Characterization of High Q Spherical Resonators

39
National Center for Physical Acoustics 1986 The University of Mississippi 1848 Characterization of High Q Spherical Resonators Kenneth Bader, Jason Raymond, Joel Mobley National Center for Physical Acoustics University of Mississippi Felipe Gaitan, Ross Tessien, Robert Hiller Impulse Devices, Inc. Grass Valley, CA Physics Colloquium 25 March, 2008

Transcript of Characterization of High Q Spherical Resonators

Page 1: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Characterization of High Q Spherical Resonators

Kenneth Bader, Jason Raymond, Joel MobleyNational Center for Physical Acoustics

University of Mississippi

Felipe Gaitan, Ross Tessien, Robert HillerImpulse Devices, Inc.

Grass Valley, CA

Physics Colloquium25 March, 2008

Page 2: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Outline• Introduction/Motivation

–acoustic cavitation–sonoluminescence

• Measurements in test resonator –determination acoustic modes

• Comparison of theory and measurements–shell vibration accommodation

• Measurements in High Q resonator

Page 3: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Outline• Introduction/Motivation

–acoustic cavitation–sonoluminescence

• Measurements in test resonator –determination acoustic modes

• Comparison of theory and measurements–shell vibration accommodation

• Measurements in High Q resonator

Page 4: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

• Cavitation is excitation of bubbles using acoustics

• Bubble's radial symmetry effective at concentrating energy

• Sonoluminescence– violent bubble collapse– bubble wall supersonic– gas temperature ~ 105 K– energy concentration 12

orders magnitude– picosecond flashes of light

Bubble action under acoustic source

Single bubble sonoluminescence(30 kHz, Water)

Introduction

pa

pr

pc

Page 5: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Motivation

• Project goal is maximize cavitation collapse – how hot will the gas get?

• Methods for maximizing cavitation collapse– liquids which promote violent collapse– higher ambient pressure of system– high Q resonators

Page 6: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

High Q Resonator for Acoustic Cavitation• Resonator Properties

– 10” OD stainless steel sphere– excited with single acoustic horn– fittings for high pressures– Q > 10 000

• Characterization of Resonator– determine acoustic modes

• laser dopper vibrometry (LDV)• surface piezoelectric transducer• piezoelectric transducer in fluid

(hydrophone)

Page 7: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Acoustic Modes• Determine velocity potential

from Helmholtz equation

• are spherical Bessel

– jo mode of interest

• Boundary condition at sphere edge

– for infinitely rigid boundary

∇2k 2 =0

i ur=a=−∂pr=a

∂ r

kaj n /

j o

jn for n = 0-3

ur=a= 0kn, s=zn,s /a

Pn∝ jnkn ,s r Y n,m

un∝ j 'n kn, s r Yn ,m

Page 8: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Outline• Introduction/Motivation

–acoustic cavitation–sonoluminescence

• Measurements in test resonator –determination acoustic modes

• Comparison of theory and measurements–shell vibration accommodation

• Measurements in High Q resonator

Page 9: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Cell Hydrophone

Automated Positioning System

Set-up for Cell Pressure Measurements

Page 10: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Normalized Pressure vs. Position, Frequency

Frequency (kHz)

Dis

tan

ce f

rom

SL

Cel

l Cen

ter

(mm

)

Hydrophone Response in Cell

Page 11: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Normalized Pressure vs. Position, Frequency

Frequency (kHz)

Dis

tan

ce f

rom

SL

Cel

l Cen

ter

(mm

)

Distance from SL Cell Center (mm)

Hydrophone Response in Cell

Page 12: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Hydrophone Response in CellNormalized Pressure vs. Position, Frequency

Frequency (kHz)

Dis

tan

ce f

rom

SL

Cel

l Cen

ter

(mm

)

Frequency (kHz)

Page 13: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Outline• Introduction/Motivation

–acoustic cavitation–sonoluminescence

• Measurements in test resonator –determination acoustic modes

• Comparison of theory and measurements–shell vibration accommodation

• Measurements in High Q resonator

Page 14: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

• Motion of shell dictated by elasticity dynamics:

– s is shell displacement

– cl is longitudinal sound speed

– ct is transverse sound speed

• Shell motion modifies acoustic boundary condition as

−ω2s=cl2∇∇⋅s−ct

2∇ x∇ xs

j 'n ka =−c2

sc l2 ka jn ka Sn k la

Mehl, J. 1985, J. Acoust. Soc. Am. 78, 782.

ur=a= j 'n ka = 0

Comparison with Theory

Infinitively Rigid BC

Elastic Shell BC

Page 15: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Comparison with Theory • Motion of shell dictated by elasticity dynamics:

– s is shell displacement

– cl is longitudinal sound speed

– ct is transverse sound speed

• Shell motion modifies acoustic boundary condition as

• Solve for eigenfrequencies ka

−ω2s=cl2∇∇⋅s−ct

2∇ x∇ xs

j 'nka =−c2

sc l2 ka jn ka Snk la

Mehl, J. 1985, J. Acoust. Soc. Am. 78, 782.

Sn kla ∝particlevelocity

pressure

Page 16: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

'

Calculated Acoustic Modesj ' 0 ka , −

c2

s c l2 ka j 0 ka S0 k l a vs. ka

ka

Page 17: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Calculated Acoustic Modes

Acoustic Mode 130.4 kHz

j ' 0 ka , −c2

s c l2 ka j 0 ka S0 k l a vs. ka

Acoustic Mode 254.9 kHz

ka

'

Acoustic Mode 380.4 kHz

Page 18: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Calculated Empty Shell Breathing Modes

kla

So

Shell Mode48.5 kHz

Divergence of So

Page 19: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Measured Amplitude of Acoustic, Shell Modes

Acoustic Mode 130.4kHz

Acoustic Mode 254.8 kHz

Shell Mode49.0 kHz

Frequency (kHz)

Pressure Profile at Cell Center vs. FrequencyH

ydro

ph

one

Res

pons

e (m

V)

Page 20: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Outline• Introduction/Motivation

–acoustic cavitation–sonoluminescence

• Measurements in test resonator –determination acoustic modes

• Comparison of theory and measurements–shell vibration accommodation

• Measurements in High Q resonator

Page 21: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

10” Resonator Measurements Experimental Setup

Experimental arrangement used to measure acoustic pressure within the resonator

SpectrumAnalyzer

PowerAmplifier

Resonator

HydrophoneAutomatedPositioningSystem

Tracking Gen.OUT

IN

SpectrumAnalyzer

PowerAmplifier

Resonator

HydrophoneAutomatedPositioningSystem

Tracking Gen.OUT

IN

Page 22: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Resonance Frequencies - Q of Resonance

Resonance Half-width (Frequency) 17.8 kHz (0,4) 38.0 Hz 24.2 kHz (0,5) 8.3 Hz 31.0 kHz (0,6) 4.9 Hz 37.9 kHz (0,7) 1.8 Hz

Summary of Measured Resonance Frequencies ­25 25­30

­20

­10

0

Frequency (Hz)

Ampl

itude

 (dB)

Frequency Response Near Resonance

(0,4) 

(0,5) 

(0,6) 

(0,7) 

Page 23: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

­50 ­40 ­30 ­20 ­10 0 10 20 30 40 500

0.5

1

Distance (mm)

Rela

tive 

Inte

nsity

Intensity vs. Radius

 

 (0,4)(0,5)(0,6)(0,7)

Pressure vs. Radius

Relative amplitude of acoustic pressure for the radial acoustic (n=0) modes

Pressure Half-maximum (Distance) 17.8 kHz (0,4) 38 mm 24.2 kHz (0,5) 25 mm 31.0 kHz (0,6) 18 mm 37.9 kHz (0,7) 15 mm

24.1 cm

10 cm

24.1 cm

10 cm

­50 ­25 0 25 500

1

Distance (mm)

Rela

tive 

Inte

nsity

Intensity vs. Radius

 

 

(0,4)

MeasuredTheory

Page 24: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Summary

• Maximizing cavitation collapse involves the use of high Q resonators

• Preliminary work requires developing techniques for characterizing high Q resonators

• Initial studies done in sonoluminescence cell – zero order acoustic modes correlate well with Mehl theory– empty shell breathing modes correlate well with Mehl theory

• 10” Resonator resonant frequencies, pressure profiles agree with theory – Q range from ~ 400 to 20 000

Page 25: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Acknowledgements• The authors would like to thank members

of the Ultrasonics Group at NCPA for their help with this work.

• This work was supported by SMDC Contract NO. W9113M-07-C-0178

Page 26: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

The End

Page 27: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Passive Cavitation Detector Response

24 24.05 24.1 24.15 24.20

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (kHz)Re

spon

se (V

pp)

Cavitation Detector Response vs. Frequency

↑ (0,4)

Cavitation detector response measured near resonance Measurement based on high-

frequency emissions from collapsing bubbles

Passive acoustic sensor mounted near wall of resonator

Amplitude of high-pass filtered signal from PZT-pin transducer mounted near wall of resonator

FunctionGenerator

PZT-pin sensor

Oscilloscope

H.P. Filter(400 kHz)

PowerAmplifier

Resonator

FunctionGenerator

PZT-pin sensor

Oscilloscope

H.P. Filter(400 kHz)

PowerAmplifier

Resonator

Page 28: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Radial Mode Resonance Frequencies -Temperature Dependence

Acoustic resonance frequencies measured at different temperatures agree well with those predicted by the theory

~ 45 Hz/°C dependence (near room temperature)

0 5 10 15 20 25 30 35 40 45 5022

24

26

28

30

32

34

36

38

40

Temperature (deg C)

Freq

uenc

y (k

Hz)

Resonance Frequency vs. Temperature

(0,4) 

(0,5) 

(0,6) 

Predicted (-) and measured (^) acoustic resonance frequencies vs. temperature

30.8 30.85 30.9 30.95 31 31.05 31.1 31.15 31.2 31.25 31.3­20

­10

0

(0,6) 20oC(0,6) 22oC 

(0,6) 25oC 

Frequency (kHz)

Ampl

itude

 (dB)

Frequency Response Variation With Temperature

Page 29: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Acoustic Resonances – Rigid Approximation

Radial Modes

(n=0)

0 5 10 150

10

20

30

40

50

60

70

80

Mode Number, n

Freq

uenc

y (k

Hz)

Frequency Spectrum ­ Rigid Approximation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

Radial distance (r/a)

Acou

stic

 Pre

ssur

e (p

/p0)

Radial Acoustic Modes

(0,2) 

(0,3) 

(0,4) 

(0,5) 

Radial Acoustic Modes(n=0)

(0,2)(0,3)(0,4)(0,5)

Higher-order modes (n>0) of an ideal sphere have a (2n+1)-fold degeneracy Real cavities will be asymmetrical,

therefore the originally degenerate modes will exhibit somewhat different resonance frequencies

Page 30: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Acoustic Resonances – Fluid-filled Shell

Solve for acoustic eigenvalues with shell motion completely accounted for using frequency dependant BC

0 5 10 150

10

20

30

40

50

60

70

80

Mode Number, n

Freq

uenc

y (k

Hz)

Frequency Spectrum

Acoustic resonance frequencies affected by resonances (extensional modes) of the shell

In detailed studies of gas-filled resonators, Moldover et. al. found that: Effect of radiation from shell to

surrounding fluid negligible (except near breathing resonance of shell)

Coupling of shell to mechanical supports minimal provided acoustic frequencies are high

Moldover, Mehl & Greenspan, JASA 79(2), 1986

Page 31: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Characterization of High Q Spherical Resonator

Kenneth BaderSESAPS Nov. 2007

Page 32: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Measured Shell Surface Vibrations

frequency (kHz)

Am

plitu

de (

dBm

)

30.3 kHz

49.3 kHz55 kHz

Page 33: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Set-up for LDV Measurements

Spectrum Analyzer

Power Amp SL Resonator LDV

Page 34: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

LDV Preliminary Results LDV Preliminary Results

Page 35: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Set-up for Hydrophone MeasurementsSet-up for Hydrophone Measurements

Function Function GeneratorGenerator AmplifierAmplifier

ResonatorResonator

HydrophoneHydrophone

Automated Automated Positioning Positioning SystemSystem

Page 36: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Combined Pill, Hydrophone, and LDV Measurements

Page 37: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Combined Pill, Hydrophone, and LDV Measurements

Page 38: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Combined Pill, Hydrophone, and LDV Measurements

Page 39: Characterization of High Q Spherical Resonators

National Center for Physical Acoustics1986

The University of Mississippi 1 8 4 8

Power AmpLDV

Automated Automated Positioning Positioning SystemSystem

Pill

Function Generator

ScopeHydrophone