Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis...

39
TCD March 2007 1 Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

Transcript of Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis...

Page 1: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 1

Chapter 7

Micromagnetism, domains and hysteresis

7.1 Micromagnetic energy

7.2 Domain theory

7.5 Reversal, pinning and nucleation

Page 2: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 2

The hysteresis loop shows the irreversible, nonlinear response of a ferromagnet to amagnetic field . It reflects the arrangement of the magnetization in ferromagnetic domains.The magnet cannot be in thermodynamic equilibrium anywhere around the open part ofthe curve! M and H have the same units (A m-1).

coercivity

spontaneous magnetization

remanence

major loop

virgin curveinitial susceptibility

The hysteresis loop

Page 3: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 3

Domains form to minimize the dipolar energy Ed

Page 4: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 4

Page 5: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 5

Magnetostatics

Poisson’s equarion

Volume charge

Boundary condition

1. solid

2. air

M( r) ! H( r) BUT H( r) ! M( r)

Experimental information about the domain structure comes from observations at the surface.The interior is inscruatble.

en

M

+

++

Page 6: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 6

7.1 Micromagnetic energy

Page 7: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 7

1.1 Exchange

eM = M( r)/Ms (",#)

A = kTC/2a

A = 2JS2Zc/a0

A ~ 10 pJ m-1

Lex ~ 2 - 3 nm

Exchange energy of vortex

$Eex = JS2ln (R/a)

Exchange length

Page 8: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 8

EK = K1sin2" Bulk K1 ~ 102 - 107 J m-3

Surface Ksa ~ 0.1 - 1 mJ m-2.

Interface Kea ~ 1 mJ m-2.

Exchange and anisotropy governthe width of the domain wall.

1.2 Anisotropy

Page 9: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 9

Demagnetizing field governs the formation of the wall

(integral over all space) and B = µ0(H + M)

Hd is determined by the volume and surface charge distributions %.M and en.M

&m = qm/4'r; %2 &m= -(m H = - %&m

1.3 Demagnetizing field

Page 10: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 10

Magnetoelastic strain tensor

For isotropic material, uniaxial stress

Induced uniaxial anisotropy

1.4 Stress

Page 11: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 11

Local stresses can be created by the magnetostriction of the ferromagnet itself:

Usually this term is small < 1 kj m-3 , but it can influence the formation of closure domains.

Elastic tensor

Magnetostrictive stress

Deviation due to magnetostriction

1.5 Magnetosriction

Page 12: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 12

A guide to how nature minimizes the micromagnetic free energy is the charge avoidance principle.

Avoid forming bulk or surface chage, and keep charge of like sign as far apart as possible

e.g Keep magnetization parallel to the surface, wherever possible.

1.6 Charge Avoidance

Toroid

Picture frame

Page 13: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 13

Brown’s Micromagnetic equations

General statement of the micromagnetic problem:

No torque on the magnetization at any point.

Page 14: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 14

7.1 Domain Theory

A ~ 10-11 J m-1

K1 ~ 10 5 J m-3

Page 15: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 15

2.1 Bloch Wall

Page 16: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 16

Page 17: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 17

2.1 Néel Wall

Neel walls form in thin films of soft materialthinner than ~ 6 nm

Page 18: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 18

2.3 Magnetization processes

There are two magnetization processes for a ferromagnet:

1) Domain-wall motion

2) Magnetization rotation

If the domain walls are perfectly free to move, they will do sountil H =0; H’ = 1/N

H’

Page 19: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 19

7.3 Nucleation, reversal and pinning

Page 20: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 20

Brown’s paradox

Brown’s theorem; for ahomogeneous, uniformly-magnetized ellipse

Page 21: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 21

Page 22: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 22

A very small particle will be single-domain. Larger particles form domain walls to reduce demagnetizing energy

Single-domain particle size:

Cost of making two 90 degree walls is 2!R2(AK)1/2 should offset thegain in demagnetizing energy -(1/2)NMs

2

Page 23: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 23

3.2 The Stoner Wohlfarth model Assume coherent rotation of the magnetization. H makesan angle ) with the axis of the particle.

NB R < Rsd does not guarantee coherent rotation.

When ) = 0, Hc=2Ku/µ0Ms

Page 24: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 24

The energy landscape of a Stoner Wohlfarth particle

Page 25: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 25

Hc = 0.479

Mr = 0.5

Area = 0.99

Page 26: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 26

Preisach Model

Model hysteresis loops with a distribution of elementary square loops.

These are known as ‘hysterons’

M

H

Page 27: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 27

Other reversal modes

Page 28: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 28

3.3 Reversal in thin films and small elements

The Stoner Wohlfarth asteroid.Locus of points where a bifurcation of energy occursSwitching occurs on the surface, never within it.

Take components of H along easy and hard directions, andnormalize them by the anisotropy field 2Ku/Ms

Consider a thin film as a 2D S-W ‘particle’. The reversalis assumed to be coherent

dEtot/d"=0

Page 29: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 29

Page 30: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 30

Page 31: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 31

3.4 The two-hemisphere model

A sphere made up of two halves with different anisotropy K) and K*

Exchange + dipole interactions Anisotropy + Zeeman interactions

If K1 = K) and K* = 0, Independent reveral of the soft hemisphere occurs when H ≈ (1/8) Ms

Except if R < lex, when the soft hemisphere cannot reverse independently.

Page 32: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 32

Exchange stiffening operates on a length scale of up to ≈ 4lex ≈ 10 nm.

Page 33: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 33

3.4 Switching dynamics;

Torque on a magnetic moment in a field causes precessionat the Larmor precession frequency

i.e. 28 GHz/T when g=2 and + = -e/m

In the presence of unixial anisotropy:

Gilbert damping term

H

M

Page 34: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 34

3.5 Domain wall pinning

Domain wall velocity.

Barkhausen jumps

Page 35: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 35

3.6 Real hysteresis loops

Page 36: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 36

Kronmuller Equation

Page 37: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 37

Page 38: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 38

Approach to saturation

Page 39: Chapter 7 Micromagnetism, domains and hysteresis...Chapter 7 Micromagnetism, domains and hysteresis 7.1 Micromagnetic energy 7.2 Domain theory 7.5 Reversal, pinning and nucleation

TCD March 2007 39

Time Dependence

Magnetic Viscosity M = M0 - S ln t

The hysteresis loop shows the irreversible, nonlinear response of a ferromagnet to amagnetic field . It reflects the arrangement of the magnetization in ferromagnetic domains.The magnet cannot be in thermodynamic equilibrium anywhere around the open part ofthe curve! M and H have the same units (A m-1).

coercivity

spontaneous magnetization

remanence

major loop

virgin curveinitial susceptibility