Chapter Fifteen Electric Current

75
1 Chapter Fifteen Electric Current

description

Chapter Fifteen Electric Current. Electric Current. We consider the motion of electrons in a conductor (a metal) when there is a voltage difference applied between the ends of the conductor. - PowerPoint PPT Presentation

Transcript of Chapter Fifteen Electric Current

Page 1: Chapter Fifteen  Electric Current

1

Chapter Fifteen Electric Current

Chapter Fifteen Electric Current

Page 2: Chapter Fifteen  Electric Current

2

Electric Current• We consider the motion of electrons in a

conductor (a metal) when there is a voltage difference applied between the ends of the conductor.

• We will limit our discussion mostly to direct currents, that is, currents whose magnitude and direction do not change with time.

Page 3: Chapter Fifteen  Electric Current

3

Motion of Charges in an Electric Field

• By Newton's second law F = ma we have

where q represents an arbitrary charge.

Page 4: Chapter Fifteen  Electric Current

4

• In the case of an electron, and the mass of an electron is Thus

• We may calculate the velocity of the electrons after they travel a distance s assuming that no scattering (or collisions) occurs over that distance.

• When and , the velocity is

Page 5: Chapter Fifteen  Electric Current

5

Electric Current• The motion of an electron in an electric

field is a series of short accelerations interrupted by collisions that scatter the electron. It has a random path, although there is a slow net velocity opposite to the field direction (see Fig. 15-1). It is the net velocity of the electrons, called the drift velocity, that gives rise to the current, not the brief accelerations.

Page 6: Chapter Fifteen  Electric Current

6

Page 7: Chapter Fifteen  Electric Current

7

• The charge that flows by in time through a plane perpendicular to a wire is defined as electric current i, where

• When i is not constant we define electric current as

Page 8: Chapter Fifteen  Electric Current

8

• In the SI units, current is measured in amperes, or amps. One ampere (1A) is equal to one coulomb per second and is a relatively large quantity.

• We use the milliampere (1 mA = 10-3 A) or the microampere (1 μA = 10-6 A).

Page 9: Chapter Fifteen  Electric Current

9

• See Fig. 15-2. Assume that there are both positive and negative charges, both of which are mobile in the presence of an electric field with a vector direction from left to right. Assume that there are Np (Nn) positive (negative) charges per unit volume with drift velocity of vp (vn).

Page 10: Chapter Fifteen  Electric Current

10

Page 11: Chapter Fifteen  Electric Current

11

• In time the positive charges will move from left to right a distance of . If each charge has a charge qp, the charge flowing across the right end of the cylinder is

Thus,

Page 12: Chapter Fifteen  Electric Current

12

• In the same way, the negative particles, each with charge qn, flow from right to left given rise to a current

• Both the sign of the charge qn and the sign of the drift velocity vn are negative and therefore their product is positive.

Page 13: Chapter Fifteen  Electric Current

13

• A flow of negative charges to the left is equivalent to a flow of positive charges to the right. Thus,

• The direct current i in a conductor has the same direction as that of the electric field .

Page 14: Chapter Fifteen  Electric Current

14

• There is no pileup of electric charges in the wire at any point. If we connect a wire between the terminals of a battery, it is therefore reasonable to conclude that charge flows at a steady rate throughout the wire.

• The current density is defined as the current per unit cross-sectional area, that is

Page 15: Chapter Fifteen  Electric Current

15

Example 15-1• Suppose a copper wire carries 10 A (amps) of cur

rent and has a cross-section of 10-6 m2. As will be seen later, each atom of copper contributes one electron that is free to move, so the electron carrier density Nn is about the same as the density of atoms, which is about 7 ×1028 atoms per m3. The charge on an electron is -1.6 ×10-19 C.

(a) What is the drift velocity vn of the electrons? (b) How long would it take an electron to move from one terminal of a battery to the other if this wire were 1 m long?

Page 16: Chapter Fifteen  Electric Current

16

Sol• (a)

• (b)

So the actual drift velocity of a given electron is very small. The speed of propagation of the electric field along the wire is that of the speed of light in the wire.

Page 17: Chapter Fifteen  Electric Current

17

Resistance and Resistivity

• Experiment shows that in many cases the electric current i, hence the current density J , are proportional to E. .

• Define electrical resistivity ρ as

• The resistivity is a property of a given material and is independent of its shape.

Page 18: Chapter Fifteen  Electric Current

18

• The resistivity was found to be a constant for a given metal at a given temperature by G. Ohm. Thus, the above equation is called Ohm's law.

• A material obeying Ohm's law is called an ohmic conductor.

• The units of ρ( called ohm meter, Ω-m) is

• See Table 15-1

Page 19: Chapter Fifteen  Electric Current

19

• The conductivity σ is defined as

• Suppose we have a given metal wire with cross section A, length l, and resistivity ρ with an applied electric field (see Fig. 15-3). The potential difference between the two ends of the conductor, point 1 and 2 is

Page 20: Chapter Fifteen  Electric Current

20

Page 21: Chapter Fifteen  Electric Current

21

• If the electric field inside the conductor is uniform,

where l = s2 - s1. Thus,

which can be written as

where V means and• R is called resistance of the wire and has units of

Ω (ohms).• The current in a resistance (resistor) is from its

high potential side to its low potential side.

Page 22: Chapter Fifteen  Electric Current

22

Resistances in Series and Parallel

• See Fig. 15-4. The voltage difference across a resistance (resistor) is called voltage drop.

• See Fig. 15-5. The electric potential at point A is the same as that at the left side of the battery (emf), and that at point D is the same as the right side of the battery. The same current must pass through each of these resistances at that which passes between points A and D. This combination is called series resistances.

Page 23: Chapter Fifteen  Electric Current

23

Page 24: Chapter Fifteen  Electric Current

24

• It is obvious that will be true regardless of the number of resistances in series.

• See Fig. 15-6. The resistances is arranged

in parallel.

where Req is the equivalent resistance of the three.

Page 25: Chapter Fifteen  Electric Current

25

Page 26: Chapter Fifteen  Electric Current

26

• The left side of each resistance is at the same potential and the right side is at the same potential, hence, the same voltage drop V must occur across each.

• . By Ohm's law,

• and

Page 27: Chapter Fifteen  Electric Current

27

• Thus,

where

Page 28: Chapter Fifteen  Electric Current

28

• See Fig. 15-9. The current through R1 is the same as that through R2, and

• where V1 and V2 are the voltage drops across R1 and R2, respectively. Equating the i's gives

Page 29: Chapter Fifteen  Electric Current

29

Page 30: Chapter Fifteen  Electric Current

30

• In a series circuit the ratio of the voltage drops is equal to the ratio of the resistances.

• See Fig. 15-10. The voltage across each resistance is the same and

• Equating V1 and V2 gives

Page 31: Chapter Fifteen  Electric Current

31

Page 32: Chapter Fifteen  Electric Current

32

• In a parallel circuit the ration of the currents through each resistor is inversely proportional to the resistances.

Page 33: Chapter Fifteen  Electric Current

33

Example 15-2• Suppose in Fig. 15-5 the voltage V = 1.5 V

and the resistances are R1 = 5 Ω; R2 = 10 Ω, and R3 = 15 Ω. What are the voltages VAB, VBC, and VCD?

Page 34: Chapter Fifteen  Electric Current

34

Page 35: Chapter Fifteen  Electric Current

35

Page 36: Chapter Fifteen  Electric Current

36

Sol

• Then applying Ohm's law to each resistance

Page 37: Chapter Fifteen  Electric Current

37

Example 15-3• Suppose two resistors, R1 = 5 Ω and R2 = 1

0 Ω, are connected in parallel to a 1.5 V battery as in Fig. 15-7.

(a) What is the current through each?

(b) What is the total current in the circuit?

Page 38: Chapter Fifteen  Electric Current

38

Page 39: Chapter Fifteen  Electric Current

39

Sol• (a) Using Ohm's law

• (b) i = i1 + i2 = 300 mA + 150 mA = 450 mA. We may check this answer by solving the equivalent circuit.

Page 40: Chapter Fifteen  Electric Current

40

Page 41: Chapter Fifteen  Electric Current

41

Example 15-4• Three resistors are connected in a combinat

ion of series and parallel as in Fig. 15-8. What is the current through each?

Page 42: Chapter Fifteen  Electric Current

42

Page 43: Chapter Fifteen  Electric Current

43

Sol• First we find Req(p) for the parallel combination

• We then have the equivalent circuit, Fig. 15-8b.

• Now we have the simpler equivalent circuit of Fig. 15-8c.

Page 44: Chapter Fifteen  Electric Current

44

• By the relation given previously we have

• Furthermore, i = i1 + i2 = 346 mA. Thus,

Page 45: Chapter Fifteen  Electric Current

45

Kirchhoff's Rules• Two fundamental rules established by G. R.

Kirchhoff that aid in the solution of electrical networks are

1. The algebraic sum of currents toward any branch point is zero.

2. The algebraic sum of all potential changes in a closed loop is zero.

Page 46: Chapter Fifteen  Electric Current

46

• Charge can not accumulate in a DC circuit: If it did, there would be a larger electric field at that region which would exert a larger force and thereby redistribute the charge evenly.

• Rule 2 is a statement of the conservation of energy.

Page 47: Chapter Fifteen  Electric Current

47

• In applying rule 2, it is useful to follow certain guidelines that will prevent errors in the signs of the potential changes.

(a) As indicated in connection with rule 1, we first assume a direction for the current through each branch of the circuit.

(b) We then choose any closed loop in the circuit and designate the direction in which we wish to mentally traverse it.

(c) We now go around the loop in the chosen direction adding algebraically all the potential changes and setting the sum equal to zero.

Page 48: Chapter Fifteen  Electric Current

48

• When we meet an emf source, its voltage V is taken as positive if we cross the source from the negative (low potential) side to the positive (high potential) side.

• If in our mental trip around the circuit loop we cross a resistor in the same direction as the current, we must take the iR drop as negative because we are going from high to low potential-a decrease.

Page 49: Chapter Fifteen  Electric Current

49

• Consider the circuit of Fig. 15-12. We apply rule 2 and write

• Consider the circuit of Fig. 15-13a. We apply rule 2 and write

Page 50: Chapter Fifteen  Electric Current

50

Page 51: Chapter Fifteen  Electric Current

51

• Consider the circuit of Fig. 15-13b. We apply rule 2 and write

Page 52: Chapter Fifteen  Electric Current

52

Example 15-5• In the circuit of Fig. 15-14,

(a) Find the currents iC, iE, and iB and the voltage drop across resistors R1 and R2.

(b) Find the voltage difference between points C and D and between D and E.

Page 53: Chapter Fifteen  Electric Current

53

Page 54: Chapter Fifteen  Electric Current

54

• (a) From the first rule at branch point B

For the right-hand loop, if we traverse it in the counterclockwise direction starting at point D, we have

Page 55: Chapter Fifteen  Electric Current

55

• For the left-hand loop, traversing it counterclockwise, we write

• We now have three equations to be solved simultaneously for iC, iE, and iB.

Page 56: Chapter Fifteen  Electric Current

56

• We can use the first equation to eliminate iB from the last two.

Page 57: Chapter Fifteen  Electric Current

57

• We can now solve for iE.

• Finally we can obtain iB

Page 58: Chapter Fifteen  Electric Current

58

• The voltage drop across R1 is

• and the voltage drop across R2 is

Page 59: Chapter Fifteen  Electric Current

59

(b)

Page 60: Chapter Fifteen  Electric Current

60

Galvanometers and Voltmeters

• See Fig. 15-15. Electric current passing through a wire produces a magnetic field. If a loop of wire is used then, on the passage of current, one end of the loop becomes the north pole of a magnet and the other end becomes the south pole.

• The larger the number of loops, the stronger the magnet for a given current. Similarly, the larger current, the stronger the magnet for a given number of loops.

Page 61: Chapter Fifteen  Electric Current

61

Page 62: Chapter Fifteen  Electric Current

62

• A full-scale deflection of a instrument needle can be established for a given amount of current through the coil. This instrument is called a galvanometer. The current for full-scale deflection is called the current rating of a meter.

• The common current rating is 0.1 mA.• To extend the range of the meter, a lower resistan

ce, called a shunt, is placed in parallel with the meter (see Fig. 15-16).

Page 63: Chapter Fifteen  Electric Current

63

Page 64: Chapter Fifteen  Electric Current

64

• The resistance of the coil Rc is commonly 1000 Ω . From Ohm's law the voltage drop across the galvanometer in Fig. 15-16 must be

• In Fig. 15-16b

• In Fig. 15-16c

Page 65: Chapter Fifteen  Electric Current

65

• An instrument to measure the voltage difference between two points in a circuit is called a voltmeter (see 15-17). The idea instrument would be one that had infinite resistance since we do not want such a voltmeter to disturb the current flow through the resistor.

Page 66: Chapter Fifteen  Electric Current

66

Page 67: Chapter Fifteen  Electric Current

67

Power Dissipation by Resistors

• In an elastic collision between an electron and an atom, very little energy is transferred to the atom-most of the kinetic energy is retained by the electron in its recoil. Because many collisions are taken place, each small energy loss adds to a considerable amount.

• Since temperature is a measure of the average kinetic energy of the atoms of a system, we expect any conductor to heat up when an electric current is passed through it.

Page 68: Chapter Fifteen  Electric Current

68

• Let VA and VB represent the potentials of points A and B, respectively, and VAB the potential difference. The change in potential energy of a charge entering at A and leaving at B is

Page 69: Chapter Fifteen  Electric Current

69

• This represents an energy loss because VA is greater than VB.

• In general

Page 70: Chapter Fifteen  Electric Current

70

Charging a Capacitor-RC Circuits

• See Fig. 15-19.

• Since , we have

Page 71: Chapter Fifteen  Electric Current

71

Page 72: Chapter Fifteen  Electric Current

72

• See Fig. 15-20. At t = 0, q = CV (1-e-0) = CV (1-1) = 0. This agrees with the fact that at t = 0 the capacitor was unchanged. As t increases, the exponential term in the parenthesis decreases and consequently q increases. As and , the ultimate charge on the capacitor.

Page 73: Chapter Fifteen  Electric Current

73

Page 74: Chapter Fifteen  Electric Current

74

• The time of charging rate is determined by the product RC, which is called the time constant of the circuit.

• The current i passing the capacitor is

• As and the capacitor acts as if it were a wire with no resistance. As

and , the ultimate current on the capacitor.

Page 75: Chapter Fifteen  Electric Current

75

Homework• 15.4, 15.6, 15.8, 15.9, 15.11, 15.12, 15.13,

15.14, 15.15, 15.18, 15.20, 15.21, 15.23, 15.24.