Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace...

43
Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5 Application of Laplace Transform

Transcript of Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace...

Page 1: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Chapter 9 Laplace Transform

§9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5 Application of Laplace Transform

Page 2: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

§9.1 Definition of Laplace Transform

Definition

0

0

For ( ),t 0,if ( ) converge for certain

(complexvariable), then ( ) ( ) is called

s t

s t

f t f t e dt

S F s f t e dt

1

the Laplace Transform of ( ),denoted as ( ) [ ( )],

( )is called the inverse Laplace Transform of ( ),denoted

as ( ) [ ( )].

f t F s L f t

f t F s

f t L F s

Page 3: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Unit Step: 1, 0,( )

0, 0.

tu t

t

The properties of ( ) are as followings.t

Unit Impulse

( ) is smooth function.f t

( ) 1 ( ) ( ) (0)t dt t f t dt f

0 0( ) ( ) ( )t f t t dt f t

0 0( ) ( ) ( )t t f t dt f t

0, 0,( ) and ( ) 1

, 0.

tt t dt

t

( ) ( ) ( )

( ) ( ) (0)

( ) ( ) ( 1) (0)

' '

n n n

δ t f t dt f ,

t f t dt f

Page 4: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:0 0

(1). ; (2). ; (3). sin1 0

kt, tu(t) f(t) e f(t) kt

, t

0 0

-

1(1).L[ ( )]

0

let then (cos sin )

when Re(s) 0, 0 lim 0

1L[ ( )] .

st st st

st t ti t

αt st

t

u t u(t)e dt e dt es

s α βi, e e e t i t

α e (t ) e

u ts

0 0

1(2). [ ] , (Re( ) ) Re( - ) 0kt kt st (s-k)tL e e e dt e dt s k s k

s k

2 20

2 2

(3). [sin ] sin (sin cos )0

( Re(s) 0).

stst e

L kt kte dt kt k kts k

k ,

s k

Page 5: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

TH.9.1.1 Existence Theorem

Support that

1.f(t) continous or piecewise continous on every finite

interval [0,b];

2.there are positive constants 0, ,such that

,(0 ),then the Laplace Transformc t

M c R

f t Me t

0

0

1

of ( ) ,i.e. ( ) ( ) exists for Re( ) ,

( ) absolutely converges and uniformly

converges for Re( ) .And ( )analytic on Re( ) .

s t

s t

f t F s f t e dt s c

f t e dt

s c c F s s c

Page 6: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Note:

The conditions in the theorem are sufficient, not necessary.

1. ( ) , ( ) ( 0),Ex f t f t t

t

10 2

12

1( )1 2however, , (Re( ) 0)

, ( function)

s te dt st s

s

Page 7: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:9.1.5 ( ) [ ( )]t L t -0 0

0

[ ( )] ( ) ( ) ( )

1

st st st

stt

L t t e dt t e dt t e dt

e

t 0

( ) ( ) ( 0), ( )is continuous or piecewise continuous

1on a period,prove [ ( )] ( ) Re( ) 0 .

1

T ss T

f t T f t t f t

L f t f t e dt se

-

0

- - -2 ( 1)

0

( 1) ( 1)- - - ( )

00

- - - -

0 0

[ ( )] ( )

( ) ( ) ( )

[ ( ) ] ( ) - ( )

( ) ( )

st

st st stT T k T

T kT

k T k T Tst st s u kT

kT kTk

T TskT su skT st

L f t f t e dt

f t e dt f t e dt f t e dt

f t e dt f t e dt t kT u f u kT e du

e f u e du e f t e

dt- - -

0 00 0

-- 0

[ ( )] [ ( ) ] ( )

1( ) (Re( ) 0).

1

T TskT st st skT

k k

T stsT

L f t e f t e dt f t e dt e

f t e dt se

Ex:9.1.6

Page 8: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

§9.2 Properties of Laplace Transform1.Linearity

1 1 2 2 1 1 2 2

11 1 2 2 1 1 2 2

( ) ( ) ( 1,2), then

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

i iL f t F s i

L a f t a f t a F s a F s

L b F s b F s b f t b f t

2 2

1( ) [sh ] [ ] [ [ ] [ ]]

2 21 1 1

[ ] , (Re( ) ).2

kt ktkt kte e

F s L kt L L e L e

ks k

s k s k s k

Ex.9.2.1

2 2

Similar:

[ch ] , (Re( ) ).s

L kt s ks k

Page 9: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Let [ ( )] ( ), Re(s) C , then [ ( )] ( ) (0).L f t F s L f' t sF s f

00 0

0

Pf: [ ( )] '( ) ( ) | ( )

(0) ( ) ( ) (0).

s t s t s t

s t

L f' t f t e dt f t e s f t e dt

f s f t e dt sF s f

( ) 1 2 ( 1)

Corollary:

Let [ ( )] ( ), then

( ) ( ) (0) (0) (0)

1,2, Re( )

n n n n n

L f t F s

L f t s F s s f s f f

n s c

2.Derivation

1

( )

Special case: 0 0 0 0, then

( ) ( ) ( ).

n

n n n

f f f

L f t s L f t s F s

Page 10: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex.9.2.2 ( ) cos ( ).f t kt F s

0

2 2 2 2

1 1(1). [cos ] [ (sin ) '] [(sin ) ']

1{ [sin ] sin | }

1, Re( ) 0 .

t

L kt L kt L ktk k

sL kt ktk

s k ss

k s k s k

2

2

2 2

2

2 2

(2). ( ) cos , ''( ) cos

[ cos ] [ ''( )]

[cos ] [ ( )] (0) '(0)

[cos ] .

[cos ] , Re( ) 0

f t kt f t k kt

L k kt L f t

k L kt s L f t sf f

s L kt s

sL kt s

s k

Page 11: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Let [ ( )] ( ), then ( ) [ ( )], Re( ) .L f t F s F s L tf t s c

0 0

0

Pf: ( ) [ ( ) ] ' ( )( )

[ ( )( )]

[ ( )( )], Re( ) .

s t s ts

s t

F s f t e dt f t t e dt

f t t e dt

L f t t s c

( )

In general:

( ) [( ) ( )], Re( ) .n nF s L t f t s c

Page 12: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex. ( ) sh ( )f t t kt F s

2 2

2 2 2 2 2

Solution: [sh ] , Re( ) .

2( sh ) [ ] , Re( ) .

( )

kL kt s k

s kd k ks

L t kt s kds s k s k

2 2

2 2 2

Similar:

( sh ) , Re( ) .( )

s kL t kt s k

s k

Page 13: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

3.Integration

0

( )Let ( ) ( ), then ( ) .

t F sL f t F s L f t dt

s

0

0

0

Pf: Let ( ) ( )d , '( ) ( ),

[ '( )] [ ( )] [ ( )d ]

( )( ) .

t

t

t

g t f t t g t f t

L g t sL g t sL f t t

F sL f t dt

s

0 0 0{ }

In general:

1d d ( )d ( )

t t t

nL t t f t t F s

sn

Page 14: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

1

( )Let ( ) ( ), then ( )

or ( ) [ ( ) ].

s

s

f tL f t F s F s ds L

t

f t tL F s ds

0

0 0

0

Pf: ( ) { ( ) }

1( ){ } ( )

( ) ( )

( )( ) , Re( ) .

st

s s

st st

ss

st

s

F s ds f t e dt ds

f t e ds dt f t e dtt

f t f te dt L

t t

f tL F s ds s c

t

( )

In general: ( ) .n s s s

n

f tL ds ds F s ds

t

Page 15: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex.9.2.4sin

( ) ( )t

f t F st

2

2

1Solution: [sin ] ,

1sin 1

[ ] arctan cot .1 2s

L ts

tL ds s arc s

t s

Ex. ( ) sin ( )f t t F s

0

20

( ) sin cos ,

1 1[sin ] [ cos ] [cos ] .

1

t

t

f t t tdt

L t L tdt L ts s

Page 16: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Homework

P217:2.(1)(3)(5) 3 4 5(1)(2)(3)(4)

Page 17: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

O t

f(t) f(t)

4.Delay

( ) ( ) 0, 0 ,

( ) ( ) ( ),( 0)s s

L f t F s t f t

L f t e L f t e F s

Ex: 1[ ( )] [ ( )] .s sL u t e L u t e

s

1

u(t)

tO

Page 18: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:9.2.8 ( ) [ ( )]f t L f t

- -2

- -2

( ) [ ( ) ( - ) ( - 2 ) ] [ ( )]

1 1 1[ ( )] ( )

(1 ).

s s

s s

f t A u t u t u t L f t

L f t A e es s s

Ae e

s

-

-

- -2 2 2 2

-2 2

when Re( ) 0, then | | 1

1( ( ))

1-

( - ) ( )

2-

(1 coth ) (Re( )2 2

s

s

s s s s

s s

s e

AL f t

s e

A e e e e

se e

A ss

s

Page 19: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

1 2

1 2

-2

2 2

We can get ( ) ( ) ( ),

( ( )) [ ( )] [ ( )]

2 2[sin ( )] [sin ( - ) ( - )]

2 22

(1 ).2

( )

Ts

f t f t f t

L f t L f t L f t

T TEL t u t EL t u t

T T

ET e

sT

Ex:9.2.9

Page 20: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

5.Displacement

( ) ( ) Re( ) , thenL f t F s s c

1

( ), Re( ) ,

( )

t

t

L e f t F s s c

F s e f t

L

sin ( )tf t e kt F s

2 2

2 2

[sin ] ,

[e sin ]( )

at

kL kt

s kk

L kts a k

Ex:

Page 21: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

6.Initial & Terminal Value Theorems

(1).Initial Value Theorem

0

Let [ ( )] ( ), lim ( ) exists,

lim ( ) lim ( ), (0) lim ( ).s

t s s

L f t F s sF s

f t sF s or f sF s

Re( )

Re( ) Re( )

Pf: [ '( )] ( ) - (0)and lim ( ) exists,

lim ( ) lim ( )

lim [ '( )] lim [ ( ) - (0)]

lim ( ) (0).

s

s s

s s

s

L f t sF s f sF s

sF s sF s

L f t sF s f

sF s f

0Re( ) Re( )

0 Re( )

0

lim [ '( )] lim '( )

lim '( ) 0

lim ( ) (0) lim ( ).

st

s s

st

s

s t

L f t f t e dt

f t e dt

sF s f f t

Page 22: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

(2).Terminal Value Theorem

0 0

Let [ ( )] ( ),all singularities of ( ) lie in the left-half plane,

lim ( ) lim ( ), ( ) lim ( ).t s s

L f t F s sF s

f t sF s or f sF s

0 0 0

Pf: [ '( )] ( ) - (0)

lim [ '( )] lim[ ( ) - (0)] lim ( ) (0).s s s

L f t sF s f

L f t sF s f sF s f

00 0

0 00

0 0

lim [ '( )] lim '( )

lim '( ) '( )

lim ( ) (0).

lim ( ) lim ( ) ( ) lim ( ).

st

s s

st

s

t

t s s

L f t f t e dt

f t e dt f t dt

f t f

f t sF s or f sF s

Page 23: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:9.2.112

1[ ( )] (0) ( ).

( 1) 4

sL f t f and f

s

2

20 0

( 1)(0) lim ( ) lim 1,

( 1) 4

( 1)( ) lim ( ) lim 0.

( 1) 4

s s

s s

s sf sF s

s

s sf sF s

s

Satisfying the conditions of the theorem, then you can use the theorem.

2

20 0

1( )= , the singularities are , not satisfying the conditions,

1

lim ( ) lim 0,but ( ) lim ( ) lim sin not exists.1s s t t

F s s js

ssF s f f t t

s

Page 24: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:9.2.12 -4( ) cos5 ( )tf t te t F s 2

'2 2 2 2

2-4

2 2

- 25[cos 5 ] [ cos5 ] -( )

25 25 ( 25)

( 4) - 25( ) [ cos5 ]

[( 4) 25]t

s s sL t L t t

s s s

sF s L te t

s

-3 sin 2

( ) ( ).te t

f t F st

2

20

-3

2[sin 2 ]

4sin 2 2

[ ] arctan | - arctan4 2 2 2

sin 2 3cot ( ) [ ] cot

2 2

s

t

L ts

t s sL ds

t s

s e t sarc F s L arc

t

Ex:9.2.14

Table for properties on P201

Page 25: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

§9.3 Convolution

1.Definition

1 2 1 20Let ( ) ( ) 0, ( 0), ( ) ( )d

tf t f t t f f t

1 2( ) ( )f t and f t 1 2( ) ( )f t f t

1 2 1 20( ) ( ) ( ) ( )d

tf t f t f f t

0

1 2 1 2

1 2 1 20

1 20

( ) ( ) ( ) ( )d

( ) ( )d ( ) ( )d

( ) ( )d .

t

t

t

f t f t f f t

f f t f f t

f f t

1 2( ( ) ( ) 0, 0)f t f t t

is called the convolution of ,denoted as , i.e. .

Note: Convolution in Fourier transform is same to that in Laplace transform.

Page 26: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Properties:

1.Commutative Law

2.Associative Law

3.Distributive Law

4.

1 2 2 1( ) ( ) ( ) ( )f t f t f t f t

1 2 3 1 2 3( ) [ ( ) ( )] [ ( ) ( )] ( )f t f t f t f t f t f t

1 2 3 1 2 1 3( ) [ ( ) ( )] ( ) ( ) ( ) ( )f t f t f t f t f t f t f t

1 2 1 2( ) ( ) ( ) ( )f t f t f t f t

Page 27: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex: eatt

( )

0 0

00 0

Solution:

e e d e e d

1 ee de e e d

t tat a t at a

att ttat a a a

t

a a

0

2

e 1e e

e 1e (e 1)

1(e 1)

attat a

atat at

at

ta a

ta a

t

a a

Page 28: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

2.Convolution TheoremTH.9.3.1

1 2 1 1 2 2

1 2 1 2 1 2

Let ( ) ( ) 0, ( 0),and [ ] , [ ]

then [ ] [ ] [ ] ( ) ( ),

f t f t t L f t F s L f t F s

L f t f t L f t L f t F s F s

,

11 2 1 2 1 2 1 2or [ ( ) ( )] . , . . ( ) ( ).

L

F s F s f t f t i e f t f t F s F s L

Page 29: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

1 2

1 20

1 2 1 20 0 0

Pf: [ ]

[ ] d

[ ( ) ( )d ] d ( )[ ( ) d ]d

st

t st st

L f t f t

f t f t e t

f f t e t f f t e t

1 20 0

1 2 1 2 1 20 0

( )[ ( ) d ]d

( ) ( )d ( ) d ( ) ( ) ( ).

u tsu s

s s

f f u e e u

f e F s f e F s F s F s

Page 30: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex.9.3.2 12 2

1( ) ( ) ( )

( 1)F s f t F F s

s s

1 1 12 2

1 1 12 2

0 0

0 0

0

Solution:

1 1(1). ( ) sin

1

1 1(2). ( ) sin

1

sin( ) cos( )

cos( ) cos( )

sin( ) sin

t t

tt

t

F F s L L t ts s

F F s t ts s

t d d t

t t s ds

t t s t t

L L

Page 31: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Homework:

P217:5.(5)-(13) 7.(1)(3)(5) 8

Page 32: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

§9.4 Inverse Laplace Transform1.Inverse Integral FormulaFrom the inverse Fourier transform, we have the inverse Laplace transform formula.

( )

0 0

[ ( ) ( ) ] ( ) ( )

( ) ( )

t t j t

j t st

F f t u t e f t u t e e dt

f t e dt s j f t e dt F s

j j

j ( j )

0

j

1( ) ( ) e ( ) ( ) e e d e d

21

e d ( )e d21

( j ) e d , ( Re( ) , 0).2

t t

t

t

f t u t f u

f

F s c t

( j )1 1

( ) ( j ) e d , 0,Let , ,2

1then ( ) ( ) , ( Re( ) , 0).

2

t

j st

j

f t F t j s d dsj

f t F s e ds s c tj

Page 33: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

RO Real axis

Imaginary axis

LCR

+jR

jR

singularities

analy

TH.9.4.1

1Let ( )has only finite number of singularities , , ,

(lie in the left side of Re( ) ) and lim ( ) 0,thenn

s

F s s s

s F s

1

1( ) ( ) Re ( ) , , ( 0).

2

nj st stkj

k

f t F s e ds s F s e s tj

Page 34: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

2.Evaluation(1).Using integral formula

2

1( ) ( ).

( 1)F s f t

s s

0 is pole of order 1,and 1is pole of order 2,s s

2 10

21

( ) Re ,0 Re ,1

1 d 1e lim e

( 1) d

11 lim e e

1 ( e e ) 1 e ( 1) ( 0).

st st

st st

ss

st st

s

t t t

f t s F s e s F s e

s s s

t

s s

t t t

Ex:

Page 35: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

(2).Using convolution theorem

11 2 1 2[ ( ) ( )]L F s F s f t f t

12 2

1( ) ( ) .

( 2 5)F s L F s

s s

Ex:

2 2 2

1 12 2 2 2

1 1 12 2 2 2

( )

0

1( )

[( 1) 2 ]

1 1 2 1sin 2

( 1) 2 2 2 2

1 1( )

( 1) 2 ( 1) 2

1 1 1sin 2 sin 2 ( sin 2 )( sin 2( )

2 2 41

(cos(4 2 ) cos 2 )8

t t

tt t t

t

F ss

L e L e ts s

L F s L Ls s

e t e t e e t d

e t t

0

1sin 2 2 cos 2 .

16

t td e t t t

Page 36: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

(3).Using partial fraction

2

1( ) ( ).

( 1)F s f t

s s

2 2

12

1 1 1 1( )

( 1) 1

1( )

( 1)

1 e ( 0).t

F ss s s s s

f t Ls s

L L L

t t

-1 -1 -12

1 -1 1=

s s s+1

Ex:

Page 37: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

(4).Using properties1 1 1

1 2 1 2

1 1

1

1

1

1. [ ( ) ( )] [ ( )] [ ( )].

2 . [ ( )] [ ( )].

3 . [ ( )] ( ).

4 . [ '( )] ( ).

( )5 . [ ( ) ] .

t

s

s

L F s F s L F s L F s

L F s e L F s

L e F s f t

L F s tf t

f tL F s ds

t

12

1( ) ( ) .

2 2

sF s L F s

s s

1 12 2

12

1 1( ) [ ] [ ]

2 2 ( 1) 1

[ ] cos .1

t t

s sf t L L

s s s

se L e t

s

Ex:

(5).Using L-transform table

Page 38: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

§9.5 Application of Laplace Transform

0

0

00 0

(1). ( ) ( )

( ) (0), ( ) ( ).

s t

s t

f t e dt F s

f t dt F f t e dt F s

3

32 20

3Ex: cos 2 | .

2 13t

s

ste dt

s

0

0

0 0

0 0

( ) ( )(2). ( ) ( ) ,Let 0, ( ) ,

( ), ( ) .

s

s t

s

f t f tL F s ds s dt F s ds

t tf t

s s e dt F s dst

1.Evaluating the improper integral

120 1

sin 1Ex: arctan | .

1 4te dt ds s

t s

0( ) ( )00 0

3 . ( ) ( 1) (0). ( ) ( 1) ( ).s tn n n n n nt f t dt F t f t e dt F s

120

1 1Ex: sin [ ]'| .

1 2t

st t e dts

Page 39: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Using Laplace transform solves the differential equation:

The block diagram shows the details.

Solution of

Differential equation

Algebra equation of

2.Solving Differential Equation

( )x t

1L

( )X s

( )X s

L

Page 40: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:( ) 2 ( ) 2 ( ) 2 cos

Solve(0) (0) 0

tx t x t x t e t

x x

22

222 2

122

Let ( ) ( ) ,differential equation equation of ( )

2( 1)( ) (0) (0) 2 ( ) (0) 2 ( )

( 1) 1

2( 1) 2( 1)( ) 2 ( ) 2 ( ) ( )

( 1) 1 ( 1) 1

2( 1)( )

( 1) 1

X s L x t X s

ss X s sx x sX s x X s

s

s ss X s sX s X s X s

s s

sx t L

s

122

1 12 2

2

1

1 1sin

1 1

t

t t t

se L

s

e L te L te ts s

Page 41: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Ex:

2

2

( ) 2 ( ) 2 ( ) 10

Solve 2 ( ) ( ) 3 ( ) 13 .

(0) 1, (0) 3

t

t

x t x t y t e

x t y t y t e

x y

2

2

Let ( ) ( ) , ( ) ( )

differential equation equation of ( ) and ( ).

10( ) 1 2 ( ) 2 ( )

213

2 ( ) ( ) 3 3 ( )2

1( )

( )23 ( ) 3( )

2

t

t

X s L x t Y s L y t

X s Y s

sX s X s Y ss

X s sY s Y ss

X sx t es

y t eY ss

Page 42: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

Homework:

P218: 9.(1)(3)(5) 10.(1)(3) 11.(1)(3)

Page 43: Chapter 9 Laplace Transform §9.1 Definition of Laplace Transform §9.2 Properties of Laplace Transform §9.3 Convolution §9.4 Inverse Laplace Transform §9.5.

1. The properties of Laplace Transform.2. Application in solving differential equations.

The key points and difficulties of the chapter.