1 ± 0.6 0.9 ± 0.4 0.3 ± 0.1 0.4 ± 0.2 0.3 ± 0.2

Page 154: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-7

Table A-4. Daily and annual emission rate (ER) of speciated PM2.5 particle compositions.

Chemical Species Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

NO2- 7.4 ± 7.6 1.2 ± 1.2 4.8 ± 6.4 2.7 ± 2.8 0.4 ± 0.5 1.7 ± 2.3

Cl- <10.0 <6.3 <8.2 <3.7 <2.3 <3.0

NO3- 9.2 ± 4.3 49.1 ± 23.1 26.3 ± 25.4 3.3 ± 1.6 17.9 ± 8.4 9.6 ± 9.3

PO43- 8.4 ± 2.6 54.9 ± 8.9 28.3 ± 25.4 3.1 ± 0.9 20.0 ± 3.2 10.3 ± 9.3

SO42- 6.1 ± 2.8 11.3 ± 4.7 8.3 ± 4.3 2.2 ± 1.0 4.1 ± 1.7 3.0 ± 1.6

NH4+ 7.2 ± 2.3 6.4 ± 2.5 6.8 ± 2.2 2.6 ± 0.8 2.3 ± 0.9 2.5 ± 0.8

Na+ <1.6 0.9 ± 1.4 <1.3 <0.6 0.3 ± 0.5 <0.5

Mg2+ <0.4 17.3 ± 3.1 <0.3 <0.1 6.3 ± 1.1 <0.1

K+ <1.0 <0.6 <0.8 <0.4 <0.2 <0.3

Ca2+ 4.3 ± 1.3 10.6 ± 1.9 7.0 ± 3.7 1.6 ± 0.5 3.9 ± 0.7 2.6 ± 1.3

OC1 182.9 ± 88.9 1041.5 ± 1077.5 550.9 ± 775.6 66.7 ± 32.4 380.2 ± 393.3 201.1 ± 283.1

OC2 140.6 ± 37.5 301.1 ± 204.0 209.4 ± 148.1 51.3 ± 13.7 109.9 ± 74.5 76.4 ± 54.1

OC3 90.1 ± 9.1 127.6 ± 70.3 106.2 ± 45.7 32.9 ± 3.3 46.6 ± 25.7 38.8 ± 16.7 OC4 27.5 ± 7.3 59.1 ± 26.3 41.0 ± 23.3 10.0 ± 2.7 21.6 ± 9.6 15.0 ± 8.5 OPT <0.9 <0.5 <0.7 <0.3 <0.2 <0.3 OPR <0.9 <0.5 <0.7 <0.3 <0.2 <0.3 OCT 441.0 ± 110.4 1529.3 ± 1374.1 907.4 ± 986.9 161.0 ± 40.3 558.2 ± 501.6 331.2 ± 360.2

OCR 441.0 ± 110.4 1529.3 ± 1374.1 907.4 ± 986.9 161.0 ± 40.3 558.2 ± 501.6 331.2 ± 360.2

EC1 71.5 ± 7.5 734.6 ± 433.1 355.7 ± 433.8 26.1 ± 2.7 268.1 ± 158.1 129.8 ± 158.3 EC2 1358.8 ± 324.4 941.0 ± 112.2 1179.8 ± 326.6 496.0 ± 118.4 343.5 ± 40.9 430.6 ± 119.2 EC3 4.1 ± 4.2 <0.2 <0.2 1.5 ± 1.5 <0.1 <0.1 ECT 1432.6 ± 324.5 1676.2 ± 355.5 1537.0 ± 334.3 522.9 ± 118.4 611.8 ± 129.8 561.0 ± 122.0 ECR 1432.6 ± 324.5 1676.2 ± 355.5 1537.0 ± 334.3 522.9 ± 118.4 611.8 ± 129.8 561.0 ± 122.0

CO32- <0.0 <0.0 <0.0 <0.0 <0.0 <0.0

TC 1873.6 ± 314.0 3205.5 ± 1728.0 2444.4 ± 1245.6 683.9 ± 114.6 1170.0 ± 630.7 892.2 ± 454.6 Na <25.1 <15.8 <20.4 <9.2 <5.8 <7.5

Page 155: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-8

Table A-4 (continued)

Chemical Species Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

Mg <7.6 12.2 ± 3.6 <6.2 <2.8 4.4 ± 1.3 <2.3 Al <3.0 <1.9 <2.4 <1.1 <0.7 <0.9

Si <2.4 4.5 ± 1.0 <2.0 <0.9 1.6 ± 0.4 <0.7

P 3.5 ± 0.5 18.0 ± 0.3 9.7 ± 7.8 1.3 ± 0.2 6.6 ± 0.1 3.5 ± 2.8 S 2.2 ± 1.2 6.4 ± 3.1 4.0 ± 3.0 0.8 ± 0.4 2.3 ± 1.1 1.5 ± 1.1 Cl 0.6 ± 0.5 12.6 ± 14.4 5.7 ± 10.5 0.2 ± 0.2 4.6 ± 5.3 2.1 ± 3.8 K 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.2 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 Ca 9.9 ± 6.2 21.1 ± 5.3 14.7 ± 8.0 3.6 ± 2.3 7.7 ± 1.9 5.4 ± 2.9

Sc <1.3 <0.8 <1.1 <0.5 <0.3 <0.4

Ti <0.2 <0.1 <0.2 <0.1 <0.1 <0.1 V <0.1 <0.0 <0.0 <0.0 <0.0 <0.0 Cr <0.3 <0.2 <0.2 <0.1 <0.1 <0.1 Mn <0.6 <0.4 <0.5 <0.2 <0.1 <0.2 Fe <0.5 0.7 ± 0.2 <0.4 <0.2 0.2 ± 0.1 <0.2

Co <0.0 <0.0 <0.0 <0.0 <0.0 <0.0

Ni <0.1 0.1 ± 0.0 <0.1 <0.0 0.0 ± 0.0 <0.0 Cu 0.5 ± 0.4 0.6 ± 0.2 0.6 ± 0.3 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 Zn 4.4 ± 1.1 23.8 ± 1.3 12.7 ± 10.5 1.6 ± 0.4 8.7 ± 0.5 4.6 ± 3.8 Ga 0.4 ± 0.3 0.3 ± 0.0 0.4 ± 0.2 0.2 ± 0.1 0.1 ± 0.0 0.1 ± 0.1 As <0.1 <0.1 <0.1 <0.0 <0.0 <0.0

Se <0.2 <0.1 <0.2 <0.1 <0.0 <0.1

Br 0.1 ± 0.1 <0.2 <0.2 0.0 ± 0.0 <0.1 <0.1 Rb <0.2 <0.1 <0.1 <0.1 <0.0 <0.1 Sr 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 Yt <0.3 0.1 ± 0.0 <0.2 <0.1 0.0 ± 0.0 <0.1 Zr <0.7 <0.4 <0.6 <0.2 <0.2 <0.2

Nb 0.1 ± 0.1 <0.3 <0.4 0.1 ± 0.0 <0.1 <0.1

Mo 0.2 ± 0.1 0.8 ± 0.1 0.5 ± 0.3 0.1 ± 0.0 0.3 ± 0.0 0.2 ± 0.1 Pd <1.0 <0.7 <0.8 <0.4 <0.2 <0.3

Page 156: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-9

Table A-4 (continued)

Chemical Species Daily ER (g/day) Annual ER (kg/year) CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

Ag <1.0 <0.6 <0.8 <0.4 <0.2 <0.3 Cd <0.8 <0.5 <0.6 <0.3 <0.2 <0.2

In <0.8 <0.5 <0.7 <0.3 <0.2 <0.3

Sn <0.9 0.1 ± 0.0 <0.7 <0.3 0.0 ± 0.0 <0.3 Sb 0.4 ± 0.2 0.9 ± 0.6 0.6 ± 0.5 0.1 ± 0.1 0.3 ± 0.2 0.2 ± 0.2 Cs <0.4 <0.2 <0.3 <0.1 <0.1 <0.1 Ba <0.4 <0.3 <0.3 <0.2 <0.1 <0.1 La <0.3 <0.2 <0.2 <0.1 <0.1 <0.1

Ce <0.3 <0.2 <0.2 <0.1 <0.1 <0.1

Sm <0.6 <0.4 <0.5 <0.2 <0.1 <0.2 Eu <0.9 <0.6 <0.7 <0.3 <0.2 <0.3 Tb <0.7 <0.4 <0.5 <0.2 <0.1 <0.2 Hf <2.6 <1.7 <2.2 <1.0 <0.6 <0.8 Ta <1.7 <1.1 <1.4 <0.6 <0.4 <0.5

Wo <2.4 <1.5 <2.0 <0.9 <0.6 <0.7

Ir <0.8 <0.5 <0.6 <0.3 <0.2 <0.2 Au <1.3 <0.8 <1.1 <0.5 <0.3 <0.4 Hg <0.6 <0.4 <0.5 <0.2 <0.1 <0.2 Tl <0.4 <0.3 <0.4 <0.2 <0.1 <0.1 Pb <0.6 <0.4 <0.5 <0.2 <0.1 <0.2

Ur <1.1 0.4 ± 0.2 <0.9 <0.4 0.1 ± 0.1 <0.3

Sum 1943.5 ± 334.2 3416.5 ± 1785.3 2574.8 ± 1318.4 709.4 ± 122.0 1247.0 ± 651.6 939.8 ± 481.2

Page 157: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-10

Table A-5. Daily and annual emission rate (ER) of Cs, Ba, rare earth elements, and Pb in PM2.5.

Chemical Species

Daily ER (g/day) Annual ER (kg/year) CAT 797B-1

CAT 797B-2

Grand CAT 797B-1

CAT 797B-2

Grand

Cs <0.0357 <0.0244 <0.0312 <0.0130 <0.0089 <0.0114

Ba <0.0036 <0.0024 <0.0031 <0.0013 <0.0009 <0.0011

La <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002

Ce <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002

Pr <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002

Nd <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002

Sm <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Eu <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Gd <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Tb <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Dy <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Ho <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Er <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Tm <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Yb <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002 Lu <0.0007 <0.0005 <0.0006 <0.0003 <0.0002 <0.0002

Pb <0.0021 <0.0015 <0.0019 <0.0008 <0.0005 <0.0007

Page 158: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-11

Table A-6. Daily and annual emission rate (ER) of non-polar speciated organic carbon compounds. Daily ER (mg/day) Annual ER (g/year)

Compound CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

PAHs

acenaphthylene <15.8 <10.2 <13.7 <5.8 <3.7 <5.0

acenaphthene <68.5 <43.9 <59.3 <25.0 <16.0 <21.6

fluorene 4.7 ± 2.6 4.2 ± 0.5 4.5 ± 14.7 1.7 ± 1.0 1.5 ± 0.2 1.6 ± 5.4

phenanthrene 141.0 ± 70.5 170.6 ± 38.5 153.7 ± 209.9 51.5 ± 25.7 62.3 ± 14.0 56.1 ± 76.6

anthracene 156.2 ± 57.4 174.5 ± 20.6 164.0 ± 42.4 57.0 ± 21.0 63.7 ± 7.5 59.9 ± 15.5

fluoranthene 52.5 ± 8.8 93.8 ± 73.3 70.2 ± 65.9 19.2 ± 3.2 34.2 ± 26.8 25.6 ± 24.1

pyrene 76.9 ± 11.9 98.0 ± 63.3 85.9 ± 50.7 28.1 ± 4.3 35.8 ± 23.1 31.4 ± 18.5

benzo[a]anthracene 7.7 ± 4.0 56.5 ± 79.3 28.6 ± 49.4 2.8 ± 1.5 20.6 ± 28.9 10.5 ± 18.0

chrysene 10.5 ± 3.5 65.1 ± 85.4 33.9 ± 53.8 3.8 ± 1.3 23.7 ± 31.2 12.4 ± 19.7

benzo[b]fluoranthene <47.1 47.1 ± 39.1 <40.8 <17.2 17.2 ± 14.3 <14.9

benzo[j+k]fluoranthene <58.3 41.4 ± 28.0 <50.5 <21.3 15.1 ± 10.2 <18.4

benzo[a]fluoranthene <47.1 9.5 ± 6.0 <40.8 <17.2 3.5 ± 2.2 <14.9

benzo[e]pyrene <28.2 54.7 ± 40.0 <24.4 <10.3 20.0 ± 14.6 <8.9

benzo[a]pyrene <35.2 57.1 ± 40.8 <30.5 <12.8 20.8 ± 14.9 <11.1

perylene <18.9 28.5 ± 20.1 <16.4 <6.9 10.4 ± 7.4 <6.0

indeno[1,2,3-cd]pyrene <33.7 9.5 ± 4.2 <29.1 <12.3 3.5 ± 1.5 <10.6

dibenzo[a,h]anthracene <43.6 <28.0 <37.8 <15.9 <10.2 <13.8

benzo[ghi]perylene <53.6 24.2 ± 10.7 <46.4 <19.6 8.8 ± 3.9 <17.0

coronene <81.6 <52.4 <70.7 <29.8 <19.1 <25.8

dibenzo[a,e]pyrene <217.5 <139.6 <188.3 <79.4 <51.0 <68.7

<0.0 <0.0 <0.0 <0.0 <0.0 <0.0

9-fluorenone 60.7 ± 20.8 84.9 ± 25.7 71.1 ± 133.2 22.2 ± 7.6 31.0 ± 9.4 26.0 ± 48.6

dibenzothiophene 5.3 ± 2.1 4.2 ± 1.6 4.8 ± 12.7 1.9 ± 0.8 1.5 ± 0.6 1.8 ± 4.6

1 methyl phenanthrene 61.9 ± 31.0 43.3 ± 2.9 53.9 ± 92.4 22.6 ± 11.3 15.8 ± 1.1 19.7 ± 33.7

2 methyl phenanthrene 24.7 ± 11.8 20.9 ± 2.0 23.1 ± 38.5 9.0 ± 4.3 7.6 ± 0.7 8.4 ± 14.0

3,6 dimethyl phenanthrene <26.7 34.1 ± 24.5 <23.1 <9.7 12.4 ± 8.9 <8.4

methylfluoranthene <34.6 29.6 ± 21.3 <30.0 <12.6 10.8 ± 7.8 <10.9

retene 8.9 ± 5.2 38.6 ± 25.5 21.6 ± 56.2 3.2 ± 1.9 14.1 ± 9.3 7.9 ± 20.5

Page 159: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-12

Table A-6 (continued)

Daily ER (mg/day) Annual ER (g/year)

Compound CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

PAHs

benzo(ghi)fluoranthene 17.1 ± 3.2 83.1 ± 103.0 45.4 ± 68.4 6.2 ± 1.2 30.3 ± 37.6 16.6 ± 25.0

benzo(c)phenanthrene 4.0 ± 1.8 35.4 ± 42.6 17.5 ± 28.0 1.5 ± 0.7 12.9 ± 15.6 6.4 ± 10.2

benzo(b)naphtho[1,2-d]thiophene <79.5 <51.0 <68.8 <29.0 <18.6 <25.1

cyclopenta[cd]pyrene <28.4 <18.2 <24.6 <10.4 <6.6 <9.0

benz[a]anthracene-7,12-dione <77.7 <49.9 <67.2 <28.3 <18.2 <24.5

methylchrysene <27.3 <17.5 <23.7 <10.0 <6.4 <8.6

benzo(b)chrysene <52.8 <33.9 <45.7 <19.3 <12.4 <16.7

picene <70.5 <45.3 <61.0 <25.7 <16.5 <22.3

anthanthrene <52.0 <33.4 <45.0 <19.0 <12.2 <16.4

Alkane/Alkene/Phthalate

n-alkane

n-pentadecane (n-C15) 39.1 ± 26.7 33.9 ± 8.6 36.9 ± 94.6 14.3 ± 9.8 12.4 ± 3.2 13.5 ± 34.5

n-hexadecane (n-C16) 58.5 ± 45.2 66.5 ± 13.9 61.9 ± 80.5 21.3 ± 16.5 24.3 ± 5.1 22.6 ± 29.4

n-heptadecane (n-C17) 67.0 ± 52.8 145.5 ± 54.4 100.7 ± 90.7 24.5 ± 19.3 53.1 ± 19.9 36.7 ± 33.1

n-octadecane (n-C18) 73.5 ± 46.4 311.1 ± 215.4 175.3 ± 182.0 26.8 ± 16.9 113.6 ± 78.6 64.0 ± 66.4

n-nonadecane (n-C19) 145.7 ± 100.7 709.8 ± 554.4 387.5 ± 428.1 53.2 ± 36.8 259.1 ± 202.4 141.4 ± 156.3

n-icosane (n-C20) 128.2 ± 76.7 846.9 ± 760.3 436.2 ± 556.8 46.8 ± 28.0 309.1 ± 277.5 159.2 ± 203.2

n-heneicosane (n-C21) 166.4 ± 82.2 968.8 ± 790.3 510.3 ± 593.8 60.7 ± 30.0 353.6 ± 288.5 186.2 ± 216.7

n-docosane (n-C22) 143.7 ± 77.6 712.7 ± 575.0 387.6 ± 424.6 52.5 ± 28.3 260.1 ± 209.9 141.5 ± 155.0

n-tricosane (n-C23) 165.3 ± 52.9 357.4 ± 359.2 247.6 ± 242.4 60.3 ± 19.3 130.4 ± 131.1 90.4 ± 88.5

n-tetracosane (n-C24) 249.8 ± 128.7 500.6 ± 529.0 357.3 ± 350.8 91.2 ± 47.0 182.7 ± 193.1 130.4 ± 128.1

n-pentacosane (n-C25) 325.4 ± 170.8 655.4 ± 586.5 466.8 ± 420.5 118.8 ± 62.3 239.2 ± 214.1 170.4 ± 153.5

n-hexacosane (n-C26) 271.9 ± 136.2 718.0 ± 732.2 463.1 ± 472.3 99.2 ± 49.7 262.1 ± 267.2 169.0 ± 172.4

n-heptacosane (n-C27) 191.6 ± 134.7 674.9 ± 731.4 398.7 ± 472.4 69.9 ± 49.2 246.3 ± 267.0 145.5 ± 172.4

n-octacosane (n-C28) 328.4 ± 275.4 412.6 ± 411.6 364.5 ± 289.9 119.9 ± 100.5 150.6 ± 150.2 133.0 ± 105.8

n-nonacosane (n-C29) 247.5 ± 169.3 255.6 ± 123.9 251.0 ± 177.7 90.4 ± 61.8 93.3 ± 45.2 91.6 ± 64.9

n-triacontane (n-C30) 203.4 ± 149.5 363.0 ± 97.8 271.8 ± 142.0 74.2 ± 54.6 132.5 ± 35.7 99.2 ± 51.8

Page 160: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-13

Table A-6 (continued)

Daily ER (mg/day) Annual ER (g/year)

Compound CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

n-hentriacotane (n-C31) 142.6 ± 117.0 271.9 ± 270.0 198.0 ± 176.0 52.0 ± 42.7 99.2 ± 98.6 72.3 ± 64.2

n-dotriacontane (n-C32) 104.8 ± 79.0 <37.4 <50.4 38.3 ± 28.9 <13.7 <18.4

n-tritriactotane (n-C33) 156.0 ± 146.7 <29.7 <40.1 56.9 ± 53.5 <10.8 <14.6

n-tetratriactoane (n-C34) <81.3 <52.2 <70.3 <29.7 <19.0 <25.7

n-pentatriacontane (n-C35) <150.5 <96.7 <130.3 <54.9 <35.3 <47.6

n-hexatriacontane (n-C36) <107.8 <69.2 <93.3 <39.3 <25.2 <34.0

n-heptatriacontane (n-C37) <164.9 <105.9 <142.8 <60.2 <38.6 <52.1

n-octatriacontane (n-C38) <179.2 <115.0 <155.1 <65.4 <42.0 <56.6

n-nonatriacontane (n-C39) <271.2 <174.1 <234.8 <99.0 <63.6 <85.7

n-tetracontane (n-C40) <658.3 <422.9 <570.1 <240.3 <154.4 <208.1

iso/anteiso-alkane

iso-nonacosane (iso-C29) 38.8 ± 18.9 169.7 ± 162.4 94.9 ± 112.4 14.2 ± 6.9 62.0 ± 59.3 34.7 ± 41.0

anteiso-nonacosane (anteiso-C29) 44.5 ± 19.6 237.8 ± 130.6 127.3 ± 122.7 16.2 ± 7.2 86.8 ± 47.7 46.5 ± 44.8

iso-triacontane (iso-C30) 42.1 ± 15.0 180.7 ± 138.8 101.5 ± 101.8 15.4 ± 5.5 66.0 ± 50.6 37.1 ± 37.1

anteiso-triacontane (anteiso-C30) 60.8 ± 33.2 167.3 ± 57.0 106.5 ± 80.1 22.2 ± 12.1 61.1 ± 20.8 38.9 ± 29.2

iso-hentriacotane (iso-C31) 41.5 ± 17.3 95.4 ± 77.6 64.6 ± 50.8 15.2 ± 6.3 34.8 ± 28.3 23.6 ± 18.5

anteiso-hentriacotane (anteiso-C31) 47.8 ± 28.0 136.1 ± 134.1 85.6 ± 87.1 17.4 ± 10.2 49.7 ± 49.0 31.3 ± 31.8

iso-dotriacontane (iso-C32) 50.5 ± 24.9 235.1 ± 190.2 129.6 ± 139.4 18.4 ± 9.1 85.8 ± 69.4 47.3 ± 50.9

anteiso-dotriacontane (anteiso-C32) 31.7 ± 12.5 148.2 ± 130.7 81.6 ± 93.8 11.6 ± 4.6 54.1 ± 47.7 29.8 ± 34.2

iso-tritriactotane (iso-C33) <46.3 38.7 ± 52.0 <40.1 <16.9 14.1 ± 19.0 <14.6

anteiso-tritriactotane (anteiso-C33) <46.3 55.4 ± 55.9 <40.1 <16.9 20.2 ± 20.4 <14.6

hopane

22,29,30-trisnorneophopane (Ts) 8.4 ± 1.5 155.9 ± 138.7 71.7 ± 105.2 3.1 ± 0.5 56.9 ± 50.6 26.2 ± 38.4

22,29,30-trisnorphopane (Tm) 3.1 ± 0.7 66.2 ± 92.8 30.2 ± 58.9 1.1 ± 0.3 24.2 ± 33.9 11.0 ± 21.5

αβ-norhopane (C29αβ-hopane) 14.6 ± 3.9 387.0 ± 389.9 174.2 ± 281.7 5.3 ± 1.4 141.3 ± 142.3 63.6 ± 102.8

22,29,30-norhopane (29Ts) 5.3 ± 2.4 103.5 ± 131.1 47.4 ± 86.3 1.9 ± 0.9 37.8 ± 47.8 17.3 ± 31.5

αα- + βα-norhopane (C29αα- + βα -hopane) 4.2 ± 2.8 71.1 ± 97.3 32.9 ± 62.0 1.5 ± 1.0 26.0 ± 35.5 12.0 ± 22.6

αβ-hopane (C30αβ -hopane) 10.7 ± 4.1 211.5 ± 309.7 96.7 ± 194.5 3.9 ± 1.5 77.2 ± 113.1 35.3 ± 71.0

αα-hopane (30αα-hopane) 1.4 ± 0.6 24.4 ± 29.3 11.3 ± 19.6 0.5 ± 0.2 8.9 ± 10.7 4.1 ± 7.2

Page 161: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-14

Table A-6 (continued)

Daily ER (mg/day) Annual ER (g/year)

Compound CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

βα-hopane (C30βα -hopane) 2.1 ± 0.5 16.4 ± 18.2 8.3 ± 12.1 0.8 ± 0.2 6.0 ± 6.6 3.0 ± 4.4

αβS-homohopane (C31αβS-hopane) 7.8 ± 3.0 151.4 ± 148.7 69.3 ± 108.3 2.9 ± 1.1 55.3 ± 54.3 25.3 ± 39.5

αβR-homohopane (C31αβR-hopane) 8.7 ± 4.2 193.3 ± 206.7 87.8 ± 145.6 3.2 ± 1.5 70.5 ± 75.4 32.0 ± 53.1

αβS-bishomohopane (C32αβS-hopane) <7.3 87.3 ± 90.6 <6.4 <2.7 31.9 ± 33.1 <2.3

αβR-bishomohopane (C32αβR-hopane) <8.6 71.9 ± 76.8 <7.4 <3.1 26.2 ± 28.0 <2.7

22S-trishomohopane (C33) <7.3 53.0 ± 55.1 <6.4 <2.7 19.4 ± 20.1 <2.3

22R-trishomohopane (C33) <8.6 46.2 ± 53.3 <7.4 <3.1 16.9 ± 19.5 <2.7

22S-tretrahomohopane (C34) <7.3 26.2 ± 28.2 <6.4 <2.7 9.6 ± 10.3 <2.3

22R-tetrashomohopane (C34) <8.6 28.8 ± 35.7 <7.4 <3.1 10.5 ± 13.0 <2.7

22S-pentashomohopane(C35) <7.3 41.5 ± 53.7 <6.4 <2.7 15.2 ± 19.6 <2.3

22R-pentashomohopane(C35) <8.6 36.7 ± 51.0 <7.4 <3.1 13.4 ± 18.6 <2.7

sterane

ααα 20S-Cholestane <17.5 25.4 ± 25.7 <15.2 <6.4 9.3 ± 9.4 <5.5

αββ 20R-Cholestane <7.5 34.9 ± 39.3 <6.4 <2.7 12.7 ± 14.3 <2.4

αββ 20s-Cholestane <8.6 58.0 ± 47.3 <7.5 <3.1 21.2 ± 17.2 <2.7

ααα 20R-Cholestane <8.6 <5.5 <7.5 <3.1 <2.0 <2.7

ααα 20S 24S-Methylcholestane <10.0 83.3 ± 69.8 <8.6 <3.6 30.4 ± 25.5 <3.2

αββ 20R 24S-Methylcholestane <10.0 23.3 ± 23.8 <8.6 <3.6 8.5 ± 8.7 <3.2

αββ 20S 24S-Methylcholestane <10.0 36.1 ± 38.6 <8.6 <3.6 13.2 ± 14.1 <3.2

ααα 20R 24R-Methylcholestane <11.7 3.8 ± 3.5 <10.1 <4.3 1.4 ± 1.3 <3.7

ααα 20S 24R/S-Ethylcholestane <9.7 26.0 ± 17.6 <8.4 <3.5 9.5 ± 6.4 <3.1

αββ 20R 24R-Ethylcholestane <7.8 1.4 ± 0.9 <6.8 <2.9 0.5 ± 0.3 <2.5

αββ 20S 24R-Ethylcholestane <7.8 <5.0 <6.8 <2.9 <1.8 <2.5

ααα 20R 24R-Ethylcholestane <20.7 5.5 ± 6.7 <17.9 <7.5 2.0 ± 2.5 <6.5

methyl-alkane

2-methylnonadecane 11.0 ± 3.1 100.1 ± 99.4 49.2 ± 69.3 4.0 ± 1.1 36.6 ± 36.3 18.0 ± 25.3

3-methylnonadecane 7.2 ± 3.4 68.0 ± 55.8 33.3 ± 42.4 2.6 ± 1.2 24.8 ± 20.4 12.2 ± 15.5

branched-alkane

pristane 21.5 ± 14.6 60.3 ± 25.3 38.1 ± 41.8 7.9 ± 5.3 22.0 ± 9.2 13.9 ± 15.3

Page 162: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-15

Table A-6 (continued)

Daily ER (mg/day) Annual ER (g/year)

Compound CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

phytane 19.2 ± 9.8 81.1 ± 77.6 45.7 ± 54.2 7.0 ± 3.6 29.6 ± 28.3 16.7 ± 19.8

squalane 27.9 ± 28.6 68.0 ± 51.8 45.1 ± 40.6 10.2 ± 10.4 24.8 ± 18.9 16.5 ± 14.8

cycloalkane

octylcyclohexane 4.4 ± 2.1 3.1 ± 1.4 3.8 ± 2.3 1.6 ± 0.8 1.1 ± 0.5 1.4 ± 0.8

decylcyclohexane 8.4 ± 7.5 7.2 ± 3.9 7.9 ± 5.3 3.1 ± 2.7 2.6 ± 1.4 2.9 ± 2.0

tridecylcyclohexane 2.7 ± 2.1 28.4 ± 21.2 13.7 ± 17.7 1.0 ± 0.8 10.3 ± 7.7 5.0 ± 6.5

n-heptadecylcyclohexane 5.6 ± 2.4 292.8 ± 235.7 128.6 ± 194.3 2.0 ± 0.9 106.9 ± 86.0 47.0 ± 70.9

nonadecylcyclohexane 12.6 ± 4.6 101.4 ± 115.6 50.7 ± 76.0 4.6 ± 1.7 37.0 ± 42.2 18.5 ± 27.7

alkene

1-octadecene 15.5 ± 12.7 29.8 ± 15.2 21.7 ± 38.7 5.7 ± 4.6 10.9 ± 5.5 7.9 ± 14.1

Total

Total PAHs 706.6 ± 179.8 1432.2 ± 723.0 1017.6 ± 1014.9 257.9 ± 65.6 522.8 ± 263.9 371.4 ± 370.4

Total n-alkanes 3720.6 ± 2028.1 8315.7 ± 6148.2 5689.9 ± 4433.1 1358.0 ± 740.2 3035.2 ± 2244.1 2076.8 ± 1618.1

Total iso/anteiso-alkanes 395.9 ± 198.1 1464.4 ± 993.5 853.8 ± 761.4 144.5 ± 72.3 534.5 ± 362.6 311.7 ± 277.9

Total hopanes 75.2 ± 31.1 1772.4 ± 1822.7 802.6 ± 1303.6 27.4 ± 11.4 646.9 ± 665.3 292.9 ± 475.8

Total steranes 12.7 ± 15.7 318.5 ± 283.3 143.8 ± 216.4 4.6 ± 5.7 116.3 ± 103.4 52.5 ± 79.0

Total methyl-alkanes 18.3 ± 6.4 168.2 ± 122.5 82.5 ± 99.1 6.7 ± 2.4 61.4 ± 44.7 30.1 ± 36.2

Total branched-alkanes 68.6 ± 24.4 209.4 ± 91.4 129.0 ± 105.5 25.0 ± 8.9 76.4 ± 33.4 47.1 ± 38.5

Total cycloalkanes 33.6 ± 7.6 432.8 ± 365.9 204.7 ± 280.6 12.3 ± 2.8 158.0 ± 133.5 74.7 ± 102.4

Total alkene 15.5 ± 12.7 29.8 ± 15.2 21.7 ± 38.7 5.7 ± 4.6 10.9 ± 5.5 7.9 ± 14.1

Grand total 5047.0 ± 2129.4 14143.4 ± 10246.8 8945.5 ± 7525.3 1842.2 ± 777.2 5162.3 ± 3740.1 3265.1 ± 2746.7

Page 163: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

A-16

Table A-7. Daily and annual emission rate (ER) of carbohydrates, organic acids and WSOC from PM2.5 particles collected on the quartz filters.

Compound Daily ER (g/day) Annual ER (kg/year) MW CAT 797B-1 CAT 797B-2 Grand CAT 797B-1 CAT 797B-2 Grand

Carbohydrates Glycerol (C3H8O3 ) 92 <0.6916 <0.8078 <0.7352 <0.2524 <0.2948 <0.2683 Inositol (C6H12O6) 180 <0.6916 <0.8078 <0.7352 <0.2524 <0.2948 <0.2683 Erythritol (C4H10O4) 122 <1.0374 <1.2118 <1.1028 <0.3787 <0.4423 <0.4025 Xylitol (C5H12O5 ) 152 <0.6916 <0.8078 <0.7352 <0.2524 <0.2948 <0.2683 Levoglucosan (C6H10O5 ) 162 <1.3832 <1.6157 <1.4704 <0.5049 <0.5897 <0.5367 Sorbitol (C6H14O6 ) 182 <1.7291 <2.0196 <1.8380 <0.6311 <0.7372 <0.6709 Mannosan (C6H10O5 ) 162 <1.0374 <1.2118 <1.1028 <0.3787 <0.4423 <0.4025 Trehalose (C12H22O11 ) 342 <1.3832 <1.6157 <1.4704 <0.5049 <0.5897 <0.5367 Mannitol (C6H14O6 ) 182 <1.0374 <1.2118 <1.1028 <0.3787 <0.4423 <0.4025 Arabinose (C5H10O5) 150 <1.0374 <1.2118 <1.1028 <0.3787 <0.4423 <0.4025 Glucose (C6H12O6 ) 180 <0.6916 <0.8078 <0.7352 <0.2524 <0.2948 <0.2683 Galactose (C6H12O6 ) 180 <1.3832 <1.6157 <1.4704 <0.5049 <0.5897 <0.5367 Maltitol (C12H24O11) 344 <1.7291 <2.0196 <1.8380 <0.6311 <0.7372 <0.6709 Organic Acids Lactic acid (C3H6O3) 90 <1.0374 0.2831 ± 0.7416 <1.1028 <0.3787 <0.1033 <0.4025 Acetic acid (C2H4O2 ) 60 <2.0749 <2.4235 <2.2056 <0.7573 <0.8846 <0.8050 Formic acid (CH2O ) 46 <2.0749 <2.4235 <2.2056 <0.7573 <0.8846 <0.8050 Methanesulfonic acid (CH4SO3 ) 96 <1.3832 <1.6157 <1.4704 <0.5049 <0.5897 <0.5367 Glutaric acid (C5H8O4) 132 <1.7291 <2.0196 <1.8380 <0.6311 <0.7372 <0.6709 Succinic acid (C4H6O4 ) 118 <1.3832 <1.6157 <1.4704 <0.5049 <0.5897 <0.5367 Malonic acid (C3H4O4) 104 <2.0749 <2.4235 <2.2056 <0.7573 <0.8846 <0.8050 Maleic acid (C4H4O4 ) 116 <1.7291 <2.0196 <1.8380 <0.6311 <0.7372 <0.6709 Oxalic acid (C2H2O4) 90 <1.3832 0.5318 ± 0.9887 <1.4704 <0.5049 <0.1941 <0.5367 WSOC Neutral compounds 14.13 ± 12.42 6.42 ± 5.01 11.24 ± 10.54 5.2 ± 4.5 2.3 ± 1.8 4.1 ± 3.8 Mono-/di- carboxylic acids <11.04 <6.42 <9.31 <4.0296 <2.3433 <3.3982 Polycarboxylic acids (including HULIS) <16.42 <10.42 <14.17 <5.9933 <3.8033 <5.1721 Sum of speciated WSOC 24.10 ± 17.95 7.85 ± 8.01 18.00 ± 16.09 8.8 ± 6.6 2.9 ± 2.9 6.6 ± 5.9 Total WSOC 43.03 ± 21.94 39.66 ± 30.16 41.76 ± 22.06 15.7 ± 8.0 14.5 ± 11.0 15.2 ± 8.1

Page 164: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-1

B. Appendix B:Time Series Plots of Emission and Engine Parameters for Each Run

Figures B-1 through B-8 plot the continuous measurements acquired during each valid test run. These figures show the variability of concentrations with the truck operating cycle.

Page 165: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-2

Figure B-1. Time series plots of emission and engine parameters for run S1.

Tail Pipe CO2

(ppm)

020000400006000080000

Diluted CO2

(ppm)

02000400060008000

Background CO2

(ppm)

200

400

600

NumberConcentration

(cm-3)

01e+72e+73e+74e+7

Black CarbonConcentration

(mg/m3)0

1

2

PM2.5 Concentration

(mg/m3)

01020304050

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time

06:10 06:20 06:30 06:40 06:50 07:00 07:10 07:20 07:30 07:40 07:50 08:00

Ground Speed(km/h)

0

20

40

60

DumpLoadIdle Idle

Run S1

Micro aethlometer was overloadedThe readings are low.

Page 166: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-3

Figure B-2. Time series plots of emission and engine parameters for run S2.

Tail Pipe CO2

(ppm)

020000400006000080000

Diluted CO2

(ppm)

0200040006000800010000

Background CO2

(ppm)

200400600800

1000

NumberConcentration

(cm-3)

02e+74e+76e+78e+71e+8

Black CarbonConcentration

(mg/m3)0

1

2

PM2.5 Concentration

(mg/m3)

01020304050

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time

08:08 08:28 08:48 09:08 09:28 09:48 10:08 10:28

Ground Speed(km/h)

0

20

40

60

Dump

LoadIdle IdleLoad

Dump

Load

Dump

Idle

Micro aethlometer was overloadedThe readings are low.

Run S2

Page 167: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-4

Figure B-3. Time series plots of emission and engine parameters for run S3.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

01000200030004000

Background CO2

(ppm)

200400600800

1000

NumberConcentration

(cm-3)

01e+72e+73e+74e+7

Black CarbonConcentration

(mg/m3)0

20406080

100

PM2.5 Concentration

(mg/m3)

0100200300400500

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time

09:50 10:10 10:30 10:50 11:10 11:30 11:50 12:10

Ground Speed(km/h)

0

20

40

60

Idle

Dump Dump Dump

Load Load LoadIdle Idle

The filter mass used to scale the DRX reading was abnormally high.

Run S3

Page 168: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-5

Figure B-4. Time series plots of emission and engine parameters for run S4.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

0

2000

4000

6000

Background CO2

(ppm)

200

400

600

NumberConcentration

(cm-3)02e+74e+76e+78e+7

Black CarbonConcentration

(mg/m3)0

20

40

PM2.5 Concentration

(mg/m3)

0

20406080

CO(ppm)

0

200

400

600

NO(ppm)

02004006008001000

NO2

(ppm)

020406080

SO2

(ppm)010203040

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time

12:39 12:49 12:59 13:09 13:19 13:29 13:39 13:49 13:59 14:09 14:19

Ground Speed(km/h)

0

20

40

60

IdleDump Dump

Load LoadIdle

Run S4

Page 169: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-6

Figure B-5. Time series plots of emission and engine parameters for run S5.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

0

2000

4000

6000

Background CO2

(ppm)

200

300

400

500

NumberConcentration

(cm-3)

01e+72e+73e+74e+7

Black CarbonConcentration

(mg/m3)0

20

40

PM2.5 Concentration

(mg/m3)

010203040

CO(ppm)

0

200

400

600

NO(ppm)

02004006008001000

NO2

(ppm)

0

20

40

60

SO2

(ppm)

0

5

10

Engine Speed(rpm)

0

1000

2000

Engine Load(%)

020406080100

Time 14:38 14:58 15:18 15:38 15:58 16:18 16:38 16:58 17:18

Ground Speed(km/h)

020406080

Idle

Dump Dump Dump Dump

Load Load Load LoadRefuel

Run S5

Page 170: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-7

Figure B-6. Time series plots of emission and engine parameters for run A1.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

0

4000

8000

12000

Background CO2

(ppm)

200

400

600

NumberConcentration

(cm-3)

01e+82e+83e+84e+8

Black CarbonConcentration

(mg/m3)0

20

40

60

PM2.5 Concentration

(mg/m3)

020406080100

CO(ppm)

0200400600800

NO(ppm)

0500100015002000

NO2

(ppm)

0

40

80

120

Time 08:45 09:05 09:25 09:45 10:05 10:25 10:45 11:05 11:25

SO2

(ppm)

0

40

80

120

IdleDump

LoadIdleLeaveParking

Lot

LeaveParking

Lot

Idle IdleReachLoading

Area

Run A1

Page 171: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-8

Figure B-7. Time series plots of emission and engine parameters for run A2.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

03000600090001200015000

Background CO2

(ppm)

200

400

600

NumberConcentration

(cm-3)

01e+82e+83e+84e+8

Black CarbonConcentration

(mg/m3)0

20

40

PM2.5 Concentration

(mg/m3)

0

20

40

60

CO(ppm)

0100200300400500

NO(ppm)

0200400600800

NO2

(ppm)

0

20

40

60

Time 12:10 12:30 12:50 13:10 13:30 13:50 14:10 14:30 14:50

SO2

(ppm)

0

10

20

30

Idle

Dump

LoadLoad

Dump

Idle

Run A2

Page 172: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

B-9

Figure B-8. Time series plots of emission and engine parameters for run A3.

Tail Pipe CO2

(ppm)

0

20000

40000

60000

Diluted CO2

(ppm)

02000400060008000

Background CO2

(ppm)

200400600800

1000

NumberConcentration

(cm-3)

0.05.0e+71.0e+81.5e+82.0e+8

Black CarbonConcentration

(mg/m3)0

20

40

60

PM2.5 Concentration

(mg/m3)

020406080

CO(ppm)

0200400600800

NO(ppm)

040080012001600

NO2

(ppm)

0

50

100

Time 15:10 15:30 15:50 16:10 16:30 16:50 17:10 17:30

SO2

(ppm)

0

50

100

150

Idle LoadLoad IdleDump Load Dump Dump

Run A3

Page 173: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-1

C. Appendix C: Fuel Based Emission Factors for Idle, Load-to-dump, and Dump-to-load Sub-activities

Figures C-1 through C-8 compare emission factors for different portions of the heavy hauler operating cycle.

Page 174: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-2

Figure C- 1. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S1 (Testo did not work in this run, and the AE51 was overloaded).

Figure C- 2. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S2 (Testo did not work in this run, and the AE51 was overloaded).

3150

3160

3170

3180

3190

3200

Idle Load to dump Dump to park

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)CO2

0.0E+00

2.0E+14

4.0E+14

6.0E+14

8.0E+14

Idle Load to dump Dump to park

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

0

0.3

0.6

0.9

1.2

1.5

Idle Load to dump Dump to park

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

0

0.01

0.02

0.03

0.04

Idle Load to dump Dump to park

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC AE51 was overloaded.

BC reading was low.

3150

3160

3170

3180

3190

3200

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)

CO2

0.0E+00

4.0E+14

8.0E+14

1.2E+15

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

0

0.3

0.6

0.9

1.2

1.5

1 2 3

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Idle Load to dump Dump to load

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC AE51 was overloaded.

BC reading was low.

Page 175: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-3

Figure C- 3. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S3 (Testo did not work in this run).

3150

3160

3170

3180

3190

3200

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)

CO2

0.0E+00

3.0E+14

6.0E+14

9.0E+14

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

0

0.3

0.6

0.9

1.2

1.5

1.8

Idle Load to dump Dump to load

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3

Truck OperationB

C E

mis

sio

n (

g/k

g f

uel

) BC

Page 176: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-4

3150

3160

3170

3180

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)

CO2

0

5

10

15

20

Idle Load to dump Dump to load

Truck Operation

CO

Em

issi

on

(g

/kg

fu

el)

CO

0

20

40

60

Idle Load to dump Dump to load

Truck Operation

NO

Em

issi

on

(g

/kg

fu

el) NO

0

4

8

12

16

Idle Load to dump Dump to load

Truck OperationN

O2

Em

issi

on

(g

/kg

fu

el)

NO2

0

20

40

60

80

Idle Load to dump Dump to load

Truck Operation

NO

X E

mis

sio

n (

g/k

g f

ue

l)

NOX

0

0.5

1

1.5

2

2.5

Idle Load to dump Dump to load

Truck Operation

NO

2 E

mis

sio

n (

g/k

g f

ue

l)

SO2

0

0.3

0.6

0.9

1.2

1.5

Idle Load to dump Dump to load

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

0

0.2

0.4

0.6

Idle Load to dump Dump to load

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC

Page 177: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-5

Figure C- 4. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S4

0.0E+00

5.0E+14

1.0E+15

1.5E+15

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

Page 178: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-6

3150

3160

3170

3180

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)

CO2

0

4

8

12

16

20

Idle Load to dump Dump to load

Truck Operation

CO

Em

issi

on

(g

/kg

fu

el) CO

0

20

40

60

Idle Load to dump Dump to load

Truck Operation

NO

Em

issi

on

(g

/kg

fu

el) NO

0

2

4

6

8

10

12

14

Idle Load to dump Dump to load

Truck OperationN

O2

Em

issi

on

(g

/kg

fu

el) NO2

0

0.02

0.04

0.06

Idle Load to dump Dump to load

Truck Operation

SO

2 E

mis

sio

n (

g/k

g f

ue

l)

SO2

0

20

40

60

80

Idle Load to dump Dump to load

Truck Operation

NO

X E

mis

sio

n (

g/k

g f

uel

)

NOX

0

0.3

0.6

0.9

1.2

1.5

Idle Load to dump Dump to load

Truck Operation

PM

2.5 E

mis

sio

n (

g/k

g f

uel

)

PM2.5 (DRX)

0

0.2

0.4

0.6

Idle Load to dump Dump to load

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC

0.0E+00

4.0E+14

8.0E+14

1.2E+15

1.6E+15

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

Page 179: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-7

Figure C- 5. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run S5.

3150

3160

3170

3180

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)CO2

0

4

8

12

16

Idle Load to dump Dump to load

Truck Operation

CO

Em

issi

on

(g

/kg

fu

el) CO

0

20

40

60

Idle Load to dump Dump to load

Truck Operation

NO

Em

issi

on

(g

/kg

fu

el) NO

0

3

6

9

Idle Load to dump Dump to load

Truck Operation

NO

2 E

mis

sio

n (

g/k

g f

uel

)

NO2

0

20

40

60

Idle Load to dump Dump to load

Truck Operation

NO

x E

mis

sio

n (

g/k

g f

ue

l)

NOx

0

1

2

3

4

5

6

Idle Load to dump Dump to load

Truck Operation

SO

2 E

mis

sio

n (

g/k

g f

ue

l)

SO2

0

0.3

0.6

0.9

1.2

1.5

1.8

Idle Load to dump Dump to load

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5(DRX)

0

0.2

0.4

0.6

0.8

Idle Load to dump Dump to load

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC

Page 180: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-8

Figure C- 6. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run A1.

0.0E+00

2.0E+15

4.0E+15

6.0E+15

8.0E+15

1.0E+16

1.2E+16

1.4E+16

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

3150

3160

3170

3180

3190

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)

CO2

0

4

8

12

16

20

Idle Load to dump Dump to load

Truck OperationC

O E

mis

sio

n (

g/k

g f

uel

) CO

0

20

40

60

Idle Load to dump Dump to load

Truck Operation

NO

Em

issi

on

(g

/kg

fu

el) NO

0

2

4

6

8

10

12

Idle Load to dump Dump to load

Truck Operation

NO

2 E

mis

sio

n (

g/k

g f

uel

)

NO2

0

20

40

60

80

Idle Load to dump Dump to load

Truck Operation

NO

X E

mis

sio

n (

g/k

g f

ue

l)

NOX

0

1

2

3

4

Idle Load to dump Dump to load

Truck Operation

SO

2 E

mis

sio

n (

g/k

g f

ue

l) SO2

Page 181: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-9

Figure C- 7. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run A2.

0

0.3

0.6

0.9

1.2

1.5

Idle Load to dump Dump to load

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

0

0.2

0.4

0.6

Idle Load to dump Dump to load

Truck Operation

BC

Em

issi

on

(g

/kg

fu

el) BC

0.0E+00

2.0E+15

4.0E+15

6.0E+15

8.0E+15

1.0E+16

1.2E+16

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

3150

3160

3170

3180

3190

Idle Load to dump Dump to load

Truck Operation

CO

2 E

mis

sio

n (

g/k

g f

uel

)

CO2

0

2

4

6

8

10

Idle Load to dump Dump to load

Truck Operation

CO

Em

issi

on

(g

/kg

fu

el) CO

0

10

20

30

40

Idle Load to dump Dump to load

Truck Operation

NO

Em

issi

on

(g

/kg

fu

el) NO

0

2

4

6

8

Idle Load to dump Dump to load

Truck Operation

NO

2 E

mis

sio

n (

g/k

g f

uel

)

NO2

Page 182: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

C-10

Figure C- 8. Fuel based emission factor for idle, load-to-dump and dump-to-load sub-activities for Run A3

0

10

20

30

40

Idle Load to dump Dump to load

Truck Operation

NO

x E

mis

sio

n (

g/k

g f

ue

l)

NOx

0

2

4

6

8

10

12

Idle Load to dump Dump to load

Truck Operation

SO

2 E

mis

sio

n (

g/k

g f

ue

l) SO2

0

0.2

0.4

0.6

0.8

1

1.2

Idle Load to dump Dump to load

Truck Operation

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 (DRX)

0

0.2

0.4

0.6

Idle Load to dump Dump to load

Truck OperationB

C E

mis

sio

n (

g/k

g f

uel

) BC

0.0E+00

5.0E+14

1.0E+15

1.5E+15

2.0E+15

2.5E+15

3.0E+15

Idle Load to dump Dump to load

Truck Operation

Nu

mb

er E

mis

sio

n (

#/kg

fu

el)

Particle number

Page 183: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-1

D. Appendix D: Source Profiles Normalized to Organic Carbon Tables D-1 and D-2 contain PM2.5 source profiles normalized to the organic

carbon (OC) content. These are used to create speciated carbon inventories and to apportion OC to sources with receptor models.

Page 184: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-2

Table D-1. Source profile of non-polar organic compounds from PM2.5 filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Data are expressed as a percentage of the organic carbon (OC) mass concentration.

Compound MW Run ID CAT 797B-1

Average CAT 797B-2

Average S1 S2 S3 S4 S5 A1 A2 A3

PAHs

acenaphthylene 152 0.0000 ± 0.0023

0.0007 ± 0.0004

0.0000 ± 0.0024

0.0000 ± 0.0034

0.0000 ± 0.0028

0.0003 ± 0.0001

0.0017 ± 0.0003

0.0000 ± 0.0027

0.0001 ± 0.0011 0.0007 ± 0.0009

acenaphthene 154 0.0000 ± 0.0101

0.0000 ± 0.0091

0.0000 ± 0.0103

0.0000 ± 0.0146

0.0000 ± 0.0123

0.0000 ± 0.0013

0.0000 ± 0.0027

0.0000 ± 0.0119

0.0000 ± 0.0051 0.0000 ± 0.0041

fluorene 166 0.0002 ± 0.0006

0.0010 ± 0.0005

0.0034 ± 0.0009

0.0014 ± 0.0009

0.0021 ± 0.0008

0.0001 ± 0.0001

0.0005 ± 0.0002

0.0007 ± 0.0007

0.0016 ± 0.0012 0.0004 ± 0.0003

phenanthrene 178 0.0080 ± 0.0014

0.0328 ± 0.0056

0.0535 ± 0.0098

0.0439 ± 0.0096

0.0571 ± 0.0112

0.0047 ± 0.0006

0.0233 ± 0.0032

0.0270 ± 0.0052

0.0391 ± 0.0198 0.0183 ± 0.0119

anthracene 178 0.0124 ± 0.0022

0.0427 ± 0.0073

0.0149 ± 0.0027

0.0422 ± 0.0092

0.0581 ± 0.0114

0.0064 ± 0.0008

0.0174 ± 0.0024

0.0292 ± 0.0057

0.0341 ± 0.0197 0.0177 ± 0.0114

fluoranthene 202 0.0101 ± 0.0018

0.0145 ± 0.0025

0.0153 ± 0.0028

0.0115 ± 0.0025

0.0126 ± 0.0025

0.0057 ± 0.0007

0.0048 ± 0.0007

0.0105 ± 0.0020

0.0128 ± 0.0021 0.0070 ± 0.0031

pyrene 202 0.0132 ± 0.0024

0.0169 ± 0.0029

0.0137 ± 0.0025

0.0200 ± 0.0044

0.0221 ± 0.0043

0.0055 ± 0.0007

0.0056 ± 0.0008

0.0128 ± 0.0025

0.0172 ± 0.0039 0.0080 ± 0.0042

benzo[a]anthracene 228 0.0021 ± 0.0004

0.0016 ± 0.0003

0.0006 ± 0.0002

0.0020 ± 0.0005

0.0009 ± 0.0002

0.0048 ± 0.0006

0.0020 ± 0.0003

0.0007 ± 0.0002

0.0014 ± 0.0007 0.0025 ± 0.0021

chrysene 228 0.0021 ± 0.0004

0.0019 ± 0.0003

0.0044 ± 0.0008

0.0031 ± 0.0007

0.0024 ± 0.0005

0.0053 ± 0.0007

0.0026 ± 0.0004

0.0014 ± 0.0003

0.0028 ± 0.0010 0.0031 ± 0.0020

benzo[b]fluoranthene 252 0.0006 ± 0.0002

0.0007 ± 0.0002

0.0012 ± 0.0003

0.0014 ± 0.0004

0.0000 ± 0.0085

0.0028 ± 0.0004

0.0049 ± 0.0007

0.0016 ± 0.0003

0.0008 ± 0.0017 0.0031 ± 0.0017

benzo[j+k]fluoranthene 252 0.0016 ± 0.0003

0.0009 ± 0.0002

0.0014 ± 0.0003

0.0014 ± 0.0003

0.0000 ± 0.0105

0.0021 ± 0.0003

0.0054 ± 0.0007

0.0018 ± 0.0004

0.0010 ± 0.0021 0.0031 ± 0.0020

benzo[a]fluoranthene 252 0.0004 ± 0.0002

0.0009 ± 0.0002

0.0016 ± 0.0004

0.0003 ± 0.0003

0.0000 ± 0.0085

0.0004 ± 0.0001

0.0014 ± 0.0002

0.0005 ± 0.0003

0.0006 ± 0.0017 0.0008 ± 0.0005

benzo[e]pyrene 252 0.0008 ± 0.0002

0.0012 ± 0.0002

0.0010 ± 0.0002

0.0014 ± 0.0003

0.0000 ± 0.0051

0.0028 ± 0.0004

0.0072 ± 0.0010

0.0018 ± 0.0004

0.0009 ± 0.0010 0.0039 ± 0.0028

benzo[a]pyrene 252 0.0014 ± 0.0003

0.0003 ± 0.0001

0.0002 ± 0.0001

0.0008 ± 0.0003

0.0000 ± 0.0063

0.0030 ± 0.0004

0.0071 ± 0.0010

0.0023 ± 0.0005

0.0005 ± 0.0013 0.0041 ± 0.0026

perylene 252 0.0008 ± 0.0003

0.0012 ± 0.0003

0.0006 ± 0.0003

0.0008 ± 0.0004

0.0000 ± 0.0034

0.0015 ± 0.0002

0.0036 ± 0.0005

0.0011 ± 0.0004

0.0007 ± 0.0007 0.0021 ± 0.0013

indeno[1,2,3-cd]pyrene 276 0.0008 ± 0.0002

0.0014 ± 0.0003

0.0000 ± 0.0051

0.0000 ± 0.0072

0.0000 ± 0.0061

0.0003 ± 0.0000

0.0015 ± 0.0002

0.0011 ± 0.0003

0.0004 ± 0.0021 0.0010 ± 0.0007

dibenzo[a,h]anthracene 278 0.0000 ± 0.0064

0.0002 ± 0.0017

0.0000 ± 0.0066

0.0000 ± 0.0093

0.0000 ± 0.0079

0.0000 ± 0.0008

0.0004 ± 0.0005

0.0000 ± 0.0076

0.0000 ± 0.0031 0.0001 ± 0.0025

benzo[ghi]perylene 276 0.0012 ± 0.0003

0.0016 ± 0.0003

0.0000 ± 0.0081

0.0006 ± 0.0003

0.0000 ± 0.0097

0.0007 ± 0.0001

0.0039 ± 0.0005

0.0027 ± 0.0006

0.0007 ± 0.0025 0.0024 ± 0.0016

Page 185: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-3

Table D-1 continued.

Compound MW

Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

PAHs

coronene 300 0.0000 ± 0.0120

0.0000 ± 0.0108

0.0000 ± 0.0123

0.0000 ± 0.0174

0.0000 ± 0.0147

0.0000 ± 0.0016

0.0000 ± 0.0032

0.0000 ± 0.0142

0.0000 ± 0.0061

0.0000 ± 0.0049

dibenzo[a,e]pyrene 302 0.0000 ± 0.0320

0.0000 ± 0.0288

0.0000 ± 0.0327

0.0000 ± 0.0464

0.0000 ± 0.0391

0.0000 ± 0.0041

0.0051 ± 0.0007

0.0000 ± 0.0377

0.0000 ± 0.0163

0.0017 ± 0.0126

9-fluorenone 180 0.0054 ± 0.0010

0.0185 ± 0.0031

0.0325 ± 0.0060

0.0163 ± 0.0036

0.0192 ± 0.0038

0.0018 ± 0.0002

0.0114 ± 0.0015

0.0167 ± 0.0032

0.0184 ± 0.0096

0.0100 ± 0.0075

dibenzothiophene 184 0.0004 ± 0.0001

0.0014 ± 0.0002

0.0030 ± 0.0005

0.0014 ± 0.0003

0.0021 ± 0.0004

0.0001 ± 0.0000

0.0006 ± 0.0001

0.0009 ± 0.0002

0.0017 ± 0.0010

0.0005 ± 0.0004

1 methyl phenanthrene 192 0.0045 ± 0.0008

0.0117 ± 0.0020

0.0226 ± 0.0042

0.0197 ± 0.0043

0.0261 ± 0.0051

0.0013 ± 0.0002

0.0047 ± 0.0006

0.0082 ± 0.0016

0.0169 ± 0.0088

0.0047 ± 0.0035

2 methyl phenanthrene 192 0.0017 ± 0.0006

0.0052 ± 0.0010

0.0095 ± 0.0018

0.0079 ± 0.0019

0.0097 ± 0.0020

0.0006 ± 0.0001

0.0024 ± 0.0004

0.0039 ± 0.0010

0.0068 ± 0.0034

0.0023 ± 0.0016

3,6 dimethyl phenanthrene 206 0.0000 ± 0.0039

0.0000 ± 0.0035

0.0000 ± 0.0040

0.0048 ± 0.0011

0.0000 ± 0.0048

0.0005 ± 0.0001

0.0066 ± 0.0009

0.0048 ± 0.0010

0.0010 ± 0.0021

0.0040 ± 0.0032

methylfluoranthene 216 0.0008 ± 0.0004

0.0019 ± 0.0005

0.0089 ± 0.0017

0.0023 ± 0.0007

0.0000 ± 0.0062

0.0017 ± 0.0002

0.0024 ± 0.0003

0.0023 ± 0.0006

0.0028 ± 0.0036

0.0021 ± 0.0004

retene 219 0.0004 ± 0.0004

0.0023 ± 0.0005

0.0125 ± 0.0023

0.0020 ± 0.0007

0.0047 ± 0.0011

0.0014 ± 0.0002

0.0067 ± 0.0009

0.0021 ± 0.0006

0.0044 ± 0.0048

0.0034 ± 0.0029

benzo(ghi)fluoranthene 226 0.0029 ± 0.0005

0.0042 ± 0.0007

0.0083 ± 0.0015

0.0045 ± 0.0010

0.0043 ± 0.0009

0.0065 ± 0.0008

0.0038 ± 0.0005

0.0023 ± 0.0005

0.0048 ± 0.0020

0.0042 ± 0.0021

benzo(c)phenanthrene 228 0.0010 ± 0.0002

0.0012 ± 0.0003

0.0022 ± 0.0004

0.0008 ± 0.0003

0.0005 ± 0.0002

0.0027 ± 0.0004

0.0020 ± 0.0003

0.0007 ± 0.0002

0.0011 ± 0.0006

0.0018 ± 0.0010

benzo(b)naphtho[1,2-d]thiophene 234 0.0000 ± 0.0117

0.0007 ± 0.0002

0.0040 ± 0.0008

0.0000 ± 0.0170

0.0000 ± 0.0143

0.0000 ± 0.0015

0.0001 ± 0.0001

0.0002 ± 0.0003

0.0009 ± 0.0050

0.0001 ± 0.0005

cyclopenta[cd]pyrene 226 0.0082 ± 0.0017

0.0226 ± 0.0039

0.0383 ± 0.0071

0.0000 ± 0.0061

0.0000 ± 0.0051

0.0079 ± 0.0010

0.0016 ± 0.0003

0.0000 ± 0.0049

0.0138 ± 0.0165

0.0032 ± 0.0042

benz[a]anthracene-7,12-dione 258 0.0000 ± 0.0114

0.0000 ± 0.0103

0.0000 ± 0.0117

0.0000 ± 0.0166

0.0000 ± 0.0140

0.0001 ± 0.0001

0.0006 ± 0.0001

0.0000 ± 0.0135

0.0000 ± 0.0058

0.0002 ± 0.0045

methylchrysene 242 0.0000 ± 0.0040

0.0000 ± 0.0036

0.0000 ± 0.0041

0.0000 ± 0.0058

0.0000 ± 0.0049

0.0003 ± 0.0001

0.0003 ± 0.0003

0.0000 ± 0.0047

0.0000 ± 0.0020

0.0002 ± 0.0016

benzo(b)chrysene 278 0.0000 ± 0.0078

0.0003 ± 0.0004

0.0000 ± 0.0080

0.0000 ± 0.0113

0.0000 ± 0.0095

0.0000 ± 0.0010

0.0007 ± 0.0002

0.0000 ± 0.0092

0.0001 ± 0.0037

0.0002 ± 0.0031

picene 278 0.0000 ± 0.0104

0.0000 ± 0.0093

0.0000 ± 0.0106

0.0000 ± 0.0151

0.0000 ± 0.0127

0.0000 ± 0.0013

0.0008 ± 0.0002

0.0000 ± 0.0122

0.0000 ± 0.0053

0.0003 ± 0.0041

anthanthrene 276 0.0000 ± 0.0077

0.0000 ± 0.0069

0.0000 ± 0.0078

0.0000 ± 0.0111

0.0000 ± 0.0094

0.0000 ± 0.0010

0.0000 ± 0.0020

0.0000 ± 0.0090

0.0000 ± 0.0039

0.0000 ± 0.0031

Alkane/Alkene/Phthalate

Page 186: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-4

Table D-1 continued.

Compound MW

Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

n-alkane

n-pentadecane (n-C15) 212 0.0021 ± 0.0004

0.0051 ± 0.0009

0.0220 ± 0.0040

0.0141 ± 0.0031

0.0183 ± 0.0036

0.0009 ± 0.0001

0.0033 ± 0.0005

0.0078 ± 0.0015

0.0123 ± 0.0085

0.0040 ± 0.0035

n-hexadecane (n-C16) 226 0.0054 ± 0.0010

0.0052 ± 0.0009

0.0200 ± 0.0037

0.0259 ± 0.0056

0.0190 ± 0.0037

0.0021 ± 0.0003

0.0058 ± 0.0008

0.0144 ± 0.0028

0.0151 ± 0.0093

0.0074 ± 0.0063

n-heptadecane (n-C17) 240 0.0056 ± 0.0010

0.0061 ± 0.0011

0.0216 ± 0.0040

0.0298 ± 0.0065

0.0225 ± 0.0044

0.0067 ± 0.0009

0.0138 ± 0.0019

0.0183 ± 0.0035

0.0171 ± 0.0108

0.0129 ± 0.0059

n-octadecane (n-C18) 254 0.0058 ± 0.0010

0.0098 ± 0.0017

0.0278 ± 0.0051

0.0281 ± 0.0061

0.0282 ± 0.0055

0.0172 ± 0.0022

0.0320 ± 0.0043

0.0185 ± 0.0036

0.0199 ± 0.0112

0.0226 ± 0.0082

n-nonadecane (n-C19) 268 0.0093 ± 0.0017

0.0183 ± 0.0031

0.0523 ± 0.0096

0.0571 ± 0.0125

0.0593 ± 0.0116

0.0417 ± 0.0054

0.0702 ± 0.0095

0.0336 ± 0.0065

0.0393 ± 0.0236

0.0485 ± 0.0192

n-icosane (n-C20) 282 0.0099 ± 0.0018

0.0192 ± 0.0033

0.0583 ± 0.0107

0.0478 ± 0.0104

0.0488 ± 0.0096

0.0543 ± 0.0071

0.0708 ± 0.0096

0.0359 ± 0.0070

0.0368 ± 0.0210

0.0537 ± 0.0175

n-heneicosane (n-C21) 296 0.0169 ± 0.0030

0.0274 ± 0.0046

0.0617 ± 0.0113

0.0588 ± 0.0128

0.0576 ± 0.0113

0.0598 ± 0.0078

0.0773 ± 0.0105

0.0601 ± 0.0116

0.0445 ± 0.0208

0.0657 ± 0.0100

n-docosane (n-C22) 310 0.0182 ± 0.0033

0.0186 ± 0.0032

0.0416 ± 0.0077

0.0537 ± 0.0117

0.0451 ± 0.0088

0.0440 ± 0.0058

0.0527 ± 0.0072

0.0507 ± 0.0098

0.0355 ± 0.0162

0.0492 ± 0.0045

n-tricosane (n-C23) 324 0.0365 ± 0.0065

0.0341 ± 0.0058

0.0407 ± 0.0075

0.0445 ± 0.0097

0.0332 ± 0.0065

0.0241 ± 0.0032

0.0046 ± 0.0006

0.0500 ± 0.0097

0.0378 ± 0.0047

0.0262 ± 0.0228

n-tetracosane (n-C24) 338 0.0726 ± 0.0130

0.0500 ± 0.0085

0.0561 ± 0.0103

0.0566 ± 0.0123

0.0360 ± 0.0071

0.0344 ± 0.0045

0.0021 ± 0.0003

0.0738 ± 0.0143

0.0543 ± 0.0132

0.0368 ± 0.0359

n-pentacosane (n-C25) 352 0.0978 ± 0.0175

0.0561 ± 0.0095

0.0756 ± 0.0139

0.0701 ± 0.0153

0.0579 ± 0.0113

0.0410 ± 0.0054

0.0115 ± 0.0016

0.1044 ± 0.0202

0.0715 ± 0.0168

0.0523 ± 0.0475

n-hexacosane (n-C26) 366 0.0796 ± 0.0142

0.0455 ± 0.0077

0.0579 ± 0.0106

0.0608 ± 0.0133

0.0507 ± 0.0099

0.0494 ± 0.0065

0.0125 ± 0.0017

0.0900 ± 0.0174

0.0589 ± 0.0130

0.0506 ± 0.0388

n-heptacosane (n-C27) 380 0.0666 ± 0.0119

0.0228 ± 0.0039

0.0444 ± 0.0082

0.0394 ± 0.0086

0.0334 ± 0.0066

0.0489 ± 0.0064

0.0226 ± 0.0031

0.0530 ± 0.0103

0.0413 ± 0.0162

0.0415 ± 0.0165

n-octacosane (n-C28) 394 0.1250 ± 0.0223

0.0467 ± 0.0079

0.0345 ± 0.0063

0.0653 ± 0.0142

0.0311 ± 0.0061

0.0271 ± 0.0035

0.0020 ± 0.0003

0.0676 ± 0.0131

0.0605 ± 0.0385

0.0322 ± 0.0331

n-nonacosane (n-C29) 408 0.0856 ± 0.0153

0.0355 ± 0.0060

0.0438 ± 0.0081

0.0475 ± 0.0104

0.0413 ± 0.0081

0.0109 ± 0.0014

0.0123 ± 0.0017

0.0560 ± 0.0108

0.0508 ± 0.0200

0.0264 ± 0.0256

n-triacontane (n-C30) 422 0.0714 ± 0.0128

0.0293 ± 0.0050

0.0284 ± 0.0052

0.0442 ± 0.0096

0.0242 ± 0.0047

0.0146 ± 0.0019

0.0407 ± 0.0055

0.0462 ± 0.0089

0.0395 ± 0.0194

0.0338 ± 0.0168

n-hentriacotane (n-C31) 436 0.0543 ± 0.0097

0.0209 ± 0.0036

0.0119 ± 0.0022

0.0253 ± 0.0055

0.0171 ± 0.0033

0.0186 ± 0.0024

0.0065 ± 0.0009

0.0320 ± 0.0062

0.0259 ± 0.0166

0.0190 ± 0.0128

n-dotriacontane (n-C32) 450 0.0382 ± 0.0068

0.0176 ± 0.0030

0.0077 ± 0.0014

0.0180 ± 0.0039

0.0138 ± 0.0027

0.0000 ± 0.0011

0.0015 ± 0.0002

0.0240 ± 0.0047

0.0191 ± 0.0115

0.0085 ± 0.0134

n-tritriactotane (n-C33) 464 0.0635 ± 0.0113

0.0239 ± 0.0041

0.0000 ± 0.0070

0.0284 ± 0.0062

0.0090 ± 0.0018

0.0000 ± 0.0009

0.0101 ± 0.0014

0.0139 ± 0.0027

0.0250 ± 0.0244

0.0080 ± 0.0072

Page 187: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-5

Table D-1 continued.

Compound MW

Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

n-tetratriactoane (n-C34) 478 0.0617 ± 0.0110

0.0324 ± 0.0055

0.0000 ± 0.0122

0.0267 ± 0.0058

0.0000 ± 0.0146

0.0000 ± 0.0015

0.0000 ± 0.0032

0.0222 ± 0.0043

0.0242 ± 0.0258

0.0074 ± 0.0128

n-pentatriacontane (n-C35) 492 0.1071 ± 0.0191

0.0521 ± 0.0089

0.0000 ± 0.0227

0.0270 ± 0.0059

0.0000 ± 0.0271

0.0000 ± 0.0029

0.0000 ± 0.0059

0.0334 ± 0.0065

0.0372 ± 0.0447

0.0111 ± 0.0193

n-hexatriacontane (n-C36) 506 0.0250 ± 0.0045

0.0000 ± 0.0143

0.0000 ± 0.0162

0.0000 ± 0.0230

0.0000 ± 0.0194

0.0000 ± 0.0020

0.0000 ± 0.0042

0.0130 ± 0.0027

0.0050 ± 0.0112

0.0043 ± 0.0075

n-heptatriacontane (n-C37) 521 0.0584 ± 0.0105

0.0000 ± 0.0218

0.0000 ± 0.0248

0.0000 ± 0.0352

0.0000 ± 0.0297

0.0000 ± 0.0031

0.0000 ± 0.0064

0.0402 ± 0.0078

0.0117 ± 0.0261

0.0134 ± 0.0232

n-octatriacontane (n-C38) 535 0.0000 ± 0.0264

0.0000 ± 0.0237

0.0000 ± 0.0270

0.0000 ± 0.0383

0.0000 ± 0.0323

0.0000 ± 0.0034

0.0000 ± 0.0070

0.0000 ± 0.0311

0.0000 ± 0.0134

0.0000 ± 0.0107

n-nonatriacontane (n-C39) 549 0.0000 ± 0.0400

0.0000 ± 0.0359

0.0000 ± 0.0408

0.0000 ± 0.0579

0.0000 ± 0.0488

0.0000 ± 0.0052

0.0000 ± 0.0106

0.0000 ± 0.0470

0.0000 ± 0.0203

0.0000 ± 0.0162

n-tetracontane (n-C40) 563 0.0000 ± 0.0971

0.0000 ± 0.0871

0.0000 ± 0.0991

0.0000 ± 0.1407

0.0000 ± 0.1186

0.0000 ± 0.0125

0.0000 ± 0.0258

0.0000 ± 0.1142

0.0000 ± 0.0493

0.0000 ± 0.0393

iso/anteiso-alkane

iso-nonacosane (iso-C29) 408 0.0113 ± 0.0020

0.0101 ± 0.0017

0.0127 ± 0.0023

0.0053 ± 0.0012

0.0078 ± 0.0016

0.0113 ± 0.0015

0.0129 ± 0.0018

0.0069 ± 0.0014

0.0094 ± 0.0029

0.0104 ± 0.0031

anteiso-nonacosane (anteiso-C29) 408 0.0120 ± 0.0022

0.0096 ± 0.0016

0.0155 ± 0.0028

0.0101 ± 0.0022

0.0071 ± 0.0014

0.0110 ± 0.0014

0.0303 ± 0.0041

0.0162 ± 0.0031

0.0109 ± 0.0031

0.0192 ± 0.0100

iso-triacontane (iso-C30) 422 0.0107 ± 0.0019

0.0094 ± 0.0016

0.0059 ± 0.0011

0.0093 ± 0.0020

0.0081 ± 0.0016

0.0107 ± 0.0014

0.0164 ± 0.0022

0.0105 ± 0.0020

0.0087 ± 0.0018

0.0125 ± 0.0033

anteiso-triacontane (anteiso-C30) 422 0.0188 ± 0.0034

0.0108 ± 0.0018

0.0176 ± 0.0032

0.0121 ± 0.0026

0.0109 ± 0.0021

0.0057 ± 0.0007

0.0238 ± 0.0032

0.0190 ± 0.0037

0.0141 ± 0.0039

0.0161 ± 0.0094

iso-hentriacotane (iso-C31) 436 0.0107 ± 0.0019

0.0110 ± 0.0019

0.0038 ± 0.0007

0.0087 ± 0.0019

0.0062 ± 0.0012

0.0058 ± 0.0008

0.0084 ± 0.0011

0.0050 ± 0.0010

0.0081 ± 0.0031

0.0064 ± 0.0018

anteiso-hentriacotane (anteiso-C31) 436 0.0149 ± 0.0027

0.0120 ± 0.0020

0.0034 ± 0.0006

0.0076 ± 0.0017

0.0066 ± 0.0013

0.0093 ± 0.0012

0.0081 ± 0.0011

0.0078 ± 0.0015

0.0089 ± 0.0046

0.0084 ± 0.0008

iso-dotriacontane (iso-C32) 450 0.0136 ± 0.0024

0.0153 ± 0.0026

0.0050 ± 0.0009

0.0087 ± 0.0019

0.0066 ± 0.0013

0.0135 ± 0.0018

0.0269 ± 0.0037

0.0069 ± 0.0013

0.0098 ± 0.0045

0.0158 ± 0.0102

anteiso-dotriacontane (anteiso-C32) 450 0.0054 ± 0.0010

0.0084 ± 0.0014

0.0012 ± 0.0002

0.0098 ± 0.0021

0.0050 ± 0.0010

0.0044 ± 0.0006

0.0307 ± 0.0042

0.0041 ± 0.0008

0.0060 ± 0.0033

0.0131 ± 0.0153

iso-tritriactotane (iso-C33) 464 0.0103 ± 0.0018

0.0052 ± 0.0009

0.0026 ± 0.0005

0.0000 ± 0.0099

0.0012 ± 0.0003

0.0032 ± 0.0004

0.0008 ± 0.0001

0.0018 ± 0.0004

0.0039 ± 0.0041

0.0019 ± 0.0012

anteiso-tritriactotane (anteiso-C33) 464 0.0083 ± 0.0015

0.0024 ± 0.0005

0.0028 ± 0.0006

0.0000 ± 0.0099

0.0033 ± 0.0007

0.0039 ± 0.0005

0.0029 ± 0.0004

0.0034 ± 0.0007

0.0034 ± 0.0031

0.0034 ± 0.0005

hopane

22,29,30-trisnorneophopane (Ts) 370 0.0017 ± 0.0003

0.0019 ± 0.0003

0.0020 ± 0.0004

0.0020 ± 0.0004

0.0021 ± 0.0004

0.0101 ± 0.0013

0.0112 ± 0.0015

0.0091 ± 0.0018

0.0019 ± 0.0002

0.0101 ± 0.0010

22,29,30-trisnorphopane (Tm) 370 0.0006 ± 0.0003

0.0007 ± 0.0002

0.0010 ± 0.0003

0.0008 ± 0.0004

0.0007 ± 0.0003

0.0056 ± 0.0007

0.0011 ± 0.0002

0.0027 ± 0.0006

0.0008 ± 0.0002

0.0031 ± 0.0023

Page 188: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-6

Table D-1 continued.

Compound MW

Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

αβ-norhopane (C29αβ-hopane) 398 0.0035 ± 0.0006

0.0031 ± 0.0005

0.0036 ± 0.0007

0.0031 ± 0.0007

0.0036 ± 0.0007

0.0267 ± 0.0035

0.0263 ± 0.0036

0.0160 ± 0.0031

0.0034 ± 0.0003

0.0230 ± 0.0061

22,29,30-norhopane (29Ts) 398 0.0012 ± 0.0002

0.0007 ± 0.0001

0.0008 ± 0.0002

0.0017 ± 0.0004

0.0012 ± 0.0002

0.0012 ± 0.0002

0.0276 ± 0.0037

0.0032 ± 0.0006

0.0011 ± 0.0004

0.0107 ± 0.0147

αα- + βα-norhopane (C29αα- + βα -hopane)

398 0.0008 ± 0.0002

0.0003 ± 0.0002

0.0012 ± 0.0003

0.0017 ± 0.0005

0.0009 ± 0.0003

0.0059 ± 0.0008

0.0013 ± 0.0002

0.0032 ± 0.0007

0.0010 ± 0.0005

0.0035 ± 0.0023

αβ-hopane (C30αβ -hopane) 412 0.0027 ± 0.0005

0.0023 ± 0.0004

0.0024 ± 0.0004

0.0025 ± 0.0006

0.0019 ± 0.0004

0.0183 ± 0.0024

0.0003 ± 0.0000

0.0114 ± 0.0022

0.0024 ± 0.0003

0.0100 ± 0.0091

αα-hopane (30αα-hopane) 412 0.0004 ± 0.0003

0.0002 ± 0.0002

0.0002 ± 0.0003

0.0003 ± 0.0004

0.0005 ± 0.0003

0.0019 ± 0.0002

0.0009 ± 0.0001

0.0011 ± 0.0004

0.0003 ± 0.0001

0.0013 ± 0.0005

βα-hopane (C30βα -hopane) 412 0.0004 ± 0.0001

0.0005 ± 0.0001

0.0004 ± 0.0001

0.0006 ± 0.0001

0.0005 ± 0.0001

0.0012 ± 0.0002

0.0005 ± 0.0001

0.0014 ± 0.0003

0.0005 ± 0.0001

0.0010 ± 0.0005

αβS-homohopane (C31αβS-hopane) 426 0.0019 ± 0.0004

0.0016 ± 0.0003

0.0012 ± 0.0002

0.0020 ± 0.0005

0.0014 ± 0.0003

0.0103 ± 0.0013

0.0102 ± 0.0014

0.0071 ± 0.0014

0.0016 ± 0.0003

0.0092 ± 0.0018

αβR-homohopane (C31αβR-hopane) 426 0.0025 ± 0.0005

0.0019 ± 0.0004

0.0012 ± 0.0003

0.0017 ± 0.0005

0.0014 ± 0.0004

0.0138 ± 0.0018

0.0121 ± 0.0016

0.0071 ± 0.0014

0.0017 ± 0.0005

0.0110 ± 0.0035

αβS-bishomohopane (C32αβS-hopane) 440 0.0012 ± 0.0003

0.0010 ± 0.0003

0.0008 ± 0.0003

0.0000 ± 0.0016

0.0000 ± 0.0013

0.0061 ± 0.0008

0.0055 ± 0.0008

0.0037 ± 0.0008

0.0006 ± 0.0006

0.0051 ± 0.0013

αβR-bishomohopane (C32αβR-hopane) 440 0.0012 ± 0.0003

0.0010 ± 0.0003

0.0006 ± 0.0003

0.0000 ± 0.0018

0.0000 ± 0.0015

0.0051 ± 0.0007

0.0044 ± 0.0006

0.0027 ± 0.0006

0.0006 ± 0.0006

0.0041 ± 0.0012

22S-trishomohopane (C33) 454 0.0010 ± 0.0003

0.0000 ± 0.0010

0.0000 ± 0.0011

0.0000 ± 0.0016

0.0000 ± 0.0013

0.0037 ± 0.0005

0.0033 ± 0.0004

0.0023 ± 0.0005

0.0002 ± 0.0005

0.0031 ± 0.0007

22R-trishomohopane (C33) 454 0.0014 ± 0.0003

0.0000 ± 0.0011

0.0000 ± 0.0013

0.0000 ± 0.0018

0.0000 ± 0.0015

0.0035 ± 0.0005

0.0024 ± 0.0003

0.0016 ± 0.0003

0.0003 ± 0.0006

0.0025 ± 0.0009

22S-tretrahomohopane (C34) 468 0.0000 ± 0.0011

0.0000 ± 0.0010

0.0000 ± 0.0011

0.0000 ± 0.0016

0.0000 ± 0.0013

0.0019 ± 0.0002

0.0016 ± 0.0002

0.0009 ± 0.0004

0.0000 ± 0.0005

0.0015 ± 0.0005

22R-tetrashomohopane (C34) 468 0.0000 ± 0.0013

0.0000 ± 0.0011

0.0000 ± 0.0013

0.0000 ± 0.0018

0.0000 ± 0.0015

0.0023 ± 0.0003

0.0011 ± 0.0002

0.0011 ± 0.0004

0.0000 ± 0.0006

0.0015 ± 0.0007

22S-pentashomohopane(C35) 482 0.0000 ± 0.0011

0.0000 ± 0.0010

0.0000 ± 0.0011

0.0000 ± 0.0016

0.0000 ± 0.0013

0.0033 ± 0.0004

0.0016 ± 0.0002

0.0011 ± 0.0004

0.0000 ± 0.0005

0.0020 ± 0.0012

22R-pentashomohopane(C35) 482 0.0000 ± 0.0013

0.0000 ± 0.0011

0.0000 ± 0.0013

0.0000 ± 0.0018

0.0000 ± 0.0015

0.0031 ± 0.0004

0.0009 ± 0.0001

0.0011 ± 0.0005

0.0000 ± 0.0006

0.0017 ± 0.0012

sterane

ααα 20S-Cholestane 372 0.0006 ± 0.0003

0.0005 ± 0.0002

0.0006 ± 0.0003

0.0000 ± 0.0037

0.0000 ± 0.0032

0.0017 ± 0.0002

0.0004 ± 0.0001

0.0034 ± 0.0007

0.0003 ± 0.0010

0.0018 ± 0.0015

αββ 20R-Cholestane 372 0.0010 ± 0.0007

0.0010 ± 0.0006

0.0008 ± 0.0007

0.0000 ± 0.0016

0.0000 ± 0.0013

0.0026 ± 0.0003

0.0005 ± 0.0002

0.0037 ± 0.0011

0.0006 ± 0.0005

0.0022 ± 0.0016

αββ 20s-Cholestane 372 0.0010 ± 0.0002

0.0009 ± 0.0002

0.0004 ± 0.0002

0.0000 ± 0.0018

0.0000 ± 0.0016

0.0035 ± 0.0005

0.0056 ± 0.0008

0.0025 ± 0.0005

0.0004 ± 0.0005

0.0039 ± 0.0016

Page 189: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-7

Table D-1 continued.

Compound MW

Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

ααα 20R-Cholestane 372 0.0006 ± 0.0004

0.0002 ± 0.0004

0.0002 ± 0.0004

0.0000 ± 0.0018

0.0000 ± 0.0016

0.0013 ± 0.0002

0.0000 ± 0.0003

0.0025 ± 0.0007

0.0002 ± 0.0005

0.0013 ± 0.0013

ααα 20S 24S-Methylcholestane 386 0.0006 ± 0.0002

0.0007 ± 0.0002

0.0008 ± 0.0003

0.0000 ± 0.0021

0.0000 ± 0.0018

0.0051 ± 0.0007

0.0077 ± 0.0010

0.0037 ± 0.0007

0.0004 ± 0.0006

0.0055 ± 0.0020

αββ 20R 24S-Methylcholestane 386 0.0010 ± 0.0007

0.0005 ± 0.0006

0.0008 ± 0.0007

0.0000 ± 0.0021

0.0000 ± 0.0018

0.0016 ± 0.0002

0.0014 ± 0.0003

0.0011 ± 0.0008

0.0005 ± 0.0006

0.0014 ± 0.0003

αββ 20S 24S-Methylcholestane 386 0.0004 ± 0.0007

0.0002 ± 0.0006

0.0006 ± 0.0007

0.0000 ± 0.0021

0.0000 ± 0.0018

0.0026 ± 0.0003

0.0022 ± 0.0004

0.0014 ± 0.0009

0.0002 ± 0.0006

0.0021 ± 0.0006

ααα 20R 24R-Methylcholestane 386 0.0000 ± 0.0017

0.0000 ± 0.0015

0.0000 ± 0.0018

0.0000 ± 0.0025

0.0000 ± 0.0021

0.0003 ± 0.0001

0.0003 ± 0.0001

0.0002 ± 0.0005

0.0000 ± 0.0009

0.0002 ± 0.0002

ααα 20S 24R/S-Ethylcholestane 386 0.0006 ± 0.0004

0.0005 ± 0.0003

0.0002 ± 0.0004

0.0000 ± 0.0021

0.0000 ± 0.0017

0.0014 ± 0.0002

0.0030 ± 0.0004

0.0014 ± 0.0005

0.0003 ± 0.0006

0.0019 ± 0.0009

αββ 20R 24R-Ethylcholestane 400 0.0000 ± 0.0012

0.0000 ± 0.0010

0.0000 ± 0.0012

0.0000 ± 0.0017

0.0000 ± 0.0014

0.0001 ± 0.0001

0.0001 ± 0.0001

0.0002 ± 0.0006

0.0000 ± 0.0006

0.0001 ± 0.0002

αββ 20S 24R-Ethylcholestane 400 0.0000 ± 0.0012

0.0000 ± 0.0010

0.0000 ± 0.0012

0.0000 ± 0.0017

0.0000 ± 0.0014

0.0002 ± 0.0001

0.0003 ± 0.0001

0.0000 ± 0.0014

0.0000 ± 0.0006

0.0002 ± 0.0005

ααα 20R 24R-Ethylcholestane 400 0.0000 ± 0.0030

0.0000 ± 0.0027

0.0000 ± 0.0031

0.0000 ± 0.0044

0.0000 ± 0.0037

0.0004 ± 0.0001

0.0002 ± 0.0001

0.0002 ± 0.0005

0.0000 ± 0.0015

0.0003 ± 0.0002

methyl-alkane

2-methylnonadecane 282 0.0014 ± 0.0003

0.0023 ± 0.0004

0.0048 ± 0.0009

0.0031 ± 0.0007

0.0040 ± 0.0008

0.0068 ± 0.0009

0.0078 ± 0.0011

0.0032 ± 0.0006

0.0031 ± 0.0014

0.0059 ± 0.0024

3-methylnonadecane 282 0.0008 ± 0.0003

0.0010 ± 0.0003

0.0022 ± 0.0005

0.0023 ± 0.0007

0.0031 ± 0.0007

0.0020 ± 0.0003

0.0137 ± 0.0019

0.0027 ± 0.0006

0.0019 ± 0.0009

0.0061 ± 0.0065

branched-alkane

pristane 268 0.0016 ± 0.0003

0.0026 ± 0.0005

0.0097 ± 0.0018

0.0084 ± 0.0019

0.0085 ± 0.0017

0.0019 ± 0.0002

0.0094 ± 0.0013

0.0064 ± 0.0013

0.0062 ± 0.0038

0.0059 ± 0.0038

phytane 282 0.0025 ± 0.0005

0.0026 ± 0.0005

0.0065 ± 0.0012

0.0070 ± 0.0015

0.0059 ± 0.0012

0.0054 ± 0.0007

0.0059 ± 0.0008

0.0037 ± 0.0007

0.0049 ± 0.0022

0.0050 ± 0.0012

squalane 422 0.0041 ± 0.0009

0.0171 ± 0.0029

0.0058 ± 0.0012

0.0037 ± 0.0011

0.0007 ± 0.0007

0.0010 ± 0.0001

0.0138 ± 0.0019

0.0085 ± 0.0018

0.0063 ± 0.0063

0.0077 ± 0.0064

cycloalkane

octylcyclohexane 196 0.0006 ± 0.0004

0.0010 ± 0.0004

0.0006 ± 0.0004

0.0006 ± 0.0005

0.0024 ± 0.0006

0.0001 ± 0.0000

0.0002 ± 0.0001

0.0007 ± 0.0004

0.0010 ± 0.0008

0.0003 ± 0.0003

decylcyclohexane 224 0.0002 ± 0.0003

0.0012 ± 0.0003

0.0006 ± 0.0003

0.0039 ± 0.0010

0.0028 ± 0.0007

0.0004 ± 0.0001

0.0005 ± 0.0001

0.0009 ± 0.0004

0.0018 ± 0.0016

0.0006 ± 0.0003

tridecylcyclohexane 266 0.0006 ± 0.0004

0.0002 ± 0.0003

0.0020 ± 0.0005

0.0003 ± 0.0005

0.0017 ± 0.0005

0.0015 ± 0.0002

0.0036 ± 0.0005

0.0009 ± 0.0004

0.0009 ± 0.0008

0.0020 ± 0.0014

n-heptadecylcyclohexane 322 0.0016 ± 0.0004

0.0009 ± 0.0003

0.0010 ± 0.0003

0.0011 ± 0.0004

0.0014 ± 0.0004

0.0179 ± 0.0023

0.0247 ± 0.0033

0.0171 ± 0.0033

0.0012 ± 0.0003

0.0199 ± 0.0042

Page 190: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-8

Table D-1 continued.

Compound MW

Run ID CAT 797B-1 CAT 797B-2

S1 S2 S3 S4 S5 A1 A2 A3 Average Average

nonadecylcyclohexane 350 0.0031 ± 0.0006

0.0026 ± 0.0004

0.0030 ± 0.0006

0.0031 ± 0.0007

0.0024 ± 0.0005

0.0075 ± 0.0010

0.0019 ± 0.0003

0.0096 ± 0.0019

0.0028 ± 0.0003

0.0063 ± 0.0040

alkene

1-octadecene 252 0.0006 ± 0.0002

0.0017 ± 0.0004

0.0091 ± 0.0017

0.0045 ± 0.0010

0.0097 ± 0.0019

0.0015 ± 0.0002

0.0016 ± 0.0002

0.0053 ± 0.0010

0.0051 ± 0.0042

0.0028 ± 0.0022

Grand total 1.3566 ± 0.4599

0.9143 ± 0.1941

1.0950 ± 0.2493

1.1856 ± 0.2971

0.9881 ± 0.2036

0.8363 ± 0.3945

0.9730 ± 0.3233

1.3340 ± 0.2880

1.1079 ± 0.1731

1.0478 ± 0.2571

Page 191: Characterization of Real-World Emissions from Nonroad ......Table 5-3. PM2.5 source profiles for the eight tests conducted on CAT 797B-1 and CAT 797B-2. Data are expressed as a percentage

D-9

Table D-2. Source profile of carbohydrates, organic acids, and water soluble organic carbon (WSOC) from PM2.5 filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Data are expressed as a percentage of the organic carbon (OC) mass concentration.

Compound MW Run ID CAT 797B-1

Average CAT 797B-2

Average S1 S2 S3 S4 S5 A1 A2 A3

Carbohydrates

Glycerol (C3H8O3 ) 92 0.107 ± 0.038 0.000 ± 0.058 0.197 ± 0.095 0.000 ± 0.185 0.000 ± 0.270 0.000 ± 0.028 0.000 ± 0.046 0.000 ± 0.198 0.061 ± 0.089 0.000 ± 0.068

Inositol (C6H12O6) 180 0.000 ± 0.038 0.000 ± 0.058 0.000 ± 0.095 0.000 ± 0.185 0.000 ± 0.270 0.000 ± 0.028 0.000 ± 0.046 1.534 ± 0.198 0.000 ± 0.070 0.511 ± 0.886

Erythritol (C4H10O4) 122 0.000 ± 0.057 0.000 ± 0.087 0.000 ± 0.142 0.000 ± 0.277 0.000 ± 0.406 0.000 ± 0.043 0.000 ± 0.070 0.000 ± 0.297 0.000 ± 0.104 0.000 ± 0.103

Xylitol (C5H12O5 ) 152 0.000 ± 0.038 0.000 ± 0.058 0.000 ± 0.095 0.000 ± 0.185 0.000 ± 0.270 0.000 ± 0.028 0.000 ± 0.046 1.746 ± 0.198 0.000 ± 0.070 0.582 ± 1.008

Levoglucosan (C6H10O5 ) 162 0.000 ± 0.076 0.000 ± 0.116 0.000 ± 0.189 0.000 ± 0.369 0.000 ± 0.541 0.000 ± 0.057 0.000 ± 0.093 0.000 ± 0.396 0.000 ± 0.139 0.000 ± 0.137

Sorbitol (C6H14O6 ) 182 0.000 ± 0.095 0.000 ± 0.145 0.000 ± 0.236 0.000 ± 0.461 0.000 ± 0.676 0.000 ± 0.071 0.000 ± 0.116 0.000 ± 0.494 0.000 ± 0.174 0.000 ± 0.171

Mannosan (C6H10O5 ) 162 0.000 ± 0.057 0.000 ± 0.087 0.000 ± 0.142 0.000 ± 0.277 0.000 ± 0.406 0.000 ± 0.043 0.000 ± 0.070 1.746 ± 0.297 0.000 ± 0.104 0.582 ± 1.008

Trehalose (C12H22O11 ) 342 0.000 ± 0.076 0.000 ± 0.116 0.000 ± 0.189 0.000 ± 0.369 0.000 ± 0.541 0.000 ± 0.057 0.000 ± 0.093 0.000 ± 0.396 0.000 ± 0.139 0.000 ± 0.137

Mannitol (C6H14O6 ) 182 0.000 ± 0.057 0.000 ± 0.087 0.000 ± 0.142 0.000 ± 0.277 0.000 ± 0.406 0.255 ± 0.043 0.000 ± 0.070 0.000 ± 0.297 0.000 ± 0.104 0.085 ± 0.147

Arabinose (C5H10O5) 150 0.000 ± 0.057 0.000 ± 0.087 0.000 ± 0.142 0.000 ± 0.277 0.000 ± 0.406 0.000 ± 0.043 0.000 ± 0.070 0.000 ± 0.297 0.000 ± 0.104 0.000 ± 0.103

Glucose (C6H12O6 ) 180 0.000 ± 0.038 0.000 ± 0.058 0.000 ± 0.095 0.000 ± 0.185 0.000 ± 0.270 0.000 ± 0.028 0.000 ± 0.046 3.882 ± 0.198 0.000 ± 0.070 1.294 ± 2.241

Galactose (C6H12O6 ) 180 0.000 ± 0.076 0.000 ± 0.116 0.000 ± 0.189 0.000 ± 0.369 0.000 ± 0.541 0.000 ± 0.057 0.000 ± 0.093 0.000 ± 0.396 0.000 ± 0.139 0.000 ± 0.137

Maltitol (C12H24O11) 344 0.000 ± 0.095 0.000 ± 0.145 0.000 ± 0.236 0.000 ± 0.461 0.000 ± 0.676 0.000 ± 0.071 0.000 ± 0.116 0.000 ± 0.494 0.000 ± 0.174 0.000 ± 0.171

Organic Acids 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Lactic acid (C3H6O3) 90 0.032 ± 0.057 0.097 ± 0.087 0.007 ± 0.142 0.000 ± 0.277 0.000 ± 0.406 0.004 ± 0.043 0.050 ± 0.070 0.048 ± 0.297 0.027 ± 0.104 0.034 ± 0.103

Acetic acid (C2H4O2 ) 60 0.305 ± 0.114 0.224 ± 0.174 0.000 ± 0.284 0.000 ± 0.554 0.000 ± 0.811 0.000 ± 0.085 0.000 ± 0.139 0.000 ± 0.593 0.106 ± 0.209 0.000 ± 0.205

Formic acid (CH2O ) 46 0.000 ± 0.114 0.000 ± 0.174 0.000 ± 0.284 0.000 ± 0.554 0.001 ± 0.811 0.009 ± 0.085 0.000 ± 0.139 0.000 ± 0.593 0.000 ± 0.209 0.003 ± 0.205

Methanesulfonic acid (CH4SO3 ) 96 0.000 ± 0.076 0.000 ± 0.116 0.000 ± 0.189 0.000 ± 0.369 0.000 ± 0.541 0.000 ± 0.057 0.000 ± 0.093 0.000 ± 0.396 0.000 ± 0.139 0.000 ± 0.137

Glutaric acid (C5H8O4) 132 0.000 ± 0.095 0.000 ± 0.145 0.000 ± 0.236 0.000 ± 0.461 0.000 ± 0.676 0.000 ± 0.071 0.000 ± 0.116 0.000 ± 0.494 0.000 ± 0.174 0.000 ± 0.171

Succinic acid (C4H6O4 ) 118 0.000 ± 0.076 0.000 ± 0.116 0.000 ± 0.189 0.000 ± 0.369 0.000 ± 0.541 0.000 ± 0.057 0.000 ± 0.093 0.000 ± 0.396 0.000 ± 0.139 0.000 ± 0.137

Malonic acid (C3H4O4) 104 0.000 ± 0.114 0.000 ± 0.174 0.000 ± 0.284 0.000 ± 0.554 0.000 ± 0.811 0.000 ± 0.085 0.000 ± 0.139 0.000 ± 0.593 0.000 ± 0.209 0.000 ± 0.205

Maleic acid (C4H4O4 ) 116 0.000 ± 0.095 0.000 ± 0.145 0.000 ± 0.236 0.000 ± 0.461 0.000 ± 0.676 0.000 ± 0.071 0.000 ± 0.116 0.000 ± 0.494 0.000 ± 0.174 0.000 ± 0.171

Oxalic acid (C2H2O4) 90 0.000 ± 0.076 0.000 ± 0.116 0.137 ± 0.189 0.000 ± 0.369 0.057 ± 0.541 0.036 ± 0.057 0.027 ± 0.093 0.040 ± 0.396 0.039 ± 0.139 0.034 ± 0.137

WSOC

Neutral compounds 5.621 ± 1.571 1.189 ± 0.890 1.595 ± 1.043 1.378 ± 1.398 1.667 ± 1.227 0.129 ± 0.123 0.334 ± 0.259 2.166 ± 1.247 2.290 ± 1.871 0.876 ± 1.122

Mono-/di- carboxylic acids 2.157 ± 1.950 0.130 ± 1.365 0.846 ± 1.706 0.000 ± 2.066 0.175 ± 1.859 0.009 ± 0.194 0.072 ± 0.411 0.000 ± 1.676 0.661 ± 0.899 0.027 ± 0.579

Polycarboxylic acids (including HULIS) 0.000 ± 2.376 0.000 ± 2.131 0.621 ± 2.468 2.048 ± 3.587 2.145 ± 3.049 0.026 ± 0.309 0.274 ± 0.647 0.000 ± 2.794 0.963 ± 1.240 0.100 ± 0.961

Sum of speciated WSOC 7.778 ± 3.554 1.319 ± 2.684 3.061 ± 3.205 3.426 ± 4.398 3.986 ± 3.816 0.164 ± 0.385 0.679 ± 0.812 2.166 ± 3.488 3.914 ± 2.379 1.003 ± 1.201

Total WSOC 11.285 ± 2.318 15.500 ± 3.536 3.148 ± 5.767 6.970 ± 11.257 3.857 ± 16.492 2.195 ± 1.735 3.982 ± 2.834 2.511 ± 12.065 8.152 ± 5.213 2.896 ± 4.171