CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3...

69
CHAPTER-3 SYNTHESIS AND CHARACTERIZATION OF MONOMER AND POLYMERS

Transcript of CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3...

Page 1: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

CHAPTER-3

SYNTHESIS AND CHARACTERIZATION

OF MONOMER AND POLYMERS

Page 2: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Scope of the chapter

This chapter gives a brief

description of synthesis and

characterization of bisfuran,

various bismaleimides, Diels-Alder

polyadducts, polyimides and bulk

polymerization products. It

also highlights the synthesis

and characterization of model compounds.

Page 3: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 47

3.1. SYNTHESIS AND CHARACTERIZATION OF BISFURAN

3.1.1. Introduction

A bicyclic heterocycle consists of two fused furan rings. DA reaction has been

applied to the furan heterocycle with growing frequency because of its

pronounced dienic character, which makes it particularly suited to intervene in

the DA cycloaddition reaction as the dienic partner. So many bisfuran have been

synthesized by the researchers for the synthesis of various polyimides. Not a

single report was found based on the synthesis of 2,5-bis(furan-2-ylmethyl

carbamoyl)terephthalicacid from pyromellitic dianhydride and furan-2-

ylmethanamine (furfurylamine). Hence, it was planned to undertake the study of

polyimides derived from bisfuran.

3.1.2. Experimental

3.1.2.1. Materials

All the chemicals and solvents used were of laboratory grade. Pyromellitic

dianhydride was purchased from Fluka Analytical-Japan. Furan-2-ylmethan

amine was obtained from local market and redistilled before use.

3.1.2.2. Synthesis of bisfuran

The bisfuran was synthesized by parity condensation of phthalic anhydride and

furan-2-ylmethanamine [1]. Adding drop wise a solution of furan-2-ylmethan

amine (0.2mol) to a stirred solution of pyromellitic dianhydride (0.1mole) and

keeping the temperature of the medium close to 0-5 ˚C for an hour (Figure 3.1),

thus obtained ensuing solution was poured into ice water in which the reaction

product precipitated. The final white precipitates were filtered, washed and

purified by column chromatography.

Figure 3.1: Synthesis of bisfuran

Page 4: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 48

3.1.2.3. Characterization of bisfuran

Table 3.1: Physiochemical, spectral and thermal parameters of bisfuran

Physiochemical parameters Molecular formula : C20H16N2O8

Molecular weight : 412.35 g.

Melting point : 250–260˚C (uncorrected)

Yield : 65 %

Color : white

Elemental analysis : % C % H % N Calc. 58.25 3.91 6.79

Found 57.87 3.75 6.58

Infrared spectral features (cm–1) 3528 cm–1 : –OH st. acid 3254 cm–1 : –NH st. amide 3123 cm–1 : –C–H st. furan rings 3038, 1627 cm–1 : –CH st. aromatic ring, –C–C– st. aromatic 2954, 2841 cm–1 : –CH st. aliphatic 1714, 1040 cm–1 : C=O st. acid, –C–O st.

1685 cm–1 : O=C–NH free amide 1581, 1465 cm–1 : –COO– asym. st., –COO– sym. st. 1500 cm–1 : backbone st. aromatic ring 1249, 1175 cm–1 : furan in–plane CH deformation

1H NMR spectral features 10.93 δ ppm : s 2H –COOH

8.90 δ ppm : t (J=5.2 Hz) 2H –NH–CO–

8.11 δ ppm : s 2H Ar.H

7.93 δ ppm : d (J=6.4 Hz) 2H H11,11’

7.75 δ ppm : t (J=6.4 Hz) 2H H10,10’

7.50 δ ppm : d (J=6.4 Hz) 2H H9,9’

4.32 δ ppm : d (J=5.2 Hz) 4H –CH2–

13C NMR spectral features 42.27, 117.73, 119.28, 123.47, 126.10, 129.32, 132.67, 135.70, 167.12,

172.73

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.10 2.00 22.14 33.27 69.57 93.72 98.02

% wt loss due to decarboxylation (180–280˚C): calculated 21.34%. (first step) found 20.9%

Page 5: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 49

3.1.3. Results and discussion of bisfuran

To the best of our knowledge, 2,5-bis(furan-2-ylmethylcarbamoyl)terephthalic

acid (bisfuran) had not been reported previously. The characterization of the

reaction product provided the first unambiguous proof of the successful

synthesis of bisfuran.

1H NMR spectrum indicated the doublet peak at 4.32 δppm corresponded to

methylene group, doublet peak at 7.50 δppm, triplet at 7.75 δppm, doublet at

7.93 δppm and singlet at 8.11 δppm were attributed to six protons of furan ring

on H9,9’, H10,10’, H11,11’ and two protons of phenyl ring on H1,1’ respectively (Figure

3.2). The singlet at 10.93 δppm was ascribed to the protons of carboxylic acid

group and a triplet at 8.90 δppm attributed to the –NH proton of amide group,

which was further confirmed by 13C NMR values. In DEPT–135 spectrum of

bisfuran (Figure 3.3), the inverted peak at 42.24 δppm indicated the methylene

bridge between the amide and furan ring. Peaks due to substituted carbon of

aromatic rings and carbonyl carbon were not observed while the peaks due to

unsubstituted aromatic carbon were observed at 117.78, 119.24, 123.46 and

129.33 in DEPT–135 spectra, which were in favor of the proposed structure.

The FTIR spectrum of bisfuran showed the most relevant peaks of the furan ring

and 1,2,4,5–tetra substituted benzene ring (Figure 3.4), other than the typical

absorptions arising from the band at 3528 cm-1 and 1714 cm-1 for carboxylic

acid and 3254 cm-1 and 1685 cm-1 for O=C–NH group.

TGA data of bisfuran (Figure 3.5) indicated that, the degradation occurred into

two steps. First stage of degradation started from 180 ˚C to 280 ˚C might be

attributed to decarboxylation of bisfuran. The value of wt. loss 20.91% was

consistent with the theoretical value 21.34%. The second major stage at about

300˚C to 700˚C was attributed to the monomer decomposition/pyrolysis. The 3–

4% char residue remained at 700 ˚C.

The expected structure was thus clearly verified by this spectroscopic and

thermal analysis which indicated moreover the absence of any detectable

impurity, particularly of the two reagents used to prepare bisfuran. This was

additionally confirmed by elemental analysis (Table 3.1).

Page 6: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 50

Figure 3.2: 1H NMR of bisfuran

Figure 3.3: DEPT-135 of bisfuran

Page 7: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 51

Figure 3.4: FT–IR of bisfuran

Figure 3.5: Thermogram of bisfuran

Page 8: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 52

3.2. SYNTHESIS OF BISMALEIMIDES

3.2.1. Introduction

Bismaleimides (BMIs) are a class of compounds with two maleimide groups

connected by the nitrogen atoms via a linker, and are used as crosslinking

reagents in polymer chemistry. BMIs are a leading class of thermosetting

polyimides. Their excellent processability and balance of thermal and mechanical

properties have made them extremely popular in advanced composites and

electronics [2–3].

BMIs used in commercially available resin formulations are of lower molecular

weights and are based on cheap aromatic diamines which are crystalline

materials with high melting points.

A wide variety of BMIs has been synthesized with the aim of achieving unique

properties in resins and adhesives, for which they are mainly used. Almost every

aromatic amine (diamine) can be converted into the corresponding maleimide

(BMI).

3.2.2. Experimental

3.2.2.1. Materials

All the chemicals and solvents used were of laboratory grade. Maleic anhydride

was obtained from Merck laboratory ltd.-Mumbai. Various diamines viz., (1)

ethane-1,2-diamine (2) propane-1,3-diamine (3) butane-1,4-diamine (4) pentane

-1,5-diamine (5) hexane-1,6-diamine (6) 2-methylpentane-1,5-diamine (7) 2,2,4-

trimethylhexane-1,6-diamine (8) 3-(aminomethyl)-3,5,5-trimethylcyclohexan

amine (9) benzene-1,3-diamine (10) benzene-1,4-diamine (11) 4,4'-methylenedi

aniline (12) 4,4'-sulfonyldianiline (13) 4,4'-oxydianiline (14) 4,4'-methylenebis

(2-methylaniline) (15) 4,4'-methylenebis(2-ethylaniline) (16) 4,4'-methylenebis

(2-ethyl-6-methylaniline) (17) 4,4'-methylenebis(2,6-diethylaniline) used for the

preparation of bismaleimides were obtained from local market and used without

purification. Solvents were used of laboratory grade and distilled before use,

according to the standard procedures.

Page 9: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 53

3.2.2.2. Synthesis of bismaleimides

The synthesis of bismaleimides was developed originally by Searle [4–5].

Generally, bismaleimides were synthesized in two steps, the first step involving

the addition of one equivalent of various diamines to two equivalents of maleic

anhydride to form bisamic acid. The second step induced the cyclization of this

amic acid end-group through the joint intervention of anhydrous sodium acetate

and acetic anhydride (Figure 3.6).

Various bismaleimides BMI1–17 containing aliphatic, aromatic and alicyclic chain

in the backbone (Table 3.2) were synthesized as per the methods reported. All

synthesized bismaleimides were confirmed by their melting point.

Figure 3.6: Synthesis of bismaleimides

Table 3.2: List of bismaleimides

No. Structure of

bismaleimides Name

mp ˚C

M. Wt.

Ref.

BMI1

1,2-bismaleimido ethane

190 220 6, 7

BMI2

1,3-bismaleimido propane

194 234 8

BMI3

1,4-bismaleimido butane

196 248 8

BMI4

1,5-bismaleimido pentane

201 262 8

BMI5

1,6-bismaleimido hexane

139 276 6, 7

Page 10: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 54

BMI6

2methyl 1,5-bis maleimide

pentane

96 276 6, 7, 9

BMI7

2,2,4-trimethyl 1,6-bismaleimido

hexane

94 318 6, 7, 9

BMI8

isophorone bismaleimide

116 330 6, 7, 9

BMI9

1,3-phenylene bismaleimide

203 268 10,11

BMI10

1,4-phenylene bismaleimide

300 268 10,11

BMI11

4,4’- diamino diphenyl methane

bismaleimide

156 358 10,12

BMI12

4,4’-diamino phenyl sulfone bismaleimide

254 408 10,12

BMI13

4,4’- diamino diphenyl ether bismaleimide

179 360 10,12

BMI14

N,N'-(methylene bis(2-methyl-4,1-

phenylene) ) bismaleimide

195 386 7,13

BMI15

N,N'-(methylene bis(2-ethyl-4,1-

phenylene)) bismaleimide

210 414 7,13

BMI16

N,N'-(methylene bis (2-ethyl,6-

methyl-4,1-phenylene))

bismaleimide

165 442 7,13

BMI17

N,N'-(methylene bis(2,6-diethyl-4,1-

phenylene)) bismaleimide

160 470 7,13

Page 11: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 55

3.3. SYNTHESIS AND CHARACTERIZATION OF MODEL COMPOUNDS

3.3.1. Introduction

In order to facilitate the correct structural assessment and to be able to verify the

occurrence of the PIs, two model compounds were synthesized. Model

compounds 1 and 2 were prepared by using phthalic anhydride and furan-2-yl

methanamine thus obtained 2-(furan-2-ylmethylcarbamoyl)benzoicacid (0.01

mol) was reacted with equimolar amount of two different bismaleimides 1,2-bis

maleimidoethane (BMI1) and 4,4’-diamino diphenyl methane bismaleimide

(BMI11) designated as model compound 1 and model compound 2 respectively.

3.3.2. Experimental

3.3.2.1. Materials

All the chemicals and solvents used were of laboratory grade. Phthalic

dianhydride was purchased from E-Meark-Mumbai. Furan-2-ylmethan amine

was obtained from local market and redistilled before use. Bismaleimides BMI1

and BMI11 were prepared in our laboratory.

3.3.2.2. Synthesis of model compound

A suspension of 2-(furan-2-ylmethylcarbamoyl) benzoic acid (0.02mol) and

bismaleimides BMI1 and BMI11 in THF (0.01mol) was refluxed for 10h at 60˚C.

The resultant unaromatized and unimidized product was designated as DA

adducts. Adducts were refluxed at 150–160 ˚C for 4h with 2mL of acetic

anhydride to afford aromatization and imidization (Figure 3.7). The resulting

solution was cooled and poured into a large volume of water, washed, filtered

and then air dried. Thus obtained brown colored precipitates of aromatization

and imidization products were characterized by elemental analysis and IR

analysis.

Page 12: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 56

Figure 3.7: Synthesis of model compound

3.3.2.3. Characterization of model compounds

Characterization of model compounds was carried out using physico chemical

analysis and FT-IR analysis.

Page 13: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 57

Table 3.3: Physiochemical and FTIR spectral data of DA adduct of model compound 1

Physiochemical parameters Molecular formula : C36H30N4O12

Molecular weight : 710.64 g.

Yield : 75 %

Elemental analysis : % C % H % N Calc. 60.64 4.26 7.88

Found 60.29 4.02 7.79

Infrared spectral features (cm–1) 3528, 3258, 3115, 3027, 2945, 2859, 1712, 1685, 1672, 1580, 1465,

1244, 1160, 1040 cm–1

Table 3.4: Physiochemical and FTIR spectral data of model compound 1

Physiochemical parameters Molecular formula : C36H22N4O8

Molecular weight : 638.58 g.

Yield : 60 %

Elemental analysis : % C % H % N Calc. 67.71 3.47 8.77

Found 67.67 3.39 8.61

Infrared spectral features (cm–1) 3026, 2974, 2864, 1770, 1735, 1516, 1376 cm–1

Page 14: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 58

Table 3.5: Physiochemical and FTIR spectral data of DA adduct of model compound 2

Physiochemical parameters Molecular formula : C47H36N4O12

Molecular weight : 848.81 g.

Yield : 70 %

Elemental analysis : % C % H % N Calc. 66.51 4.27 6.60

Found 66.44 4.19 6.55

Infrared Spectral Features (cm–1) 3539, 3248, 3110, 3041, 2963, 2852, 1785, 1732, 1710, 1676, 1580,

1460, 1241, 1162, 1069, 1044 cm–1

Table 3.6: Physiochemical and FTIR spectral data of model compound 2

Physiochemical parameters Molecular formula : C47H28N4O8

Molecular weight : 776.75 g.

Yield : 65 %

Elemental analysis : % C % H % N Calc. 72.68 3.63 7.21

Found 72.56 3.67 7.15

Infrared spectral features (cm–1) 3028, 2972, 2862, 1771, 1730, 1513, 1379 cm–1

Page 15: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 59

Figure 3.8: FT–IR spectra of DAA of model compound 2

Figure 3.9: FT–IR spectra of model compound 2

3.3.3. Results and discussion of model compounds

The elemental analyses of the model compound 1 and 2 indicated that the

reactions had completed with good yields of cycloaddition of the furan rings and

were consistent with their predicted structures (Figure 3.7). The IR spectra of

the model compounds showed important changes with respect to those of the

initial monomers, which clearly confirmed that the Diels-Alder reaction and

Page 16: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 60

aromatization-imidization reaction had taken place with good yields with couple

of bismaleimides BMI1 and BMI11. The IR spectra of model compounds had

prominent characteristic bands of imide group (Figure 3.8).

3.4. SYNTHESIS AND CHARACTERIZATION OF DIELS-ALDER POLYADDUCTS

3.4.1. Introduction

Polymerization by Diels–Alder (DA) reaction is one of promising trends in the

preparation of polyimides (PIs). Studies on the application of the DA reaction

between furan (diene) and maleimide (dienophile) for the synthesis of novel

macromolecular materials had bloomed during the past few decades. DA

reaction is applied to the furan heterocycle with growing frequency because of

its pronounced dienic character, which makes it particularly suited to intervene

in the DA cycloaddition reaction as the dienic partner and the use of

bismaleimides as dienophiles is very useful because the double bond of

maleimide is very reactive towards electron rich dienes, to give a normal

demand DA cycloaddition [14]. The application of the DA reaction to furan

derivatives covers a large field of studies, dominated by synthetic aspects

following the importance by more recent surge of investigations in which the

dienophile counterpart to furans is a maleimide moiety. The first investigation

on PI through DA reaction involving a bisfuran and a bismaleimide monomer

combination was reported by Tesoro and Sastri [15]. DA reaction is prominent

example of click chemistry [16] that has been studied extensively in a variety of

contexts.

The experimental convenience associated with this range of temperatures,

together with the fact that side reactions and possible thermal degradation

mechanisms are negligible, that the furan/maleimide couple represents a highly

suitable choice for building a large variety of thermo reversible macromolecular

architectures. The important peculiarity of the DA reaction, apart from its click

connotation, is its reversible character. As a rough indication, the role of

temperature on the equilibrium, up to about 60 ˚C, the left–to–right DA

condensation to form adduct dominates, whereas above about 110 ˚C the retro–

DA adduct uncoupling becomes preponderant. The temperature is a key factor in

Page 17: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 61

determining the position of the equilibrium, which can be shifted heavily from

predominant adduct formation (DA reaction), up to 65 ˚C, to the predominant

reversion to its precursors (retro–DA reaction), above 100 ˚C [17].

Substitution of the furan have a profound effect on the ability of DA adduct to

retro DA as opposed to dehydrating to an aromatic ring. Highly electron donating

group on the 2-position of the furan enhances the forward DA reaction and also

inhibits the retro DA rection [18–19]. The forward DA reaction gives both endo

and exo stereoisomer adducts [20]. It does not play a significant role in the

macromolecular syntheses, since both participate in the chain growth [14]. The

pioneering work related to DA polymerization was done by Stille and Plummer

[21].

3.4.2. Experimental

3.4.2.1. Materials

Bisfuran and various bismaleimides were synthesized in our laboratory.

Laboratory grade THF was used.

3.4.2.2. Synthesis of Diels-Alder polyadducts

Synthesis of Diels-Alder polyadducts was carried out by using Diels-Alder

reaction between bisfuran (diene) and bismaleimides (dienophile).

Bisfuran and various bismaleimide (1:1 by mole) in an equal mole ratio were

dissolved in 50mL of tetrahydrofuran (Figure 3.10). This was refluxed for 10h at

60 ˚C. The resultant reaction mixture was cooled and poured into a large volume

of dry ether. The precipitates formed were filtered, washed and then air dried.

The obtained unaromatized and uncyclized products were designated as DA

adducts which were purified and characterized by elemental analysis, degree of

polymerization, number average molecular weight, FTIR and thermal analysis.

3.4.2.3. Characterization of Diels-Alder polyadduct

Characterization of Diels-Alder polyadduct (DAA1–17) was carried out using

spectroscopic, thermal and physicochemical techniques. Number average

Page 18: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 62

molecular weight (Mn) of polyimides was determined by non-aqueous conducto-

metric titration by method reported [22–24]. Results are given in Table 3.7–3.23.

Figure 3.10: Synthetic route for the synthesis of polyimides

Page 19: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 63

Table 3.7: Physiochemical, spectral, polymeric and thermal data of DAA1

Physiochemical parameters Empirical formula : C30H24N4O12

Empirical weight : 632.53 g.

Yield : 55 %

Color : light brown

Elemental Analysis : % C % H % N Calc. 56.96 3.82 8.86

Found 56.79 3.76 8.78

Polymeric analysis data Number average molecular weight ( Mn) : 4402±60

Degree of polymerization (DP) : 7

Infrared spectral features (cm–1)

3532 cm–1 : –OH st. (acid)

1715, 1464 cm–1 : –C=O st., –COO– st. (acid)

3033, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2958, 2849 cm–1 : –C–H st. (aliphatic)

3256, 1674 cm–1 : –NH st., –C=O st. (amide)

1782, 1735 cm–1 : –C=O st. asym, sym (imide)

3122, 1586 cm–1 : –C–H st., –C=C– st. (furan)

1244, 1166 cm–1 : in plane –C–H deformation (furan)

1046 cm–1 : –C–O st.

916, 876, 734 cm–1 : out-of-plane –C–H deformation (furan)

881 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 1.2 14.2 24.3 42.7 80.9 95.4

% wt loss due to decarboxylation (180–280˚C): calculated 13.91 % (first step) found 13.5 %

Page 20: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 64

Table 3.8: Physiochemical, spectral, polymeric and thermal data of DAA2

Physiochemical parameters Empirical formula : C31H26N4O12

Empirical weight : 646.56 g.

Yield : 50 %

Color : light brown

Elemental analysis : % C % H % N Calc. 57.59 4.05 8.67

Found 57.51 3.96 8.60

Polymeric analysis data Number average molecular weight ( Mn) : 4539±60

Degree of polymerization (DP) : 7

Infrared spectral features (cm–1)

3530 cm–1 : –OH st. (acid)

1717, 1464 cm–1 : –C=O st., –COO– st. (acid)

3034, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2955, 2843 cm–1 : –C–H st. (aliphatic)

3252, 1671 cm–1 : –NH st., –C=O st. (amide)

1783, 1730 cm–1 : –C=O st. asym, sym (imide)

3121, 1584 cm–1 : –C–H st., –C=C– st. (furan)

1243, 1162 cm–1 : in plane –C–H deformation (furan)

1040 cm–1 : –C–O st.

914, 873, 730 cm–1 : out-of-plane –C–H deformation (furan)

884 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.1 14.6 24.7 42.0 81.3 94.9

% wt loss due to decarboxylation (180–280˚C): calculated 13.61 % (first step) found 13.5 %

Page 21: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 65

Table 3.9: Physiochemical, spectral, polymeric and thermal data of DAA3

Physiochemical parameters Empirical formula : C32H28N4O12

Empirical weight : 660.58 g.

Yield : 55 %

Color : light brown

Elemental analysis : % C % H % N Calc. 58.18 4.27 8.48

Found 58.10 4.20 8.41

Polymeric analysis data Number average molecular weight ( Mn) : 4630±60

Degree of polymerization (DP) : 7

Infrared Spectral Features (cm–1)

3523 cm–1 : –OH st. (acid)

1713, 1460 cm–1 : –C=O st., –COO– st. (acid)

3030, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2954, 2846 cm–1 : –C–H st. (aliphatic)

3242, 1670 cm–1 : –NH st., –C=O st. (amide)

1780, 1736 cm–1 : –C=O st. asym, sym (imide)

3115, 1589 cm–1 : –C–H st., –C=C– st. (furan)

1240, 1163 cm–1 : in plane –C–H deformation (furan)

1045 cm–1 : –C–O st.

913, 870, 734 cm–1 : out-of-plane –C–H deformation (furan)

881 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.6 1.1 14.0 24.1 42.2 80.0 95.1

% wt loss due to decarboxylation (180–280˚C): calculated 13.32 % (first step) found 13.2 %

Page 22: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 66

Table 3.10: Physiochemical, spectral, polymeric and thermal data of DAA4

Physiochemical parameters Empirical formula : C33H30N4O12

Empirical weight : 674.61 g.

Yield : 55 %

Color : light brown

Elemental analysis : % C % H % N Calc. 58.75 4.48 8.31

Found 58.67 4.42 8.23

Polymeric analysis data Number average molecular weight ( Mn) : 4725±60

Degree of polymerization (DP) : 7

Infrared spectral features (cm–1)

3523 cm–1 : –OH st. (acid)

1713, 1465 cm–1 : –C=O st., –COO– st. (acid)

3037, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2959, 2841 cm–1 : –C–H st. (aliphatic)

3245, 1674 cm–1 : –NH st., –C=O st. (amide)

1783, 1736 cm–1 : –C=O st. asym, sym (imide)

3118, 1586 cm–1 : –C–H st., –C=C– st. (furan)

1242, 1165 cm–1 : in plane –C–H deformation (furan)

1041 cm–1 : –C–O st.

911, 870, 731 cm–1 : out-of-plane –C–H deformation (furan)

887 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 1.5 13.9 23.8 41.9 81.2 95.8

% wt loss due to decarboxylation (180–280˚C): calculated 13.04 % (first step) found 13.0 %

Page 23: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 67

Table 3.11: Physiochemical, spectral, polymeric and thermal data of DAA5

Physiochemical parameters Empirical formula : C34H32N4O12

Empirical weight : 688.64 g.

Yield : 55 %

Color : light brown

Elemental analysis : % C % H % N Calc. 59.30 4.68 8.14

Found 59.16 4.56 8.05

Polymeric analysis data Number average molecular weight ( Mn) : 6170±60

Degree of polymerization (DP) : 9

Infrared spectral features (cm–1)

3523 cm–1 : –OH st. (acid)

1714, 1466 cm–1 : –C=O st., –COO– st. (acid)

3037, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2950, 2845 cm–1 : –C–H st. (aliphatic)

3248, 1677 cm–1 : –NH st., –C=O st. (amide)

1785, 1739 cm–1 : –C=O st. asym, sym (imide)

3117, 1580 cm–1 : –C–H st., –C=C– st. (furan)

1248, 1160 cm–1 : in plane –C–H deformation (furan)

1044 cm–1 : –C–O st.

912, 870, 735 cm–1 : out-of-plane –C–H deformation (furan)

880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.2 14.0 25.7 43.4 82.0 95.2

% wt loss due to decarboxylation (180–280˚C): calculated 12.78 % (first step) found 12.4 %

Page 24: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 68

Table 3.12: Physiochemical, spectral, polymeric and thermal data of DAA6

Physiochemical parameters Empirical formula : C34H32N4O12

Empirical weight : 688.64 g.

Yield : 50 %

Color : light brown

Elemental analysis : % C % H % N Calc. 59.30 4.68 8.14

Found 59.12 4.52 8.01

Polymeric analysis data Number average molecular weight ( Mn) : 5493±60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3529 cm–1 : –OH st. (acid)

1717, 1463 cm–1 : –C=O st., –COO– st. (acid)

3030, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2954, 2841 cm–1 : –C–H st. (aliphatic)

3246, 1670 cm–1 : –NH st., –C=O st. (amide)

1780, 1735 cm–1 : –C=O st. asym, sym (imide)

3119, 1589 cm–1 : –C–H st., –C=C– st. (furan)

1240, 1166 cm–1 : in plane –C–H deformation (furan)

1049 cm–1 : –C–O st.

914, 872, 730 cm–1 : out-of-plane –C–H deformation (furan)

884 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.1 13.9 25.9 44.6 80.7 95.7

% wt loss due to decarboxylation (180–280˚C): calculated 12.78 % (first step) found 12.4 %

Page 25: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 69

Table 3.13: Physiochemical, spectral, polymeric and thermal data of DAA7

Physiochemical parameters Empirical formula : C37H38N4O12

Empirical weight : 730.72 g.

Yield : 40 %

Color : light brown

Elemental analysis : % C % H % N Calc. 60.82 5.24 7.67

Found 60.73 5.13 7.55

Polymeric analysis data Number average molecular weight ( Mn) : 5828±60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3527 cm–1 : –OH st. (acid)

1716, 1465 cm–1 : –C=O st., –COO– st. (acid)

3028, 1508 cm–1 : –C–H st., backbone st. (aromatic)

2957, 2838 cm–1 : –C–H st. (aliphatic)

3244, 1674 cm–1 : –NH st., –C=O st. (amide)

1778, 1730 cm–1 : –C=O st. asym, sym (imide)

3122, 1587 cm–1 : –C–H st., –C=C– st. (furan)

1246, 1163 cm–1 : in plane –C–H deformation (furan)

1040 cm–1 : –C–O st.

912, 875, 737 cm–1 : out-of-plane –C–H deformation (furan)

880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.7 1.1 13.1 24.2 44.0 70.1 96.1

% wt loss due to decarboxylation (180–280˚C): calculated 12.04 % (first step) found 11.7 %

Page 26: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 70

Table 3.14: Physiochemical, spectral, polymeric and thermal data of DAA8

Physiochemical parameters

Empirical formula : C38H38N4O12

Empirical weight : 742.73 g.

Yield : 50 %

Color : light brown

Elemental analysis : % C % H % N

Calc. 61.45 5.16 7.54 Found 61.31 5.04 7.42

Polymeric analysis data Number average molecular weight ( Mn) : 6669±60

Degree of polymerization (DP) : 9

Infrared spectral features (cm–1)

3533 cm–1 : –OH st. (acid)

1715, 1460 cm–1 : –C=O st., –COO– st. (acid)

3034, 1505 cm–1 : –C–H st., backbone st. (aromatic)

2959, 2848 cm–1 : –C–H st. (aliphatic)

3240, 1671 cm–1 : –NH st., –C=O st. (amide)

1774, 1733 cm–1 : –C=O st. asym, sym (imide)

3116, 1586 cm–1 : –C–H st., –C=C– st. (furan)

1243, 1164 cm–1 : in plane –C–H deformation (furan)

1048 cm–1 : –C–O st.

916, 870, 739 cm–1 : out-of-plane –C–H deformation (furan)

886 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 1.2 12.8 23.9 42.0 80.9 95.0

% wt loss due to decarboxylation (180–280˚C): calculated 11.85 % (first step) found 11.5 %

Page 27: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 71

Table 3.15: Physiochemical, spectral, polymeric and thermal data of DAA9

Physiochemical parameters

Empirical formula : C34H24N4O12

Empirical weight : 680.57g

Yield : 55 %

Color : brown

Elemental analysis : % C % H % N

Calc. 60.00 3.55 8.23

Found 59.91 3.47 8.14

Polymeric analysis data Number average molecular weight ( Mn) : 5423±60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3520 cm–1 : –OH st. (acid)

1715, 1460 cm–1 : –C=O st., –COO– st. (acid)

3033, 1509 cm–1 : –C–H st., backbone st. (aromatic)

2950, 2847 cm–1 : –C–H st. (aliphatic)

3243, 1679 cm–1 : –NH st., –C=O st. (amide)

1783, 1730 cm–1 : –C=O st. asym, sym (imide)

3114, 1583 cm–1 : –C–H st., –C=C– st. (furan)

1245, 1160 cm–1 : in plane –C–H deformation (furan)

1044 cm–1 : –C–O st.

917, 878, 735 cm–1 : out-of-plane –C–H deformation (furan)

889 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 0.8 13.5 24.0 47.1 71.3 95.2

% wt loss due to decarboxylation (180–280˚C): calculated 12.93 % (first step) found 12.7 %

Page 28: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 72

Table 3.16: Physiochemical, spectral, polymeric and thermal data of DAA10

Physiochemical parameters Empirical formula : C34H24N4O12

Empirical weight : 680.57g.

Yield : 55 %

Color : brown

Elemental analysis : % C % H % N Calc. 60.00 3.55 8.23

Found 59.82 3.41 8.09

Infrared spectral features (cm–1)

3529 cm–1 : –OH st. (acid)

1717, 1463 cm–1 : –C=O st., –COO– st. (acid)

3030, 1509 cm–1 : –C–H st., backbone st. (aromatic)

2954, 2841 cm–1 : –C–H st. (aliphatic)

3246, 1670 cm–1 : –NH st., –C=O st. (amide)

1780, 1735 cm–1 : –C=O st. asym, sym (imide)

3119, 1583 cm–1 : –C–H st., –C=C– st. (furan)

1245, 1166 cm–1 : in plane –C–H deformation (furan)

1041 cm–1 : –C–O st.

913, 873, 731 cm–1 : out-of-plane –C–H deformation (furan)

880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Polymeric analysis data Number average molecular weight ( Mn) : 5402±60

Degree of polymerization (DP) : 8

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.2 14.0 23.1 45.5 72.2 96.0

% wt loss due to decarboxylation (180–280˚C): calculated 12.93 % (first step) found 12.8 %

Page 29: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 73

Table 3.17: Physiochemical, spectral, polymeric and thermal data of DAA11

Physiochemical parameters

Empirical formula : C41H30N4O12

Empirical weight : 770.70 g.

Yield : 45 %

Color : light brown

Elemental analysis : % C % H % N Calc. 63.90 3.92 7.27

Found 63.69 3.83 7.15

Polymeric analysis data Number average molecular weight ( Mn) : 6901±60

Degree of polymerization (DP) : 9

Infrared spectral features (cm–1)

3526 cm–1 : –OH st. (acid)

1718, 1462 cm–1 : –C=O st., –COO– st. (acid)

3038, 1505 cm–1 : –C–H st., backbone st. (aromatic)

2962, 2850 cm–1 : –C–H st. (aliphatic)

3250, 1680 cm–1 : –NH st., –C=O st. (amide)

1779, 1732 cm–1 : –C=O st. asym, sym (imide)

3123, 1584 cm–1 : –C–H st., –C=C– st. (furan)

1247, 1163 cm–1 : in plane –C–H deformation (furan)

1039 cm–1 : –C–O st.

914, 870, 730 cm–1 : out-of-plane –C–H deformation (furan)

882 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 0.8 11.7 20.0 47.2 74.1 95.2

% wt loss due to decarboxylation (180–280˚C): calculated 11.42 % (first step) found 11.2 %

Page 30: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 74

Table 3.18: Physiochemical, spectral, polymeric and thermal data of DAA12

Physiochemical parameters

Empirical formula : C40H28N4O14S

Empirical weight : 820.73 g.

Yield : 50 %

Color : light brown

Elemental analysis : % C % H % N % S Calc. 58.54 3.44 6.83 3.91

Found 58.38 3.28 6.69 3.76

Polymeric analysis data Number average molecular weight ( Mn) : 6528±60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3530 cm–1 : –OH st. (acid)

1719, 1462 cm–1 : –C=O st., –COO– st. (acid)

3041, 1505 cm–1 : –C–H st., backbone st. (aromatic)

2968, 2857 cm–1 : –C–H st. (aliphatic)

3246, 1682 cm–1 : –NH st., –C=O st. (amide)

1781, 1735 cm–1 : –C=O st. asym, sym (imide)

3120, 1588 cm–1 : –C–H st., –C=C– st. (furan)

1247, 1168 cm–1 : in plane –C–H deformation (furan)

1035 cm–1 : –C–O st.

920, 874, 731 cm–1 : out-of-plane –C–H deformation (furan)

888 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

1368, 1142 cm–1 : –SO2 asym, sym

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.2 11.2 21.0 45.5 72.8 96.3

% wt loss due to decarboxylation (180–280˚C): calculated 10.72 % (first step) found 10.6 %

Page 31: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 75

Table 3.19: Physiochemical, spectral, polymeric and thermal data of DAA13

Physiochemical parameters Empirical formula : C40H28N4O13

Empirical weight : 772.67 g.

Yield : 50 %

Color : light brown

Elemental analysis : % C % H % N Calc. 62.18 3.65 7.25

Found 61.89 3.44 7.07

Polymeric analysis data Number average molecular weight ( Mn) : 6921±60

Degree of polymerization (DP) : 9

Infrared spectral features (cm–1)

3535 cm–1 : –OH st. (acid)

1719, 1465 cm–1 : –C=O st., –COO– st. (acid)

3031, 1505 cm–1 : –C–H st., backbone st. (aromatic)

2965, 2851 cm–1 : –C–H st. (aliphatic)

3248, 1681 cm–1 : –NH st., –C=O st. (amide)

1777, 1737 cm–1 : –C=O st. asym, sym (imide)

3119, 1586 cm–1 : –C–H st., –C=C– st. (furan)

1247, 1163 cm–1 : in plane –C–H deformation (furan)

1235 cm–1 : –C–O–C– (aromatic)

1043 cm–1 : –C–O st.

911, 870, 739 cm–1 : out-of-plane –C–H deformation (furan)

880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.0 11.3 20.5 45.3 72.1 96.3

% wt loss due to decarboxylation (180–280˚C): calculated 11.39 % (first step) found 11.2 %

Page 32: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 76

Table 3.20: Physiochemical, spectral, polymeric and thermal data of DAA14

Physiochemical parameters Empirical formula : C43H34N4O12

Empirical weight : 798.7 g.

Yield : 55 %

Color : light brown

Elemental analysis : % C % H % N Calc. 64.66 4.29 7.01

Found 64.54 4.18 6.89

Polymeric analysis data Number average molecular weight ( Mn) : 7188± 60

Degree of polymerization (DP) : 9

Infrared spectral features (cm–1)

3529 cm–1 : –OH st. (acid)

1717, 1465 cm–1 : –C=O st., –COO– st. (acid)

3032, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2954, 2841 cm–1 : –C–H st. (aliphatic)

3264, 1670 cm–1 : –NH st., –C=O st. (amide)

1780, 1735 cm–1 : –C=O st. asym, sym (imide)

3119, 1589 cm–1 : –C–H st., –C=C– st. (furan)

1241, 1160 cm–1 : in plane –C–H deformation (furan)

1230 cm–1 : –C–O–C– (aromatic)

1041 cm–1 : –C–O st.

910, 873, 731 cm–1 : out-of-plane –C–H deformation (furan)

884 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 0.8 11.7 23.8 47.0 74.0 95.0

% wt loss due to decarboxylation (180–280˚C): calculated 11.02 % (first step) found 10.9 %

Page 33: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 77

Table 3.21: Physiochemical, spectral, polymeric and thermal data of DAA15

Physiochemical parameters

Empirical formula : C45H38N4O12

Empirical weight : 826.8 g.

Yield : 50 %

Color : light brown

Elemental analysis : % C % H % N

Calc. 65.37 4.63 6.78 Found 65.24 4.56 6.63

Polymeric analysis data Number average molecular weight ( Mn) : 6620± 60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3533 cm–1 : –OH st. (acid)

1720, 1465 cm–1 : –C=O st., –COO– st. (acid) 3030, 1500 cm–1 : –C–H st., backbone st. (aromatic)

2960, 2845 cm–1 : –C–H st. (aliphatic)

3269, 1665 cm–1 : –NH st., –C=O st. (amide) 1783, 1733 cm–1 : –C=O st. asym, sym (imide)

3122, 1585 cm–1 : –C–H st., –C=C– st. (furan) 1245, 1165 cm–1 : in plane –C–H deformation (furan) 1235 cm–1 : –C–O–C– (aromatic)

1043 cm–1 : –C–O st. 911, 870, 734 cm–1 : out-of-plane –C–H deformation (furan) 880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.2 11.2 22.3 45.5 72.8 96.3

% wt loss due to decarboxylation (180–280˚C): calculated 10.64 % (first step) found 10.5 %

Page 34: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 78

Table 3.22: Physiochemical, spectral, polymeric and thermal data of DAA16

Physiochemical parameters Empirical formula : C47H42N4O12

Empirical weight : 854.9 g.

Yield : 55 %

Color : light brown

Elemental analysis : % C % H % N Calc. 66.03 4.95 6.55

Found 65.92 4.86 6.48

Polymeric analysis data Number average molecular weight ( Mn) : 6831± 60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3536 cm–1 : –OH st. (acid)

1715, 1465 cm–1 : –C=O st., –COO– st. (acid)

3033, 1504 cm–1 : –C–H st., backbone st. (aromatic)

2964, 2842 cm–1 : –C–H st. (aliphatic)

3263, 1675 cm–1 : –NH st., –C=O st. (amide)

1785, 1731 cm–1 : –C=O st. asym, sym (imide)

3121, 1586 cm–1 : –C–H st., –C=C– st. (furan)

1243, 1162 cm–1 : in plane –C–H deformation (furan)

1233 cm–1 : –C–O–C– (aromatic)

1038 cm–1 : –C–O st.

916, 874, 739 cm–1 : out-of-plane –C–H deformation (furan)

887 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.0 11.3 21.0 45.2 72.4 96.2

% wt loss due to decarboxylation (180–280˚C): calculated 10.29 % (first step) found 10.1 %

Page 35: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 79

Table 3.23: Physiochemical, spectral, polymeric and thermal data of DAA17

Physiochemical parameters Empirical formula : C49H46N4O12

Empirical weight : 882.9 g.

Yield : 45 %

Color : light brown

Elemental analysis : % C % H % N Calc. 66.66 5.25 6.35

Found 66.51 5.21 6.30

Polymeric analysis data Number average molecular weight ( Mn) : 7069± 60

Degree of polymerization (DP) : 8

Infrared spectral features (cm–1)

3530 cm–1 : –OH st. (acid)

1714, 1465 cm–1 : –C=O st., –COO– st. (acid)

3033, 1504 cm–1 : –C–H st., backbone st. (aromatic)

2964, 2842 cm–1 : –C–H st. (aliphatic)

3267, 1678 cm–1 : –NH st., –C=O st. (amide)

1781, 1732 cm–1 : –C=O st. asym, sym (imide)

3127, 1593 cm–1 : –C–H st., –C=C– st. (furan)

1240, 1166 cm–1 : in plane –C–H deformation (furan)

1237 cm–1 : –C–O–C– (aromatic)

1044 cm–1 : –C–O st.

910, 878, 730 cm–1 : out-of-plane –C–H deformation (furan)

883 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.3 0.9 10.9 21.5 47.3 75.0 95.9

% wt loss due to decarboxylation (180–280˚C): calculated 9.97 % (first step) found 9.8 %

Page 36: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 80

3.4.3. Results and discussion of Diels-Alder polyadducts

3.4.3.1. Physical properties

The elemental analyses of the DA adducts (Table 3.7–3.23) indicated that the

reactions had reached good yield of cycloaddition of the furan rings and were

consistent with their predicted structures (Figure 3.10). The degree of

polymerization (DP) for the polymers was estimated by non-aqueous titration

were in the range of 7 to 9 (Table 3.7–3.23).

3.4.3.2. Spectral properties

IR spectral bands of the DA adducts suggested the formation of desired

compounds and supported their structure. Spectral features provide valuable

information regarding the nature of functional group attached. The IR spectra of

the adducts (Figure 3.11–3.13) showed important changes with respect to those

of the initial monomers, which clearly confirmed that the Diels–Alder reaction

had taken place with good yield with all the bismaleimides.

The IR spectra of DA adduct has prominent characteristic bands of furan, amide

and carboxylic acid groups. The bands near 3120, 1580, 1070 and 730 cm–1 were

attributed to furan ring attached to the benzene ring. The bands at around 3240

and 1680 cm–1 were attributed to amide groups, while the bands around 3530

and 1710 cm–1 were corresponding to –OH and –C=O group of carboxylic acid

respectively.

In order to varify the occurance of DA adducts, IR spectra of the DA adducts were

compared with the DA adducts of model compound and were found identical

with the DA adducts of model compound. These features confirmed the predicted

structure of unaromatized–unimidized DA adducts.

Page 37: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 81

Figure 3.11: FT–IR spectra of DA adducts DAA1

Figure 3.12: FT–IR spectra of DA adducts DAA12

Page 38: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 82

Figure 3.13: FT–IR spectra of DA adducts DAA14

3.4.3.3. Thermal properties

The thermal stability of DA adducts was evaluated from their TG curves (Figure

3.14–3.18). The mode of the thermal degradation in all DA polyadducts is found

to be almost similar. Thermogram of DA polyadducts indicated that, the

polyadducts were remaining unchanged upto 150 ˚C. All the DA polyadducts

underwent two stages of mass loss.

The first major stage was corresponded to the decarboxylation of the DA adducts

in the temperature range of 180–280 ˚C. This might be due to the

decarboxylation occurred in this range because of the carboxylic group is present

in the DA polyadducts. The values of wt. loss observed during decarboxylation

were quite consistent with the calculated values obtained from the proposed

structures.

The process of the second stage above 280 ˚C was due to polymer pyrolysis.

Comparative small amount of weight loss was observed between the

temperature ranges of 300–400 ˚C. A very rapid rate of weight loss was observed

between 400–600 ˚C. The char residue left at 700 ˚C was in the range of 4–6%.

Page 39: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 83

Figure 3.14: Thermogram of DA adducts DAA2–3

Figure 3.15: Thermogram of DA adducts DAA1,5–8

Page 40: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 84

Figure 3.16: Thermogram of DA adducts DAA9–10

Figure 3.17: Thermogram of DA adducts DAA11–13

Page 41: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 85

Figure 3.18: Thermogram of DA adducts DAA14–17

3.5. SYNTHESIS AND CHARACTERIZAION OF POLYIMIDES (PI1-17)

3.5.1. Introduction

Aromatic polyimide is an important class of high performance polymers due to

their excellent thermo-oxidative stability, mechanical strength, electrical

properties and high radiation and solvent resistance. They are condensation

polymers incorporating the imide group –CO–N–CO– in their repeating units

either as open chain or as rings and are generally derived from the reaction of

organic diamines with organic tetracarboxylic acids or their dianhydride.

Polymerization by Diels–Alder reaction is one of the promising trends in the

preparation of high performance polyimides. In this regard, a large number of

polymers have been developed which can be broadly categorized as either

thermosets or thermoplastics. Examples of thermosetting materials include

epoxies, polyimides and bismaleimides while the example of thermoplastic

materials largely consists of poly(sulfones), poly(ether–ether–ketones) and

poly(ether–imide).

Page 42: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 86

Our main concern was to synthesize novel polyimides, which possess

combination of thermoplastic and thermosetting moieties by introducing

bisfuran and bismaleimide segments. Introduction of bisfuran (bisamic acid/

pyromellitic part) segment is defined as a thermoplastic portion and

bismaleimide segment is defined as a thermosetting segment.

3.5.2. Experimental

3.5.2.1. Materials

All the solvents and chemicals used were of laboratory grade. All the DA

polyadducts DAA1-17 were synthesized in our laboratory. Acetic anhydride and

THF were purchased from S.D. Fine Chemicals, Mumbai.

3.5.2.2. Synthesis of polyimides

Novel polyimides containing thermoplatic-thermosetting merged segments were

derived from Diels-Alder polyadducts by simultaneous aromatization and

imidization using small quantity of acetic anhydride [15].

Aromatization of the polymers was carried out by refluxing 1 g of the dried

sample of DA adducts in THF with 2 mL of acetic anhydride for 4h at 160 ˚C.

Simultaneously, imidization reaction took place. The resulting solution was

cooled and poured into a large volume of water. The precipitates formed were

filtered, washed and then air dried. Thus obtained brown colored precipitates of

PIs were characterized by elemental analysis, IR analysis and by thermal

analysis. Synthetic route of polyimdes from DA polyadducts was scanned in

figure 3.10 and 3.19.

Page 43: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 87

Figure 3.19: Synthesis of polyimides PI1-17

3.5.2.3. Characterization of polyimides

Characterization of polyimides (PI1–17) was carried out using spectroscopic,

thermal and physicochemical techniques. Results are given in Table 3.24–3.40.

Page 44: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 88

Table 3.24: Physiochemical, spectral and thermal data of PI1

Physiochemical parameters

Empirical formula : C30H16N4O8

Empirical weight : 560.47 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 64.29 2.88 10.00

Found 64.12 2.71 9.89

Infrared spectral features (cm–1)

3044, 1504 cm–1 : –C–H st., backbone st. (aromatic)

2962, 2855 cm–1 : –C–H st. (aliphatic)

1780 cm–1 : –C=O st. asym (imide)

1732 cm–1 : –C=O st. sym (imide)

1387 cm–1 : ϒ -C-N st. imide

1111, 722 cm–1 : ϒ (–C–N–C–) imide

1010 cm–1 : –C–H (aromatic)

1459, 881 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.7 1.4 3.1 17.6 42.8 67.3 94.9

Page 45: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 89

Table 3.25: Physiochemical, spectral and thermal data of PI2

Physiochemical parameters

Empirical formula : C31H18N4O8

Empirical weight : 574.50 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 64.81 3.16 9.75

Found 64.72 3.09 9.67

Infrared spectral features (cm–1)

3042, 1509 cm–1 : –C–H st., backbone st. (aromatic)

2960, 2854 cm–1 : –C–H st. (aliphatic)

1786 cm–1 : –C=O st. asym (imide)

1725 cm–1 : –C=O st. sym (imide)

1373 cm–1 : ϒ -C-N st. imide

1119, 721 cm–1 : ϒ (–C–N–C–) imide

1011 cm–1 : –C–H (aromatic)

1450, 880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.3 1.0 2.9 14.8 44.6 62.4 94.9

Page 46: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 90

Table 3.26: Physiochemical, spectral and thermal data of PI3

Physiochemical parameters

Empirical formula : C32H20N4O8

Empirical weight : 588.52 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 65.31 3.43 9.52

Found 65.24 3.37 9.44

Infrared spectral features (cm–1)

3045, 1501 cm–1 : –C–H st., backbone st. (aromatic)

2955, 2853 cm–1 : –C–H st. (aliphatic)

1782 cm–1 : –C=O st. asym (imide)

1720 cm–1 : –C=O st. sym (imide)

1371 cm–1 : ϒ -C-N st. imide

1119, 724 cm–1 : ϒ (–C–N–C–) imide

1018 cm–1 : –C–H (aromatic)

1452, 888 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.2 1.0 3.2 15.4 45.0 63.2 96.2

Page 47: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 91

Table 3.27: Physiochemical, spectral and thermal data of PI4

Physiochemical parameters

Empirical formula : C33H22N4O8

Empirical weight : 602.55 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 65.78 3.68 9.30

Found 65.71 3.60 9.24

Infrared spectral features (cm–1)

3045, 1503 cm–1 : –C–H st., backbone st. (aromatic)

2953, 2853 cm–1 : –C–H st. (aliphatic)

1786 cm–1 : –C=O st. asym (imide)

1721 cm–1 : –C=O st. sym (imide)

1376 cm–1 : ϒ -C-N st. imide

1110, 722 cm–1 : ϒ (–C–N–C–) imide

1019 cm–1 : –C–H (aromatic)

1452, 886 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.3 1.1 3.2 15.1 45.0 62.6 95.8

Page 48: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 92

Table 3.28: Physiochemical, spectral and thermal data of PI5

Physiochemical parameters

Empirical formula : C34H24N4O8

Empirical weight : 616.58 g.

Yield : 40 %

Color : brown

Elemental analysis : % C % H % N

Calc. 66.23 3.92 9.09

Found 66.12 3.87 8.98

Infrared spectral features (cm–1)

3041, 1507 cm–1 : –C–H st., backbone st. (aromatic)

2968, 2858 cm–1 : –C–H st. (aliphatic)

1785 cm–1 : –C=O st. asym (imide)

1731 cm–1 : –C=O st. sym (imide)

1387 cm–1 : ϒ -C-N st. imide

1112, 729 cm–1 : ϒ (–C–N–C–) imide

1010 cm–1 : –C–H (aromatic)

1451, 880 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.8 1.9 3.8 18.5 46.0 65.7 96.4

Page 49: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 93

Table 3.29: Physiochemical, spectral and thermal data of PI6

Physiochemical parameters

Empirical formula : C34H24N4O8

Empirical weight : 616.58 g.

Yield : 50 %

Color : brown

Elemental analysis : % C % H % N

Calc. 66.23 3.92 9.09

Found 66.09 3.81 8.94

Infrared spectral features (cm–1)

3042, 1509 cm–1 : –C–H st., backbone st. (aromatic)

2965, 2854 cm–1 : –C–H st. (aliphatic)

1788 cm–1 : –C=O st. asym (imide)

1730 cm–1 : –C=O st. sym (imide)

1387 cm–1 : ϒ -C-N st. imide

1119, 720 cm–1 : ϒ (–C–N–C–) imide

1018 cm–1 : –C–H (aromatic)

1450, 878 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.6 1.3 3.3 15.9 45.9 63.9 95.2

Page 50: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 94

Table 3.30: Physiochemical, spectral and thermal data of PI7

Physiochemical parameters

Empirical formula : C37H30N4O8

Empirical weight : 658.66 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 67.47 4.59 8.51

Found 67.34 4.47 8.43

Infrared spectral features (cm–1)

3046, 1508 cm–1 : –C–H st., backbone st. (aromatic)

2966, 2856 cm–1 : –C–H st. (aliphatic)

1786 cm–1 : –C=O st. asym (imide)

1734 cm–1 : –C=O st. sym (imide)

1382 cm–1 : ϒ -C-N st. imide

1112, 729 cm–1 : ϒ (–C–N–C–) imide

1015 cm–1 : –C–H (aromatic)

1452, 885 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.7 1.3 3.5 19.3 47.3 63.9 95.8

Page 51: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 95

Table 3.31: Physiochemical, spectral and thermal data of PI8

Physiochemical parameters

Empirical formula : C38H30N4O8

Empirical weight : 670.67 g.

Yield : 40 %

Color : brown

Elemental analysis : % C % H % N

Calc. 68.05 4.51 8.35

Found 67.93 4.39 8.26

Infrared spectral features (cm–1)

3040, 1509 cm–1 : –C–H st., backbone st. (aromatic)

2964, 2855 cm–1 : –C–H st. (aliphatic)

1782 cm–1 : –C=O st. asym (imide)

1733 cm–1 : –C=O st. sym (imide)

1385 cm–1 : ϒ -C-N st. imide

1110, 722 cm–1 : ϒ (–C–N–C–) imide

1015 cm–1 : –C–H (aromatic)

1452, 888 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.8 1.5 3.3 20.1 43.9 65.9 96.7

Page 52: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 96

Table 3.32: Physiochemical, spectral and thermal data of PI9

Physiochemical parameters

Empirical formula : C34H16N4O8

Empirical weight : 684.61 g.

Yield : 50 %

Color : brown

Elemental analysis : % C % H % N

Calc. 67.11 2.65 9.21

Found 66.92 2.50 9.08

Infrared spectral features (cm–1)

3044, 1507 cm–1 : –C–H st., backbone st. (aromatic)

2962, 2857 cm–1 : –C–H st. (aliphatic)

1779 cm–1 : –C=O st. asym (imide)

1732 cm–1 : –C=O st. sym (imide)

1372 cm–1 : ϒ -C-N st. imide

1110, 720 cm–1 : ϒ (–C–N–C–) imide

1019 cm–1 : –C–H (aromatic)

1451, 887 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.5 1.0 1.1 7.0 34.3 70.9 96.2

Page 53: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 97

Table 3.33: Physiochemical, spectral and thermal data of PI10

Physiochemical parameters

Empirical formula : C34H16N4O8

Empirical weight : 608.51 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 67.11 2.65 9.21

Found 67.00 2.52 9.16

Infrared spectral features (cm–1)

3040, 1502 cm–1 : –C–H st., backbone st. (aromatic)

2965, 2858 cm–1 : –C–H st. (aliphatic)

1783 cm–1 : –C=O st. asym (imide)

1730 cm–1 : –C=O st. sym (imide)

1388 cm–1 : ϒ -C-N st. imide

1112, 720 cm–1 : ϒ (–C–N–C–) imide

1017 cm–1 : –C–H (aromatic)

1452, 889 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.3 0.9 1.2 8.0 35.1 69.9 95.9

Page 54: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 98

Table 3.34: Physiochemical, spectral and thermal data of PI11

Physiochemical parameters

Empirical formula : C41H22N4O8

Empirical weight : 698.64 g.

Yield : 40 %

Color : brown

Elemental analysis : % C % H % N

Calc. 70.49 3.17 8.02

Found 70.28 3.03 7.89

Infrared Spectral Features (cm–1)

3038, 1502 cm–1 : –C–H st., backbone st. (aromatic)

2966, 2852 cm–1 : –C–H st. (aliphatic)

1772 cm–1 : –C=O st. asym (imide)

1734 cm–1 : –C=O st. sym (imide)

1363 cm–1 : ϒ -C-N st. imide

1112, 729 cm–1 : ϒ (–C–N–C–) imide

1017 cm–1 : –C–H (aromatic)

1458, 887 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.2 0.6 1.3 6.0 34.2 71.2 96.3

Page 55: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 99

Table 3.35: Physiochemical, spectral and thermal data of PI12

Physiochemical parameters

Empirical formula : C40H20N4O10S

Empirical weight : 748.67 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N % S

Calc. 64.17 2.69 7.48 4.28

Found 63.97 2.48 7.31 4.19

Infrared spectral features (cm–1)

3040, 1500 cm–1 : –C–H st., backbone st. (aromatic)

2960, 2859 cm–1 : –C–H st. (aliphatic)

1775 cm–1 : –C=O st. asym (imide)

1729 cm–1 : –C=O st. sym (imide)

1374 cm–1 : ϒ -C-N st. imide

1110, 722 cm–1 : ϒ (–C–N–C–) imide

1018 cm–1 : –C–H (aromatic)

1458, 885 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 0.4 1.1 6.9 33.1 68.9 95.7

Page 56: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 100

Table 3.36: Physiochemical, spectral and thermal data of PI13

Physiochemical parameters

Empirical formula : C40H20N4O9

Empirical weight : 700.61 g.

Yield : 40 %

Color : brown

Elemental analysis : % C % H % N

Calc. 68.57 2.88 8.00

Found 68.45 2.73 7.89

Infrared spectral features (cm–1)

3039, 1508 cm–1 : –C–H st., backbone st. (aromatic)

2969, 2855 cm–1 : –C–H st. (aliphatic)

1771 cm–1 : –C=O st. asym (imide)

1730 cm–1 : –C=O st. sym (imide)

1379 cm–1 : ϒ -C-N st. imide

1112, 729 cm–1 : ϒ (–C–N–C–) imide

1019 cm–1 : –C–H (aromatic)

1458, 884 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.6 0.8 1.5 8.0 34.9 70.3 96.8

Page 57: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 101

Table 3.37: Physiochemical, spectral and thermal data of PI14

Physiochemical parameters

Empirical formula : C43H26N4O8

Empirical weight : 726.7 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 71.07 3.61 7.71

Found 70.94 3.54 7.64

Infrared spectral features (cm–1)

3039, 1510 cm–1 : –C–H st., backbone st. (aromatic)

2942, 2831 cm–1 : –C–H st. (aliphatic)

1781 cm–1 : –C=O st. asym (imide)

1732 cm–1 : –C=O st. sym (imide)

1382 cm–1 : ϒ -C-N st. imide

1116, 726 cm–1 : ϒ (–C–N–C–) imide

1012 cm–1 : –C–H (aromatic)

1456, 883 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.2 0.6 1.3 7.0 33.8 71.2 95.9

Page 58: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 102

Table 3.38: Physiochemical, spectral and thermal data of PI15

Physiochemical parameters

Empirical formula : C45H30N4O8

Empirical weight : 754.7 g.

Yield : 45 %

Color : brown

Elemental analysis : % C % H % N

Calc. 71.61 4.01 7.42

Found 71.53 3.90 7.35

Infrared spectral features (cm–1)

3037, 1515 cm–1 : –C–H st., backbone st. (aromatic)

2940, 2834 cm–1 : –C–H st. (aliphatic)

1787 cm–1 : –C=O st. asym (imide)

1736 cm–1 : –C=O st. sym (imide)

1388 cm–1 : ϒ -C-N st. imide

1128, 720 cm–1 : ϒ (–C–N–C–) imide

1025 cm–1 : –C–H (aromatic)

1450, 889 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.4 0.5 1.1 7.9 33.2 68.9 95.7

Page 59: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 103

Table 3.39: Physiochemical, spectral and thermal data of PI16

Physiochemical parameters

Empirical formula : C47H34N4O8

Empirical weight : 782.8 g.

Yield : 40 %

Color : Brown

Elemental analysis : % C % H % N

Calc. 72.11 4.38 7.16 Found 72.03 4.32 7.07

Infrared spectral features (cm–1)

3032, 1516 cm–1 : –C–H st., backbone st. (aromatic)

2941, 2830 cm–1 : –C–H st. (aliphatic)

1787 cm–1 : –C=O st. asym (imide)

1739 cm–1 : –C=O st. sym (imide)

1386 cm–1 : ϒ -C-N st. imide

1112, 721 cm–1 : ϒ (–C–N–C–) imide

1024 cm–1 : –C–H (aromatic)

1452, 881 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.6 0.7 1.5 7.6 34.8 70.4 96.8

Page 60: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 104

Table 3.40: Physiochemical, spectral and thermal data of PI17

Physiochemical parameters

Empirical formula : C49H38N4O8

Empirical weight : 810.8 g.

Yield : 40 %

Color : brown

Elemental analysis : % C % H % N

Calc. 72.58 4.72 6.91 Found 72.51 4.65 6.84

Infrared Spectral Features (cm–1)

3035, 1511 cm–1 : –C–H st., backbone st. (aromatic)

2948, 2836 cm–1 : –C–H st. (aliphatic)

1786 cm–1 : –C=O st. asym (imide)

1737 cm–1 : –C=O st. sym (imide)

1384 cm–1 : ϒ -C-N st. imide

1111, 721 cm–1 : ϒ (–C–N–C–) imide

1024 cm–1 : –C–H (aromatic)

1453, 888 cm–1 : C6H2 (1,2,4,5–tetra substituted benzene)

Thermogravimetric analysis data

Temperature ˚C : 100 200 300 400 500 600 700

% weight loss : 0.3 0.5 1.2 6.3 31.2 68.1 95.4

Page 61: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 105

3.5.3. Results and discussion of polyimides

The thermoplastic-thermosetting merged polyimide system has been performed

by the Diels–Alder intermolecular reaction followed by aromatization of DA

adduct and imidization simultaneously.

3.5.3.1. Physical properties

The synthesized polyimides were brown in color. The elemental analyses (Table

3.24–3.40) of the polyimides PI1–17 indicated that the reactions had reached

good yield of aromatization and simultaneous imidization of the Diels–Alder poly

adducts and were consistent with their predicted structures (Figure 3.10, 3.19).

3.5.3.2. Spectral properties

IR spectral bands of the polyimides suggested the formation of desired

compounds and supported their structure. Spectral features provide valuable

information regarding the nature of functional group attached. The IR spectra of

the polyimides showed important changes with respect to those of the DA

adducts, which clearly confirmed that the aromatization and simultaneous

imidization reaction had taken place with good yield with all the DA adducts.

The IR spectra of polyimides have prominent characteristic bands of imide,

aromatic and aliphatic carbon. The bands near 3030, 1510 cm–1 were attributed

to aromatic ring. The bands at around 2950 cm–1 and 2830 cm–1 were attributed

to the aliphatic carbon, while the bands around 1785 cm–1 and 1730 cm–1 were

corresponding to the asymmetric and symmetric imide groups respectively.

While comparing the IR spectra of DA adducts and Polyimides (Figure 3.20–3.22)

significant differences were observed. The IR spectra of DA adducts have

prominent characteristic bands of furan, amide and carboxylic acid groups.

Comparison of the IR spectra of non aromatized and non cyclized DA adducts

(Figure 3.11–3.13) with aromatized and imidized (cyclized) polyimides (Figure

3.19) revealed discernible differences. The bands due to carboxylic acid and

amide groups in the spectra of DA adducts were almost disappeared in the

Page 62: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 106

spectra of polyimides, indicating that imidization reaction had taken place very

smoothly and the disappearance of the bands due to furan ring confirmed the

aromatization reaction had been completed simultaneously.

For the sake of convenience, the IR spectra of polyimides were compared with

the model compound (Figure 3.8). IR spectral features of polyimides were quite

identical with the model compound. These features confirmed the predicted

structure of aromatized-imidized polyimides.

Figure 3.20: FT–IR spectra of polyimide PI1

Page 63: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 107

Figure 3.21: Comparative FT–IR spectra of DAA14 and PI14

Figure 3.22: Comparative FT–IR spectra of DAA8 and PI8

Page 64: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 108

3.5.3.3. Thermal properties

Thermogravimetric analysis has emerged as one of the significant method for

assessing thermal properties of various materials in a different area of science. It

is most frequently used in the characterization of polymeric materials so as to

obtain the information not available by other techniques.

The thermal stability of polyimides was evaluated from their TG curves (Figure

3.23–3.27). During the thermal analysis, polyimides remain unchanged up to 400

˚C. It clearly confirmed that these polyimides were stable upto 400 ˚C. After this

temperature polyimides was decomposed. A very rapid rate of weight loss was

observed in DA adducts and polyimides at 400–600 ˚C.

The aromatized polyimides were more thermally stable as their pre polymers

(i.e. Diels–Alder polyadducts) had a nature of decarboxylation. Thus polyimides

(Figure 3.23–3.27) started their degradation at slightly higher temperature as

compared to non-aromatized samples (Figure 3.14–3.18). In case of polyimides,

decomposition started after 400 ˚C depending upon the nature of PIs. The char

residue left at 700 ˚C was in the range of 4–6 %. Examination of these data

revealed that the polyimides were more thermally stable than the DA

polyadducts.

Page 65: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 109

Figure 3.23: Thermogram of polyimide PI2–4

Figure 3.24: Thermogram of polyimide PI1,5–8

Page 66: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 110

Figure 3.25: Thermogram of polyimide PI9–10

Figure 3.26: Thermogram of polyimide PI11–13

Page 67: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 111

Figure 3.27: Thermogram of polyimide PI14–17

3.6. BULK POLYMERIZATION

A mixture of bisfuran (0.01mol), bismaleimides B1-17 (0.01mol) and 2 mL acetic

anhydride in THF were heated at 140–150 ˚C for 10h with vigorous agitation.

The resulting products were cooled and poured into a large volume of water. The

precipitates formed were filtered, washed and then air dried. The characteristics

of the obtained bulk polymerized products were consistant with the products

obtained by solution phase polyimides (i.e. synthesized polyimides).

Page 68: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 112

REFERENCES

[1] Patel RH, Hiran BL. 2011 E-Journal of Chemistry 8(1): 443.

[2] Viot JF, Giraud Y, Camberlin Y, Lopez P, Meissonnier J. 1989 Polymer

Composite, 10(5): 367

[3] Sauers CK. 1969 Journal of Organic Chemistry 34(8): 2275.

[4] Searle NE. 1948 U S Patent 2444536.

[5] Arnold HW, Searle NE. 1949 U S Patent, 2467835.

[6] Wang ZY. 1990 Synthetic Communication 20(11): 1607.

[7] Dershem SM. 2012 US 2012/0049106 A1.

[8] Belina K. 1997 Journal of Thermal Analysis 50: 655.

[9] White JE. 1986 Industrial & Engineering Chemistry Product Research and

Development 25: 395.

[10] Crivello JV. 1976 Journal of Polymer Science: Polymer Chemistry 14: 159.

[11] Romdhane HB, Baklouti M, Chaabouni MR, Grenier-Loustalot MF, Delolme

F, Sillion B. 2002 Polymer 43: 255.

[12] Fallahi A., Rajabi L., Taromi FA. 2011 Iranian Polymer Journal 20(2): 161.

[13] Chandra R, Rajabi L. 1997 Journal of Macromolecular Science, Part C:

Polymer Reviews 37(1): 61.

[14] Gandini A. 2013 Progress in Polymer Science 38: 1.

[15] Tesoro GC, Sastri VR. 1986 Industrial & Engineering Chemistry Product

Research and Development 25(3): 444.

[16] Kolb HC, Finn MG, Sharpless KB. 2001 Angewandte Chemie International

Edition 40: 2004.

[17] Vilela C, Cruciani L, Silvestre AJD, Gandini A. 2012 RSC Advanced 2: 2966.

[18] Thesis of Water John Francis 1993 Case Western Reserve University.

[19] (a) Taticchi F, Fringuelli A. 1990 Dienes in the Diels–Alder reaction. New

York: Wiley-Interscience. (b) Taticchi F, Fringuelli A. 2002 The Diels–

Alder reaction: selected practical methods. New York: John Wiley & Sons;.

[20] Kwart H, Burchuk I. 1952 Journal of American Chemical Society 74: 3094.

[21] Stille JK, Plummer L. 1961 Journal of Organic Chemistry 26: 4026.

[22] Chatterji SK, Agrawal VB. 1971 Journal of Polymer Science, Part A

Polymmer Chemistry 9 (11): 3225.

Page 69: CHAPTER-3shodhganga.inflibnet.ac.in › bitstream › 10603 › 34624 › ... · Chapter 3 Chemistry Dept., S. P. Uni., V. V. Nagar 48 3.1.2.3. Characterization of bisfuran Table

Chapter 3

Chemistry Dept., S. P. Uni., V. V. Nagar 113

[23] Chatterji SK, Gupta ND. 1974 Journal of Macromolecular Science,

Chemistry-Physics 8 (2): 451.

[24] Patel RN, Patel SR. 1981 Die Angew Makromolecular Chemie 96: 85.